Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.034
Filter
1.
Water Res X ; 24: 100246, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39220625

ABSTRACT

Aquaculture, producing half of global fish production, offers a high-quality protein source for humans. Improving nitrogen use efficiency (NUE) through microbial protein recovery is crucial for increasing fish production and reducing environmental footprint. However, the poor palatability and high moisture content of microbial protein make its utilization challenging. Here, a biofloc-worm reactor was integrated into a recirculating aquaculture system (BW_RAS) for the first time to convert microbial protein into Tubificidae (Oligochaeta) biomass, which was used as direct feed for culturing fish. Batch experiments indicated that an aeration rate of 0.132 m3 L -1 h -1 and a worm density of 0.3 g cm-2 on the carrier were optimal for microbial biomass growth and worm predation, respectively. Compared to the biofloc reactor-based recirculating aquaculture system (B_RAS), the BW_RAS improved water quality, NUE, and fish production by 17.1 % during a 120-day aquaculture period. The abundance of heterotrophic aerobic denitrifier Deinococcus in BW_RAS was one order of magnitude higher than in B_RAS, while heterotrophic bacteria Mycobacterium was more abundant in B_RAS. Denitrifiers cooperated with organic matter degraders and nitrogen assimilation bacteria for protein recovery and gaseous nitrogen loss while competing with predatory bacteria. Function prediction and qPCR indicated greater aerobic respiration, nitrate assimilation, nitrification (AOB-amoA), and denitrification (napA, nirK, nirS, nosZI), but lower fermentation in BWR compared to BR. This study demonstrated that BW_RAS increased microbial protein production and aerobic nitrogen cycling through ongoing worm predation, further enhancing fish production to a commercially viable level.

2.
Sci Total Environ ; : 175910, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39226971

ABSTRACT

Estimates suggest that the amount of plastic litter discarded in the ocean is several times greater than what remains floating at the sea surface, raising questions about the fate of this marine debris. Fouling-induced sinking of plastic litter is one of the proposed mechanisms responsible for this mass difference. While some of this 'missing' plastic mass may be explained by the effects of fouling, it has also been hypothesized that sinking litter may return to the surface after benthic organisms consume the biofouling. However, this hypothesis has never been tested. The present study evaluated the structure and biomass of the fouling community in response to benthic predation in both summer and winter seasons. Floating PVC plates were installed during winter and summer in central Chile (36°S) until the growing biofouling community caused them to sink. Plates were then moved to the seabed, where they were exposed to benthic predation, while control plates were maintained in a mesh cage impeding predator access. In summer, all plates recovered their buoyancy, while in the winter only 60 % recovered buoyancy. All caged control samples remained on the bottom in both seasons. The community structure differed both in the treatments and across the seasons, with plates that recovered buoyancy initially being dominated by Ulva sp. and Ciona robusta. Conversely, plates that did not refloat were mainly covered by species resistant to predation such as Pyura chilensis, Austromegabalanus psittacus, and Balanus laevis. Thus, fouling community structure influences how predation facilitates buoyancy recovery, because not all epibionts can be consumed by predators. While previous studies had shown how fouling organisms cause sinking of floating litter, this is the first study to provide experimental evidence that predation can reverse this process and allow litter to resurface and become again available as dispersal vectors for native and invasive species.

