Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.170
Filter
1.
Food Chem X ; 23: 101611, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39113742

ABSTRACT

Mounting evidence supports the potential of dietary bioactives to reduce chronic disease risk. N-trans-caffeoyltyramine (NCT) and N-trans-feruloyltyramine (NFT) have been hypothesized to drive regulation of gut permeability, but these components have not yet been studied in the context of the human gut microbiome. This work examined whether purified NCT and NFT, or a hemp hull product containing NCT and NFT (Brightseed® Bio Gut Fiber™), can impact the gut microbiome using an in vitro fermentation assay. Representative human gut microbiomes were treated with Bio Gut Fiber™ or NCT and NFT and compared to starch and methylcellulose, as controls, in vitro. Stronger changes were exerted by Bio Gut Fiber™, NCT, and NFT. Communities treated with Bio Gut Fiber™ saw increased productivity and diversity. We found a dose-dependent effect of NCT and NFT on microbial communities. Here, we describe novel potential for hemp-derived bioactives to shape the gut microbiome.

2.
Poult Sci ; 103(10): 104094, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39096828

ABSTRACT

The study aimed to analyze the growth performance, feed indicators, and quantitative and qualitative physicochemical features of carcass and meat from broiler chickens after rearing, stimulated in ovo on d 12 of incubation with various substances. In the experiment, 1,200 hatching eggs from meat-type hen Ross 308 parental flock were incubated. On d 12, the injection was performed. Group CON-0 was noninjected. Group CON-S was injected with saline. In the GOS group, the procedure was performed in ovo with galactooligosaccharides (dissolved 3.5 mg of GOS in 0.2 mL of NaCl). In the SB group, butyric acid sodium salt was administered in a 0.3% SB dissolved in 0.2 mL NaCl. After hatching, 336, 1-day-old chicks per group were transferred to the broiler house and kept in 7 pens with 12 chickens per group for 42 d. The body weight and feed intake indicators were calculated. Next, 40 birds were selected (n = 10 per group) and taken to analyze carcass composition and meat quality (pH, color, WHC, drip loss, chemical composition). Compared to the experimental groups, the highest body weight indicators were found in groups CON-0 and CON-S. The feed conversion ratio was the lowest in the SB group on d 36 to 42 (P < 0.05). The European Efficiency Production Factor in groups GOS and SB was lower than in group CON-S (P = 0.005). The GOS group showed higher pH24hours in the pectoral muscles than the CON-S group (P = 0.011). The leg muscles showed better WHC in the CON-S, GOS, and SB groups than in the CON-0 group (P < 0.001). A lower intramuscular fat of the pectoral and leg muscle content was demonstrated, especially in the SB group. Injection of galactooligosaccharides and sodium butyrate in ovo adversely affected broiler production but did not alter carcass composition. It varied pectoral muscles' pH and chemical composition and improved water holding capacity and chemical composition in leg muscles.

3.
Expert Opin Pharmacother ; : 1-14, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39091043

ABSTRACT

INTRODUCTION: Acute gastroenteritis (AGE) is the consequence of a disturbed gastro-intestinal microbiome. Certain probiotic strains (Lacticaseibacillus rhamnosus, Saccharomyces boulardii CNCM I-745, Limosilactobacillus reuteri (L. reuteri) DSM 17,938, the combination of L. rhamnosus 19070-2 and L. reuteri DSM 12,246) reduce the duration and severity of diarrhea. AREAS COVERED: Relevant literature was sourced from PubMed and CINAHL. Important reviews until 2021 were summarized in tables. New evidence for pro-, pre-, syn- and postbiotics in AGE was searched for. Postbiotics offer advantages regarding product stability and show accumulating evidence. Heterogeneity in studies regarding the in- and exclusion criteria, primary and secondary endpoints, type, dose, timing and duration of biotic administration limits the evidence. EXPERT OPINION: Development of a core outcome set for children with AGE would be beneficial, as its application would increase the homogeneity of the available evidence. The vast majority of the 'biotics' is registered as food supplement. Regulations for food supplements prioritize safety over efficacy, making them considerably more tolerant compared to the regulation for registration as medication. We recommend that at least one randomized controlled trial is published with the commercialized product before marketing the product, despite the fact that legislation regarding food supplements requires only safety data.

