ABSTRACT
Generation, power conversion and subsequent integration of renewable energy generation systems, such as solar photovoltaic or wind, require an efficient power conversion system that can provide sufficient quality energy according to technical standards (e.g. IEEE 519-2022). In this context, this paper focuses on the analysis, design and experimental validation of a multilevel voltage source inverter (VSI) scheme based on H-bridge cells with a modular and scalable structure for its application in power electronic converter circuits. The designed and assembled experimental setup is a versatile platform for testing experimentally varied control strategies and power converter configurations, such as the number of levels (3, 5, 7 levels) and phases (single-phase or three-phase). Therefore, the hardware design process proposed for the H-bridge cell and the measurement and conditioning circuits for voltage and current signals necessary for implementing the control algorithms are explained in detail. Moreover, a quantitative analysis of the operation of the design was carried out from measurements made with the experimental platform to verify its correct operation. Among the analysed parameters, the generated harmonics level stands out, quantified by calculating the total harmonic distortion and the mean square error between the reference signals and the measured values.
ABSTRACT
Integrating renewable energies, such as wind or photovoltaic, requires an electronic power converter, the three-phase Voltage Source Inverter (VSI) the most common for such function. This paper presents a modular design of signal acquisition and control hardware (current and voltage) for the commercial SEMIKRON SKS35F VSI converter and a Texas Instruments TMS320F28335 DSP. Consequently, the proposed modular and open-source design allows its application in control systems of a VSI converter for isolated or grid-connected systems, applied to power generation based on renewable sources. The proposed scheme allows for a personalised design since it uses an open architecture to implement its own control algorithms that allow it to adapt to the application's particular needs, unlike closed-architecture commercial equipment. Detailed electronic printed circuit board designs for implementation are shown on paper. Finally, the experimental tests' results that validate the proposed design's correct functioning are presented.
ABSTRACT
Global Horizontal Irradiance was measured using a thermopile-type pyranometer during more than three years using a sample time of two seconds, with the purpose of capturing fast transient events of irradiance which are notable in tropical regions as the one where these data were collected: Bogotá, Colombia. The date and time of each measurement were registered along with the irradiance values. In addition, other related quantities were calculated and included for each one of the measurement instants: Optical Air Mass, Zenith angle, Extraterrestrial Solar Irradiance, and Clearness Index. Daily aggregated statistics of irradiance were calculated and are provided here too. Data points corresponding to nights were discarded. The raw data was analyzed to remove incomplete days, to guarantee that daily statistics are accurate and meaningful. After this data cleaning process, 1016 complete days remain, having a total of 21,959,912 data points. These data are useful for studying the effect of irradiance transients over photovoltaic systems, including power electronics, batteries and electric loads; it can also be used in studies about the stability of the radiative regime or the variability of irradiance such as Avila et al. (2019) (where part of these data was effectively used) and other related works cited there.
ABSTRACT
This paper presents an innovative concept for the online application of Frequency Response Analysis (FRA). FRA is a well known technique that is applied to detect damage in electric machinery. As an offline technique, the machine under testing has to be removed from service-which may cause loss of production. Experimental adaptations of FRA to online operation are usually based on the use of passive high pass coupling-which, ideally, should provide attenuation to the grid voltage, and at the same time, allow the high frequency FRA signals to be injected at the machine. In practice, however, the passive coupling results in a trade-off between the required attenuation and the useful area obtained at the FRA spectra. This paper proposes the use of an active coupling system, based on power electronics, in order to cancel the grid voltage at the terminals of FRA equipment and allow its safe connection to an energized machine. The paper presents the basic concepts of FRA and the issue of online measurements. It also presents basic concepts about power electronics converters and the operating principles of the Modular Multilevel Converter, which enables the generation of an output voltage with low THD, which is important for tracking the grid voltage with minimum error.