3.
Ecol Evol ; 14(8): e70098, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39100204

ABSTRACT

The 'landscape of fear' concept offers valuable insights into wildlife behaviour, yet its practical integration into habitat management for conservation remains underexplored. In this study, conducted in the subtropical monsoon grasslands of Bardia National Park, Nepal, we aimed to bridge this gap through a multi-year, landscape-scale experimental investigation in Bardia National Park, Nepal. The park has the highest density of tigers (with an estimated density of ~7 individuals per 100 km2) in Nepal, allowing us to understand the effect of habitat management on predation risk and resource availability especially for three cervid species: chital (Axis axis), swamp deer (Rucervus duvaucelii) and hog deer (Axis porcinus). We used plots with varying mowing frequency (0-4 times per year), size (ranging from small: 49 m2 to large: 3600 m2) and artificial fertilisation type (none, phosphorus, nitrogen) to assess the trade-offs between probable predation risk and resources for these cervid species, which constitute primary prey for tigers in Nepal. Our results showed distinct responses of these deer to perceived predation risk within grassland habitats. Notably, these deer exhibited heightened use of larger plots, indicative of a perceived sense of safety, as evidenced by the higher occurrence of pellet groups in the larger plots (mean = 0.1 pellet groups m-2 in 3600 m2 plots vs. 0.07 in 400 m2 and 0.05 in 49 m2 plots). Furthermore, the level of use by the deer was significantly higher in larger plots that received mowing and fertilisation treatments compared to smaller plots subjected to similar treatments. Of particular interest is the observation that chital and swamp deer exhibited greater utilisation of the centre (core) areas within the larger plots (mean = 0.21 pellet groups m-2 at the centre vs. 0.13 at the edge) despite the edge (periphery) also provided attractive resources to these deer. In contrast, hog deer did not display any discernible reaction to the experimental treatments, suggesting potential species-specific variations in response to perceived predation risk arising from management interventions. Our findings emphasise the importance of a sense of security as a primary determinant of habitat selection for medium-sized deer within managed grassland environments. These insights carry practical implications for park managers, providing a nuanced understanding of integrating the 'landscape of fear' into habitat management strategies. This study emphasises that the 'landscape of fear' concept can and should be integrated into habitat management to maintain delicate predator-prey dynamics within ecosystems.

4.
Heliyon ; 10(14): e34125, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39100468

ABSTRACT

European catfish is a large-bodied apex predator, a key species in native areas, but invasive in others where it negatively impacts local aquatic fauna necessitates catfish regulation. However, traditional ichthyological methods face challenges in capturing it. The study presents a detailed description of the efficient long-line method, refined through 48 sampling campaigns across twelve European water bodies. This method proves cost-effective and technically undemanding, requiring an average of 5.6 bait fish to catch one European catfish per day. The long-lines outperform other techniques, with the highest Biomass per unit effort (BPUE) of 6.205 kg of catfish per man-hour and minimal by-catch (0.276 kg per man-hour). In contrast, fyke nets, the second most efficient method, achieve a BPUE of 0.621 kg of catfish per man-hour with 3.953 kg of by-catch per man-hour. To optimize long-line catches, a 15 m distance between branch lines and regular relocation is recommended. Live fish is the most effective bait with no significant differences observed among species. However, earthworms, a less controversial alternative, are also efficient, especially for smaller catfish. Our recapture approach using various ichthyological methods revealed no hook avoidance behavior by catfish after a previous catch or avoidance by a certain part of the population. The long-line method is suitable for population regulation, scientific research, and conservation efforts and is the most effective means of capturing live European catfish.

5.
Ecol Evol ; 14(8): e70020, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39114166

ABSTRACT

Animals occupying higher trophic levels can have disproportionately large influence on ecosystem structure and functioning, owning to intricate behavioral responses to their environment, but the effects of behavioral adaptations on aquatic ecosystem dynamics are underrepresented, especially in model studies. Here, we explore how adaptive behavior of fish can affect the dynamics of aquatics ecosystems. We frame fish behavior in the context of the central trade-off between feeding and predation, calculating the optimal level of feeding determined by ambient food availability and predation risk. To explore whole-ecosystem consequences of fish behavior, we embed our behavioral model within the Water Ecosystems Tool (WET), a contemporary end-to-end aquatic ecosystem model. The principle of optimality provides a robust and mechanistic framework for representing animal behavior that is relevant for complex models, and can provide a stabilizing effect on model dynamics. The model predicts an emergent functional response similar to Holling type III, but with richer dynamics and a more rigorous theoretical foundation. We show how adaptive fish behavior works to stabilize food web dynamics compared to a control model with no optimal behavior, and how changing the strength of the underlying trade-off has profound effects on trophic control and food web structure. Furthermore, we demonstrate how including fish behavior allows for an overall more realistic response of the model system to environmental perturbation in the form of nutrient enhancement. We discuss the structuring effects of behavioral adaptations in real ecosystems, and how approaches like this one may benefit aquatic ecological modeling. Our study further highlights how a mechanistic approach based on concepts from theoretical ecology can be successfully implemented in complex operational models resulting in improved dynamics and descriptive power.