4.
J Adv Vet Anim Res ; 11(2): 339-348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39101078

ABSTRACT

Objective: In the present research work, we examined the dietary Moringa oleifera effect on gut health and growth traits in chickens. Materials and Methods: There were 280 chicks (day old) that were weighted and allotted uniformly in seven groupings, each containing eight replicates (n = 5). Birds were supplemented with M. oleifera leaf extract (MLE) and seed extract (MSE) for 35 days. Group I was the control (fed merely basal diets), while Group II received 0.8% MLE, Group III was given 0.8% MSE, Group IV was given 1.2% MLE, Group V was given 1.2% MSE, Group VI was given 0.8% MLE + 0.8% MSE, and Group VII was given 1.2% MLE + 1.2% MSE. At the end of the fifth week, two chickens were selected from each replica, and samples (small intestine and ileal ingesta) were collected. Results: The chicken diet with MLE and MSE supplements saw significant improvement (p < 0.05) in both feed conversion ratio (FCR) and body weight gain (BWG). In the small intestine (duodenal, jejunal, and ileal), dietary MLE and MSE supplements significantly increased (p < 0.05) the surface area of the villus and the ratio of their height/crypt depth in comparison to the control group. The MLE and MSE supplements significantly increased (p < 0.05) the total goblet cell counts in the small intestine. The Lactobacillus spp. count was significantly improved (p < 0.05) and reduced (p < 0.05) in Escherichia coli counts when the bird diet was supplemented with MLE (0.8%) and MSE (0.8%). Conclusion: Results indicated that M. oleifera leaf and seed extract diet improved the growth trait and gut health in chickens.

5.
J Diet Suppl ; : 1-19, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087597

ABSTRACT

Prebiotic and probiotic combinations may lead to a synbiotic effect, demonstrating superior health benefits over either component alone. Using the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME®) model, the effects of repeated supplementation with inulin (prebiotic, which is expected to provide a source of nutrition for the live microorganisms in the gut to potentially support optimal digestive health), Bacillus coagulans lactospore (probiotic), and a low and high dose of a synbiotic combination of the two on the gut microbial community activity and composition were evaluated. Test product supplementation increased the health-promoting short-chain fatty acids acetate and butyrate compared with levels recorded during the control period, demonstrating a stimulation of saccharolytic fermentation. This was likely the result of the increased abundance of several saccharolytic bacterial groups, including Megamonas, Bifidobacterium, and Faecalibacterium, following test product supplementation. The stimulation of acetate and butyrate production, as well as the increased abundance of saccharolytic bacterial groups were more evident in treatment week 3 compared with treatment week 1, demonstrating the value of repeated product administration. Further, the synbiotic formulations tended to result in greater changes compared with prebiotic or probiotic alone. Overall, the findings demonstrate a synbiotic potential for inulin and B. coagulans lactospore and support repeated administration of these products, indicating a potential for promoting gut health.

6.
Article in English | MEDLINE | ID: mdl-39078446

ABSTRACT

Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.

7.
Food Chem ; 459: 140264, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39068825

ABSTRACT

Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.

8.
J Mol Evol ; 92(4): 449-466, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39052031

ABSTRACT

Quantum mechanical calculations are used to explore the thermodynamics of possible prebiotic synthesis of the building blocks of nucleic acids. Different combinations of D-ribofuranose (Ribf) and N-(2-aminoethyl)-glycine (AEG) (trifunctional connectors (TCs)); the nature of the Ribf, its anomeric form, and its ring puckering (conformation); and the nature of the nucleobases (recognition units (RUs)) are considered. The combinatorial explosion of possible nucleosides has been drastically reduced on physicochemical grounds followed by a detailed thermodynamic evaluation of alternative synthetic pathways. The synthesis of nucleosides containing N-(2-aminoethyl)-glycine (AEG) is predicted to be thermodynamically favored suggesting a possible role of AEG as a component of an ancestral proto-RNA that may have preceded today's nucleic acids. A new pathway for the building of free nucleotides (exemplified by 5'-uridine monophosphate (UMP)) and of AEG dipeptides is proposed. This new pathway leads to a spontaneous formation of free UMP assisted by an AEG nucleoside in an aqueous environment. This appears to be a workaround to the "water problem" that prohibits the synthesis of nucleotides in water.