6.
Ecol Evol ; 14(8): e11691, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39114178

ABSTRACT

Understanding interactions within and between species is crucial to ecological research. However, for cetaceans such interactions can be difficult to observe in the field. Photographs offer an opportunity to study intra- and inter-specific interactions, by capturing 'snapshots' of their occurrence over space and time. At-surface and underwater photographs of bottlenose dolphins (Tursiops aduncus) inhabiting Ponta do Ouro Partial Marine Reserve (PPMR), Mozambique, were used to examine evidence of interactions with other dolphins, predators and ectoparasites. Intra-specific scarring levels significantly differed by sex and age class, with males displaying more scarring than females. Similarly, adults had more scarring than juveniles or calves. Shark bites significantly differed in their distribution across dolphin body areas, with the dorsal side being more frequently wounded than the ventral side. The presence of barnacles was exclusive to fluke, dorsal and pectoral fins, and showed strong seasonal trends. Overall, this study demonstrates the value of photographs for examining marine ecological interactions. It provides the first insights regarding dolphin social behaviour, predation risk and health for this population. These in turn will support future research into the population dynamics and conservation of the PPMR dolphins, which is urgently required in the face of locally increasing anthropogenic pressures.

7.
Ecol Evol ; 14(8): e70151, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39170052

ABSTRACT

Predators impose top-down forces on prey populations, with the strength of those effects often varying over space and time and among demographic groups. In ungulates, predation risk is typically greatest for neonatal offspring, with some suggesting that predators can key in on adult activity to locate hidden neonates. However, few field studies to date have been able to directly assess the influence of maternal care on ungulate neonate survival. Using a population of white-tailed deer under heavy coyote predation pressure, we tested the maternal dispersion hypothesis, which suggests the dispersion of maternal activity temporally and spatially attenuates risk of predation for ungulate neonates during this vulnerable altricial phase. We compared support for this hypothesis with more commonly tested hypotheses regarding the influence of habitat conditions and intrinsic factors on neonatal survival. Fawn survival to 16 weeks was 27.7%, with coyotes accounting for 59% of fawn mortalities. In support of our maternal temporal diffusion hypothesis, we found that neonatal survival decreased as more maternal visits (proportionally) occurred at night. The only other significant (p < .1) predictor of fawn survival was birth timing, with fawn survival decreasing as the season progressed. Given that fawn survival declined as the proportion of nighttime visits increased, and that wild pig presence and human disturbance can push doe and fawn activity toward nocturnal hours, additional research is needed to determine whether managing pig and human disturbance can decrease fawn mortality. More broadly, given the importance of recruitment in ungulate population dynamics, our finding opens a potentially important new line of inquiry on how maternal behaviors influence predation risk in large animal predator-prey ecology.

8.
Article in English | MEDLINE | ID: mdl-39171447

ABSTRACT

Insects have evolved a spectrum of strategies that facilitate survival in the face of adverse environmental conditions and bottom-up or top-down pressures. The egg is the first stage in the life cycle of most insects. It is not only immobile but in many insects is the stage that survives unfavourable seasons when food resources are unavailable. Eggs are targeted by oophagous natural enemies and also are subject to abiotic stresses. In response to these diverse stresses, insects have developed various egg protection strategies. Females of many insects lay eggs in clusters and then use their own body resources to cover them to provide protection from harsh environments and biotic attack. Such egg protection strategies have allowed some herbivorous insects to thrive in new environments and become serious invasive pests. Females of many insects protect their eggs in other ways (e.g. laying eggs in concealed places, direct parental care) while others do not provide protection at all. Here, we review various egg protective strategies in insects. Our focus is on adaptive ecological mechanisms and temporal variation as well as the benefits and costs of egg coverings. We highlight several case studies on how these egg protective traits might impede biological control of globally important agricultural and forest pests and propose a framework for incorporating egg protective traits into biological control programs especially for invasive insect pests.