Subject(s)
Glycine , RNA , Thermodynamics , RNA/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Origin of Life , Evolution, Chemical , Nucleosides
9.
mSystems ; : e0075424, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082804

ABSTRACT

Chicken meat is contaminated with Salmonella from the gut of infected chickens during slaughter. Eradication of Salmonella from broiler chickens through hygiene measures and/or vaccination is not cost-effective; complementary approaches are required. A mature gut microbiota obstructs Salmonella infection in chickens, and deliberate fortification of colonization resistance through prebiotic feed formulations would benefit public health and poultry production. Prebiotic galactooligosaccharides hastens Salmonella clearance from the gut of infected chickens. To better understand the role of galactooligosaccharides in colonization resistance, broiler chickens were raised on a wheat-soybean meal-based feed, with or without galactooligosaccharides for the first 24 days of life. Chickens were orally challenged with Salmonella enterica serovar Enteritidis at 20 days and the effect of supplementary galactooligosaccharides characterized by profiling Salmonella colonization, gut microbiota, innate immune response, and cecal short-chain fatty acid concentrations. Exposure to dietary galactooligosaccharides shortened the time to clear S. Enteritidis from the ceca. Differential abundance analysis of the cecal microbiota associated Salmonella challenge with a bacterial taxon belonging to the Acidaminococcaceae family (P < 0.005). Increased cecal concentrations of the short-chain fatty acids propionate and valerate were measured in Salmonella-challenged chickens sustained on either control or galactooligosaccharide-supplemented feed relative to mock-challenged controls; but far greater concentrations were detected in chickens fed a galactooligosaccharide-supplemented diet in early life. The abundance of the Acidaminococcaceae taxon exhibited a positive correlation with the cecal concentrations of propionate (ρ = 0.724, P = 0.008) and valerate (ρ = 0.71, P = 0.013). The absence of cecal pro-inflammatory transcriptional responses suggest that the rapid Salmonella clearance observed for the galactooligosaccharide-supplemented diet was not linked to innate immune function. IMPORTANCE: Work presented here identifies bacterial taxa responsible for colonization resistance to Salmonella in broiler chickens. Deliberate cultivation of these taxa with prebiotic galactooligosaccharide has potential as a straight-forward, safe, and cost-effective intervention against Salmonella. We hypothesize that catabolism of galactooligosaccharide and its breakdown products by indigenous microorganisms colonizing the chicken gut produce excess levels of propionate. In the absence of gross inflammation, propionate is inimical to Salmonella and hastens intestinal clearance.

10.
Life (Basel) ; 14(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063667

ABSTRACT

Many of the fundamental molecules of life share extraordinary pigment-like optical properties in the long-wavelength UV-C spectral region. These include strong photon absorption and rapid (sub-pico-second) dissipation of the induced electronic excitation energy into heat through peaked conical intersections. These properties have been attributed to a "natural selection" of molecules resistant to the dangerous UV-C light incident on Earth's surface during the Archean. In contrast, the "thermodynamic dissipation theory for the origin of life" argues that, far from being detrimental, UV-C light was, in fact, the thermodynamic potential driving the dissipative structuring of life at its origin. The optical properties were thus the thermodynamic "design goals" of microscopic dissipative structuring of organic UV-C pigments, today known as the "fundamental molecules of life", from common precursors under this light. This "UV-C Pigment World" evolved towards greater solar photon dissipation through more complex dissipative structuring pathways, eventually producing visible pigments to dissipate less energetic, but higher intensity, visible photons up to wavelengths of the "red edge". The propagation and dispersal of organic pigments, catalyzed by animals, and their coupling with abiotic dissipative processes, such as the water cycle, culminated in the apex photon dissipative structure, today's biosphere.

11.
Microorganisms ; 12(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39065269

ABSTRACT

The relationship between the gut microbiota and cognitive health is complex and bidirectional, being significantly impacted by our diet. Evidence indicates that polyphenols and inulin can impact cognitive function via various mechanisms, one of which is the gut microbiota. In this study, effects of a wild blueberry treatment (WBB) and enriched chicory inulin powder were investigated both in vitro and in vivo. Gut microbiota composition and metabolites, including neurotransmitters, were assessed upon faecal microbial fermentation of WBB and inulin in a gut model system. Secondly, microbiota changes and cognitive function were assessed in children within a small pilot (n = 13) trial comparing WBB, inulin, and a maltodextrin placebo, via a series of tests measuring executive function and memory function, with faecal sampling at baseline, 4 weeks post-intervention and after a 4 week washout period. Both WBB and inulin led to microbial changes and increases in levels of short chain fatty acids in vitro. In vivo significant improvements in executive function and memory were observed following inulin and WBB consumption as compared to placebo. Cognitive benefits were accompanied by significant increases in Faecalibacterium prausnitzii in the inulin group, while in the WBB group, Bacteroidetes significantly increased and Firmicutes significantly decreased (p < 0.05). As such, WBB and inulin both impact the microbiota and may impact cognitive function via different gut-related or other mechanisms. This study highlights the important influence of diet on cognitive function that could, in part, be mediated by the gut microbiota.

12.
J Food Sci ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042555

ABSTRACT

Inulin, a prebiotic utilized in the food and pharmaceutical industries, promotes the growth of beneficial bacteria in the colon, thereby enhancing human health. Although inulin is commercially produced from chicory and artichoke, Inula helenium roots offer a high potential for inulin production. The aim of this study is to investigate the prebiotic activity of inulin (inulin-P) from I. helenium roots on Lactobacillus rhamnosus, as well as its ability to produce synbiotic microcapsules and the effects on probiotic viability during freeze-drying, in vitro gastrointestinal (GI) digestion, and storage. First, the effect of inulin-P on L. rhamnosus viability and short-chain fatty acid (SCFA) production was compared to other commonly utilized prebiotics. The findings revealed that inulin-P remarkably promoted the growth and SCFA yield of L. rhamnosus for 48 h of fermentation and 28 days of storage. Then, L. rhamnosus was encapsulated with inulin-P and commercial inulin to compare its survival throughout storage and the GI tract. Inulin-P microcapsules outperformed in terms of viability during storage (7.98 log CFU/g after 30 days at 4°C). Furthermore, inulin-P microcapsules were heat-resistant and protected L. rhamnosus from GI conditions, resulting in a high survival rate (89.52%) following large intestine simulation, which is ideal for increasing customer benefits. Additionally, inulin-P microcapsules exhibited similar physical characteristics to commercial inulin. Consequently, this study revealed that inulin-P, which is easy to produce, low-cost, and has industrial application potential, could be used as a good carrier for the synbiotic encapsulation of L. rhamnosus. PRACTICAL APPLICATION: Inulin is a prebiotic that promotes the activity and growth of beneficial bacteria in the human gut. Although commercial inulin is currently produced from chicory root and artichoke, Inula helenium root is a potential raw material for inulin production. In this study, inulin was produced from I. helenium roots with a low-cost and easy production method, and it was determined that this inulin was an effective carrier in the synbiotic encapsulation of L. rhamnosus. This inulin exhibits superior prebiotic activity and encapsulation efficiency compared to commercial inulins like Orafti® GR and HPX and can be easily integrated into industrial production.