9.
Sci Rep ; 14(1): 19647, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179790

ABSTRACT

Macroecologists traditionally emphasized the role of environmental variables for predicting species distribution and abundance at large scale. While biotic factors have been increasingly recognized as important at macroecological scales, producing valuable biotic variables remains challenging and rarely tested. Capitalizing on the wealth of population density estimates available for African savannah ungulates, here we modeled species average population density at 100 × 100 km as a function of both environmental variables and proxies of biotic interactions (competition and predation) and estimated their relative contribution. We fitted a linear mixed effect model on 1043 population density estimates for 63 species of ungulates using Bayesian inference and estimated the percentage of total variance explained by environmental, anthropogenic, and biotic interactions variables. Environmental and anthropogenic variables were the main drivers of ungulate population density, with NDVI, Distance to permanent water bodies and Human population density showing the highest contribution to the variance. Nonetheless, biotic interactions altogether contributed to a quarter of the variance explained, with predation and competition having a negative effect on species density. Despite the limitations of modelling biotic interactions in macroecological studies, proxies of biotic interactions can enhance our understanding of biological patterns at broad spatial scales, uncovering novel predictors as well as enhancing the predictive power of large-scale models.


Subject(s)
Grassland , Population Density , Animals , Africa , Bayes Theorem , Ecosystem , Population Dynamics , Humans
10.
Am Nat ; 204(3): 274-288, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39179233

ABSTRACT

AbstractEnergy flow through consumer-resource interactions is largely determined by body size. Allometric relationships govern the dynamics of populations by impacting rates of reproduction as well as alternative sources of mortality, which have differential impacts on smaller to larger organisms. Here we derive and investigate the timescales associated with four alternative sources of mortality for terrestrial mammals: mortality from starvation, mortality associated with aging, mortality from consumption by predators, and mortality introduced by anthropogenic subsidized harvest. The incorporation of these allometric relationships into a minimal consumer-resource model illuminates central constraints that may contribute to the structure of mammalian communities. Our framework reveals that while starvation largely impacts smaller-bodied species, the allometry of senescence is expected to be more difficult to observe. In contrast, external predation and subsidized harvest have greater impacts on the populations of larger-bodied species. Moreover, the inclusion of predation mortality reveals mass thresholds for mammalian herbivores, where dynamic instabilities may limit the feasibility of megafaunal populations. We show how these thresholds vary with alternative predator-prey mass relationships, which are not well understood within terrestrial systems. Finally, we use our framework to predict the harvest pressure required to induce mass-specific extinctions, which closely align with previous estimates of anthropogenic megafaunal exploitation in both paleontological and historical contexts. Together our results underscore the tenuous nature of megafaunal populations and how different sources of mortality may contribute to their ephemeral nature over evolutionary time.


Subject(s)
Mammals , Animals , Mammals/physiology , Body Size , Population Dynamics , Models, Biological , Predatory Behavior , Mortality , Food Chain , Extinction, Biological , Herbivory , Aging
11.
J Fish Biol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132847

ABSTRACT

Weakfish (Cynoscion regalis) is not federally managed but feeds on species of management and ecological interest. We examined the trophic ecology of weakfish in Chesapeake Bay and the coastal and offshore waters of the eastern United States. For these areas, we determined the dominant prey of weakfish; identified how much diet variation was explained by the factors: season, size class, and year; and quantified prey biomass removed by weakfish from 2007 to 2019. In general, diet composition was mostly dominated by Engraulidae, Osteichthyes (bony fishes), and Mysidacea, and significantly varied by season and size class in Chesapeake Bay and coastal waters, although this was less dramatic in Chesapeake Bay. The total amount of variance explained by the three factors was 23.1% (Chesapeake Bay) and 14.7% (coastal waters), with year not being a significant factor in explaining weakfish diet variation for these areas. Weakfish total prey biomass removal occurred primarily in coastal waters in the fall and small size class (annual mean: approximately 41,038 t; maximum: approximately 63,793 t). Highly opportunistic feeders, weakfish cannibalism also played an essential part of their diet. These results have implications for fisheries and ecosystem management of weakfish when considering ecological interactions in regulatory approaches, such as recruitment and cannibalism, competition with federally managed fishes, and the natural mortality of their prey.