13.
Food Chem ; 460(Pt 1): 140511, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39047478

ABSTRACT

Oligosaccharides from Dendrobium officinale (DOO) is a kind of new potential prebiotic for health. In this study, structural characteristics, digestion properties and regulatory function on intestinal flora of DOO were investigated. An oligosaccharide, DOO 1-1, was purified by DEAE-Sepharose Fast Flow and Sephadex G-25, and its physicochemical properties were characterized as a glucomannan oligosaccharide with a molecular weight of 1560 Da (DP = 9). In vitro simulated digestion, it proved that the structure of DOO 1-1 was degraded hardly in the simulated gastric and small intestinal fluid. By evaluating the gas, short-chain fatty acids and intestinal microbiota in vitro fermentation, DOO has an excellent regulatory effect on intestinal microbiota, especially promoting the proliferation of Bacteroidetes and Actinobacteria. Therefore, DOO can be used as a potential prebiotic in functional foods.

14.
Nutrients ; 16(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38999862

ABSTRACT

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder with gut microbiota imbalance playing a significant role. There are increasing numbers of research studies exploring treatment options involving probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT), but it is still uncertain which treatment option is superior. The research was conducted on various databases and unpublished trial data (up to February 2023). Randomized controlled trials (RCTs) were screened for adult patients with IBS comparing interventions with placebo. Probiotics, prebiotics, synbiotics, and FMT were assessed for their impact using mean difference and Bayesian network meta-analysis. Out of 6528 articles, 54 were included for probiotics, 7 for prebiotics/synbiotics, and 6 for FMT. Probiotics showed improvement in IBS symptoms, particularly with Bifidobacterium and Lactobacillus strains. Prebiotics and synbiotics did not show significant improvement. Network meta-analysis indicated the favorable effects of probiotics (OR = 0.53, 95% CI, 0.48 to 0.59) and FMT (OR = 0.46, 95% CI, 0.33 to 0.64) on IBS, with no serious adverse events reported. In short, probiotics and FMT are effective for managing IBS, with Bifidobacterium and Lactobacillus being dominant strains. However, the most effective probiotic combination or strain remains unclear, while prebiotics and synbiotics did not show significant improvement.


Subject(s)
Fecal Microbiota Transplantation , Irritable Bowel Syndrome , Network Meta-Analysis , Prebiotics , Probiotics , Synbiotics , Irritable Bowel Syndrome/therapy , Irritable Bowel Syndrome/microbiology , Humans , Prebiotics/administration & dosage , Probiotics/therapeutic use , Probiotics/administration & dosage , Synbiotics/administration & dosage , Treatment Outcome , Gastrointestinal Microbiome , Randomized Controlled Trials as Topic , Bifidobacterium , Adult , Female , Lactobacillus , Male
15.
Indian J Microbiol ; 64(2): 376-388, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39010994

ABSTRACT

Prebiotics play a pivotal role in fostering probiotics, essential contributors to the creation and maintenance of a conducive environment for beneficial microbiota within the human gut. To qualify as a prebiotic, a substance must demonstrate resilience to stomach enzymes, acidic pH levels, and intestinal bacteria, remaining unabsorbed in the digestive system while remaining accessible to gut microflora. The integration of prebiotics and probiotics into our daily diet establishes a cornerstone for optimal health, a priority for health-conscious consumers emphasizing nutrition that supports a balanced gut flora. Prebiotics offer diverse biological functions in humans, exhibiting antiobesity, antimicrobial, anticancer, anti-inflammatory, antidiabetic, and cholesterol-lowering properties, along with preventing digestive disorders. Numerous dietary fibers possessing prebiotic attributes are inadvertently present in our diets, emphasizing the broader significance of prebiotics. It is crucial to recognize that, while all dietary fibers are prebiotics, not all prebiotics fall under the category of dietary fibers. The versatile applications of prebiotics extend across various industries, such as dairy, bakery, beverages, cosmetics, pharmaceuticals, and other food products. This comprehensive review provides insights into different prebiotics, encompassing their sources, chemical compositions, and applications within the food industry.

16.
World J Microbiol Biotechnol ; 40(9): 271, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030369

ABSTRACT

Microalgal biomass for biofuel production, integration into functional food, and feed supplementation has generated substantial interest worldwide due to its high growth rate, non-competitiveness for agronomic land, ease of cultivation in containments, and presence of several bioactive molecules. In this study, genetic engineering tools were employed to develop transgenic lines of freshwater microalga Chlorella vulgaris with a higher starch content, by up-regulating ADP-glucose pyrophosphorylase (AGPase), which is a rate-limiting enzyme in starch biosynthesis. Expression of the Escherichia coli glgC (AGPase homolog) gene in C. vulgaris led to an increase in total carbohydrate content up to 45.1% (dry cell weight, DCW) in the transgenic line as compared to 34.2% (DCW) in the untransformed control. The starch content improved up to 16% (DCW) in the transgenic alga compared to 10% (DCW) in the control. However, the content of total lipid, carotenoid, and chlorophyll decreased differentially in the transgenic lines. The carbohydrate-rich biomass from the transgenic algal line was used to produce bioethanol via yeast fermentation, which resulted in a higher ethanol yield of 82.82 mg/L as compared to 54.41 mg/L from the untransformed control. The in vitro digestibility of the transgenic algal starch revealed a resistant starch content of up to 7% of total starch. Faster growth of four probiotic bacterial species along with a lowering of the pH of the growth medium indicated transgenic alga to exert a positive prebiotic effect. Taken together, the study documents the utilization of genetically engineered C. vulgaris with enriched carbohydrates as bioethanol feedstock and functional food ingredients.


Subject(s)
Biofuels , Biomass , Chlorella vulgaris , Escherichia coli , Ethanol , Fermentation , Glucose-1-Phosphate Adenylyltransferase , Microalgae , Prebiotics , Starch , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Ethanol/metabolism , Starch/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Microalgae/metabolism , Microalgae/genetics , Glucose-1-Phosphate Adenylyltransferase/metabolism , Glucose-1-Phosphate Adenylyltransferase/genetics , Genetic Engineering , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Metabolic Engineering/methods
17.
Biosci Microbiota Food Health ; 43(3): 222-226, 2024.
Article in English | MEDLINE | ID: mdl-38966046

ABSTRACT

This research investigated and compared the prebiotic properties of a rice bran extract obtained through commercial xylanase extraction in comparison with water extraction. Prebiotic properties were evaluated by probiotic growth stimulation (Lacticaseibacillus casei and Lactiplantibacillus plantarum) and gastrointestinal pathogen inhibition (Bacillus cereus and Escherichia coli). The rice bran extract obtained with xylanase (RB1) displayed significantly higher total polysaccharide and total reducing sugar contents than those obtained with water (RB2; p<0.05). After extraction for 30 min, RB1 exhibited the highest total polysaccharide and total reducing sugar contents. HPLC (high performance liquid chromatography) analysis revealed that RB1 primarily contained xylose, while RB2 contained less glucose and lacked other sugar derivatives. RB1 proved effective in stimulating the growth of L. casei and L. plantarum, surpassing even inulin (a commercial prebiotic). Furthermore, it demonstrated a high potential for inhibiting the growth of pathogenic B. cereus and E. coli, comparable to inulin. In contrast, RB2 exhibited lower inhibitory capacity against B. cereus and E. coli.

18.
Food Chem ; 458: 140267, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38968717

ABSTRACT

Recently, with changes in dietary patterns, there has been increased interest in the concept of food and medicine homology, which can help prevent disease development. This has led to a growing focus on the development of functional health foods derived from edible herbal sources. Polysaccharides, found in many edible herbal sources, are gaining popularity as natural ingredients in the production of functional food products. The gut microbiota can effectively utilize most edible herbal polysaccharides (EHPs) and produce beneficial metabolites; therefore, the prebiotic potential of EHPs is gradually being recognized. In this review, we comprehensively discuss the structural features and characterization of EHPs to promote gut microbiota regulation as well as the structure-activity relationship between EHPs and gut microbiota. As prebiotics, intestinal microbiota can use EHPs to indirectly produce metabolites such as short-chain fatty acids to promote overall health; on the other hand, different EHP structures possess some degree of selectivity on gut microbiota regulation. Moreover, we evaluate the functionality and mechanism underlying EHPs in terms of anticancer activity, antimetabolic diseases, anti-inflammatory activity, and anti-neuropsychiatric diseases.