12.
Sci Rep ; 14(1): 17932, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095508

ABSTRACT

The predation-driven Mesozoic marine revolution (MMR) is believed to have induced a dramatic change in the bathymetric distribution of many shallow marine invertebrates since the late Mesozoic. For instance, stalked crinoids - isocrinids (Isocrinida) have undergone a striking decline in shallow-sea environments and today they are restricted to deep-sea settings (below 100 m depth). However, the timing and synchronicity of this shift are a matter of debate. A delayed onset of MMR and/or shifts to a retrograde, low-predation community structure during the Paleogene in the Southern Ocean were invoked. In particular, recent data from the Southern Hemisphere suggest that the environmental restriction of isocrinids to the deep-sea settings may have occurred at the end of the Eocene around Antarctica and Australia, and later in the early Miocene in New Zealand. Here, we report the anomalous occurrence of the isocrinids in shallow nearshore marine facies from the middle Miocene of Poland (Northern Hemisphere, Central Paratethys). Thus, globally, this is the youngest record of shallow-sea stalked crinoids. This finding suggests that some relict stalked crinoids may have been able to live in the shallow-water environments by the middle Miocene, and further confirms that the depth restriction of isocrinids to offshore environments was not synchronous on a global scale.


Subject(s)
Aquatic Organisms , Fossils , Animals , Oceans and Seas , Biological Evolution , Paleontology
13.
Environ Pollut ; 360: 124709, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39128604

ABSTRACT

A global increase in offshore windfarm development is critical to our renewable energy future. Yet, widespread construction plans have generated substantial concern for impacts to co-occurring organisms and the communities they form. Pile driving construction, prominent in offshore windfarm development, produces among the highest amplitude sounds in the ocean creating widespread concern for a diverse array of taxa. However, studies addressing ecologically key species are generally lacking and most research is disparate, failing to integrate across response types (e.g., behavior, physiology, and ecological interactions), particularly in situ. The lack of integrative field studies presents major challenges to understand or mitigate actual impacts of offshore wind development. Here, we examined critical behavioral, physiological, and antipredator impacts of actual pile driving construction on the giant sea scallop (Placopecten magellanicus). Benthic taxa including bivalves are of particular concern because they are sound-sensitive, cannot move appreciable distances away from the stressor, and support livelihoods as one of the world's most economically and socially important fisheries. Overall, pile driving sound impacted scallops across a series of behavioral and physiological assays. Sound-exposed scallops consistently reduced their valve opening (22%), resulting in lowered mantle water oxygen levels available to the gills. Repeated and rapid valve adductions led to a 56% increase in metabolic rates relative to pre-exposure baselines. Consequently, in response to predator stimuli, sound-exposed scallops displayed a suite of significantly weaker antipredator behaviors including fewer swimming events and shorter time-to-exhaustion. These results show aquatic construction activities can induce metabolic and ecologically relevant changes in a key benthic animal. As offshore windfarm construction accelerates globally, our field-based study highlights that spatial overlap with benthic taxa may cause substantial metabolic changes, alter important fisheries resources, and ultimately could lead to increased predation.

14.
Mar Environ Res ; 201: 106675, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39146804

ABSTRACT

Predator-prey interactions are important in shaping ecosystem structure. Consequently, impacts of accelerating global warming on predators will have notable implications. Effects are likely to be particularly marked for tropical organisms which are anticipated to be sensitive to further thermal stress. Here, we investigated effects of future ocean warming on the predatory dogwhelk Reishia clavigera and its predation of Saccostrea cucullata. Mortality of the predators rapidly increased under the extreme elevated temperature, while those exposed to moderate elevated temperature displayed similar mortality as the ambient. Predators that survived moderate temperature increases altered their oxygen consumption patterns, increased average feeding rates, and functional responses, although condition index and energy reserves were unchanged. Overall, we show extreme ocean warming scenarios can remove predators and their consumption of prey from an ecosystem, whereas moderate warming can intensify predator-prey interactions. Such temperature-dependent alterations to predator-prey interactions would lead to fundamental changes of ecosystem structure as the ocean warms.

15.
J Parasitol ; 110(4): 386-388, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39164018

ABSTRACT

The atractid nematode Cyrtosomum penneri is an autoinfective parasite of several lizard species. Intraspecific transmission between hosts appears to occur exclusively through sexual copulation, yet it is unclear how worms are transferred between different host species. Our research aims to test the possibility of oral transmission of C. penneri using experimental infections. The lizards Anolis sagrei, Leiocephalus carinatus, Hemidactylus mabouia, and Agama picticauda were experimentally exposed to C. penneri in 1 of these groups: (1) oral infection using a feces and saline slurry to approximate host coprophagy, (2) oral infection with a large meal to approximate host predation, and (3) venereal infection using a pipette to confirm sexual transmission. Experimental infections to test venereal transmission were successful in A. sagrei, A. picticauda, and H. mabouia, but were unable to establish infections in L. carinatus. In the predation exposures, A. picticauda, A. sagrei, and H. mabouia hosted infections, whereas L. carinatus were uninfected. Finally, coprophagy experimental infections did not result in infections for any species of host. Our study corroborates venereal transmission of C. penneri in multiple species of lizards and establishes predation as an alternative route of infection. Predation as an oral route of transmission may provide C. penneri an opportunity for interspecific transmission that would otherwise be unlikely during host copulation.