19.
Appl Environ Microbiol ; : e0096424, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007602

ABSTRACT

Members of the mammalian gut microbiota metabolize diverse complex carbohydrates that are not digested by the host, which are collectively labeled "dietary fiber." While the enzymes and transporters that each strain uses to establish a nutrient niche in the gut are often exquisitely specific, the relationship between carbohydrate structure and microbial ecology is imperfectly understood. The present study takes advantage of recent advances in complex carbohydrate structure determination to test the effects of fiber monosaccharide composition on microbial fermentation. Fifty-five fibers with varied monosaccharide composition were fermented by a pooled feline fecal inoculum in a modified MiniBioReactor array system over a period of 72 hours. The content of the monosaccharides glucose and xylose was significantly associated with the reduction of pH during fermentation, which was also predictable from the concentrations of the short-chain fatty acids lactic acid, propionic acid, and the signaling molecule indole-3-acetic acid. Microbiome diversity and composition were also predictable from monosaccharide content and SCFA concentration. In particular, the concentrations of lactic acid and propionic acid correlated with final alpha diversity and were significantly associated with the relative abundance of several of the genera, including Lactobacillus and Dubosiella. Our results suggest that monosaccharide composition offers a generalizable method to compare any dietary fiber of interest and uncover links between diet, gut microbiota, and metabolite production. IMPORTANCE: The survival of a microbial species in the gut depends on the availability of the nutrients necessary for that species to survive. Carbohydrates in the form of non-host digestible fiber are of particular importance, and the set of genes possessed by each species for carbohydrate consumption can vary considerably. Here, differences in the monosaccharides that are the building blocks of fiber are considered for their impact on both the survival of different species of microbes and on the levels of microbial fermentation products produced. This work demonstrates that foods with similar monosaccharide content will have consistent effects on the survival of microbial species and on the production of microbial fermentation products.

20.
Animals (Basel) ; 14(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38998037

ABSTRACT

This study investigated how sucralose influenced rabbit intestine and caecal microbial activity, blood parameters, growth performance, carcass characteristics, and digestibility. In total, 160 5-week-old rabbits from the APRI line weighing 563.29 gm were randomly assigned to four experimental groups with four replicates-5 males and 5 females in each. Four experimental groups were used, as follows: SUC1, SUC2, and SUC3 got 75, 150, and 300 mg of sucralose/kg body weight in water daily, while the control group ate a basal diet without supplements. The results showed that both the control and SUC1 groups significantly (p < 0.05) increased daily weight gain and final body weight. Sucralose addition significantly improved feed conversion ratio (p < 0.05) and decreased daily feed intake (gm/d). The experimental groups do not significantly differ in terms of mortality. Furthermore, nutrient digestibility was not significantly affected by sucralose treatment, with the exception of crud protein digestion, which was significantly reduced (p < 0.05). Additionally, without altering liver or kidney function, sucralose administration dramatically (p < 0.05) decreased blood serum glucose and triglyceride levels while increasing total lipids, cholesterol, and malonaldehyde in comparison to the control group. Furthermore, the addition of sucrose resulted in a significant (p < 0.05) increase in the count of total bacteria, lactobacillus, and Clostridium spp., and a decrease in the count of Escherichia coli. Further analysis using 16S rRNA data revealed that sucralose upregulated the expression of lactobacillus genes but not that of Clostridium or E. Coli bacteria (p < 0.05). Therefore, it could be concluded that sucralose supplementation for rabbits modifies gut microbiota and boosts beneficial bacteria and feed conversion ratios without side effects. Moreover, sucralose could decrease blood glucose and intensify hypercholesterolemia and should be used with caution for human consumption.

SELECTION OF CITATIONS
SEARCH DETAIL
...