Subject(s)
Feces , Host Specificity , Lizards , Animals , Lizards/parasitology , Florida , Feces/parasitology , Male , Female , Introduced Species , Spirurida Infections/veterinary , Spirurida Infections/transmission , Spirurida Infections/parasitology
16.
Microorganisms ; 12(8)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39203541

ABSTRACT

In recent decades, cyanobacterial blooms have intensified in many lakes in China. Algal blooms are closely linked to the predation pressure on phytoplankton, but the changes in the relationship between phytoplankton and their primary predators, zooplankton, remain unclear. To investigate the changing patterns and driving factors of the relationship between plankton, the historical data of plankton from 14 typical freshwater lakes around the Yangtze River were collected from multiple databases. By comparing the structure of plankton communities in typical lakes between the 1990s and the 2010s, it was found that the phytoplankton density was elevated in 79% of all the lakes; on average, it had increased to 3156 times higher than it had been. In contrast, the zooplankton density was elevated in only 57% of these lakes, and this value was only two times higher than it had been. In 11 out of the 14 lakes, the zooplankton density growth rate was lower than that of the phytoplankton. The percentage of cyanobacteria in these lakes increased from 53% to 62%, and the changes in cyanobacteria were significantly negatively correlated with the changes in zooplankton. Eutrophication caused this significant increase in phytoplankton, especially cyanobacteria. Cyanobacterialization, changes in fish community structures, biological invasion, and river-lake relationships impede zooplankton survival. This combination of factors hinders plankton coupling in many lakes. This study attempts to provide new insights for lake ecological management.

17.
J Anim Ecol ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39205404

ABSTRACT

It is widely recognized that predators can influence prey through both direct consumption and by inducing costly antipredator behaviours, the latter of which can produce nonconsumptive effects that cascade through trophic systems. Yet, determining how particular prey manage risk in natural settings remains challenging as empirical studies disproportionately focus on single predator-prey dyads. Here, we contrast foraging strategies within the context of a primary and secondary prey to explore how antipredator behaviours emerge as a product of predation intensity as well as the setting in which an encounter takes place. We studied the effects of spotted owls (Strix occidentalis) on two species experiencing asymmetrical risk: dusky-footed woodrats (Neotoma fuscipes; primary prey) and deer mice (Peromyscus spp.; alternative prey). Woodrats are most abundant within young forests, but predominantly captured by owls foraging within mature forests; in contrast, deer mice occur in high densities across forest types and seral stages and are consumed at lower per-capita rates overall. We deployed experimental foraging patches within areas of high and low spotted owl activity, created artificial risky and safe refuge treatments, and monitored behaviour throughout the entirety of prey foraging bouts. Woodrats were more vigilant and foraged less within mature forests and at riskier patches, although the effect of refuge treatment was contingent upon forest type. In contrast, deer mice only demonstrated consistent behavioural responses to riskier refuge treatments; forest type had little effect on perceived risk or the relative importance of refuge treatment. Thus, habitat can interact with predator activity to structure antipredator responses differently for primary versus secondary prey. Our findings show that asymmetrical predation can modulate both the magnitude of perceived risk and the strategies used to manage it, thus highlighting an important and understudied contingency in risk effects research. Evaluating the direct and indirect effects of predation through the paradigm of primary and secondary prey may improve our understanding of how nonconsumptive effects can extend to population- and community-level responses.

18.
Eur J Protistol ; 95: 126114, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39190947

ABSTRACT

This study investigated the dynamics of reciprocal phenotypic plasticity entailing inducible defense and offense in freshwater ciliate communities in response to altered resource supply and the extent of intraspecific trait variation. Communities consisted of Euplotes octocarinatus (intraguild prey) capable of inducible defense to escape predation, Stylonychia mytilus (intraguild predator) capable of inducible offense to expand its prey spectrum, and Cryptomonas sp. (algal resource). The extent of inducible defense was tested in ten different Euplotes strains in response to freeze-killed Stylonychia concentrate, revealing significant differences in their width and length development. In a subsequent 30-day experiment, four strains were incubated in monoculture and mixture with Stylonychia under continuous and pulsed microalgae supply. The polyclonal Euplotes population outperformed the monoclonal populations, except one, which developed the most pronounced inducible defense and retained the highest biovolume. Stylonychia fluctuated in size, but dominated all communities irrespective of clonal composition. Pulsed resource supply promoted biovolume production of both species. However, periods of resource depletion resulted in more Stylonychia resting cysts, allowing Euplotes to resume growth. Our study provides new insights into interactions of induced defense and intraguild predation under variable environmental conditions, emphasizing the relevance of intraspecific trait variation for predator-prey interactions and community dynamics.

19.
Sci Rep ; 14(1): 20088, 2024 08 29.
Article in English | MEDLINE | ID: mdl-39209898

ABSTRACT

Maternal investment theory is the study of how breeding females allocate resources between offspring size and brood size to achieve reproductive success. In classical trade-off models, r/K-selection and bet-hedging selection, the primary predictors of maternal investments in offspring are population density and resource stability. In crowded, stable environments, K-selected females invest in large offspring at an equivalent cost in brood size. In uncrowded, unstable environments, r-selected females invest in large broods at an equivalent cost in offspring size. In unpredictable resource environments, bet-hedging females invest moderately in brood size and offspring size. The maternal risk-management model represents a profound departure from classical trade-off models. Maternal investments in offspring size, brood size, and brood number are shaped independently by autonomous risk factors: the duration of gaps in resources during seasonal cycles, rates of predation, and unpredictable catastrophic events. To date, no single model has risen to a position of preeminence. Here in sharks, we show that maternal investments within and across species do not agree with the predictions of trade-off models and instead agree with the predictions of the maternal risk-management model. Within and across shark species, offspring size and brood size were independent maternal investment strategies. The risk of starvation favored investments in larger offspring. The risk of predation favored investments in larger broods. If empirical studies continue to confirm its predictions, maternal-risk management may yet emerge as a unifying model of diverse reproductive adaptations by means of natural selection.


Subject(s)
Reproduction , Selection, Genetic , Sharks , Animals , Sharks/physiology , Female , Reproduction/physiology , Biological Evolution , Adaptation, Physiological , Risk Management , Clutch Size
20.
Ecol Evol ; 14(8): e70209, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39193172

ABSTRACT

The genus Encephalartos is entirely endemic to Africa, and like most cycad species, the genus is at risk of extinction. One of the threats jeopardising the future of the genus is reproduction failure, a failure that is still poorly understood. Our objective was to investigate what predisposes Encephalartos species to seed damages through predation, a potential cause of reproduction failure. We collected functional traits of 430 individuals of Encephalartos villosus, as well as data on pre-dispersal seed predation, habitat type and elevation in the Origi Gorge Nature Reserve, South Africa. Then, we analysed our data by fitting a structural equation model. We found that plants tend to be taller when moving from open to close habitat, whereas plant height tends to increase along elevation. In addition, taller plants tend to have more leaves, and plant canopy size shows significant positive relationship with elevation, plant height and number of leaves. These findings suggest a leaf height-canopy dimension strategy perhaps in response to environmental stresses imposed by elevation. We tested the effects of habitat types on seed production. Although there were significantly more seeds in open habitats, open habitats showed the lowest proportion of predated seeds. Finally, we tested the effects of elevation on seed production. We found that seed production decreases along elevation while the proportion of predated seeds increases. Under the resource concentration hypothesis, these findings (where there are more resources, predation is low) are unexpected, suggesting rather that it is the resource dilution effect that matches the pre-dispersal seed predation patterns in our study area. We suggest that anthropogenic pressures at lower elevation due to easy access may cause seed predators to shift towards higher elevation where they cause heavier damage to seed, thus perhaps contributing to the extinction risk of the genus Encephalartos.

SELECTION OF CITATIONS
SEARCH DETAIL