Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 563
Filter
1.
Conscious Cogn ; 123: 103722, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981366

ABSTRACT

Startle modulation paradigms, namely habituation and prepulse inhibition (PPI), can offer insight into the brain's early information processing mechanisms that might be impacted by regular meditation practice. Habituation refers to decreasing response to a repeatedly-presented startle stimulus, reflecting its redundancy. PPI refers to response reduction when a startling stimulus "pulse" is preceded by a weaker sensory stimulus "prepulse" and provides an operational measure of sensorimotor gating. Here, we examined habituation and PPI of the acoustic startle response in regular meditators (n = 32), relative to meditation-naïve individuals (n = 36). Overall, there was no significant difference between meditators and non-meditators in habituation or PPI, but there was significantly greater PPI in meditators who self-reported being able to enter and sustain non-dual awareness during their meditation practice (n = 18) relative to those who could not (n = 14). Together, these findings suggest that subjective differences in meditation experience may be associated with differential sensory processing characteristics in meditators.

2.
Neuropharmacology ; : 110064, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981578

ABSTRACT

Nonmedical use of prescription opioids peaks during late adolescence, a developmental period associated with the maturation of higher-order cognitive processes. To date, however, how chronic adolescent oxycodone (OXY) self-administration alters neurobehavioral (i.e., locomotion, startle reactivity) and/or neurocognitive (i.e., preattentive processes, intrasession habituation, stimulus-reinforcement learning, sustained attention) function has not yet been systematically evaluated. Hence, the rationale was built for establishing the dose-dependency of adolescent OXY self-administration on the trajectory of neurobehavioral and neurocognitive development. From postnatal day (PD) 35 to PD 105, an age in rats that corresponds to the adolescent and young adult period in humans, male and female F344/N rats received access to either oral OXY (0, 2, 5, or 10 mg/kg) or water under a two-bottle choice experimental paradigm. Independent of biological sex or dose, rodents voluntarily escalated their OXY intake across ten weeks. A longitudinal experimental design revealed prominent OXY-induced impairments in neurobehavioral development, characterized by dose-dependent increases in locomotion and sex-dependent increases in startle response. Systematic manipulation of the interstimulus interval in prepulse inhibition supports an OXY-induced impairment in preattentive processes. Despite the long-term cessation of OXY intake, rodents with a history of chronic adolescent oral OXY self-administration exhibited deficits in sustained attention; albeit no alterations in stimulus-reinforcement learning were observed. Taken together, adolescent oral OXY self-administration induces selective long-term alterations in neurobehavioral and neurocognitive development enjoining the implementation of safer prescribing guidelines for this population.

3.
Hear Res ; 450: 109070, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38972084

ABSTRACT

Cholinergic signaling is essential to mediate the auditory prepulse inhibition (PPI), an operational measure of sensorimotor gating, that refers to the reduction of the acoustic startle reflex (ASR) when a low-intensity, non-startling acoustic stimulus (the prepulse) is presented just before the onset of the acoustic startle stimulus. The cochlear root neurons (CRNs) are the first cells of the ASR circuit to receive cholinergic inputs from non-olivocochlear neurons of the ventral nucleus of the trapezoid body (VNTB) and subsequently decrease their neuronal activity in response to auditory prepulses. Yet, the contribution of the VNTB-CRNs pathway to the mediation of PPI has not been fully elucidated. In this study, we used the immunotoxin anti-choline acetyltransferase (ChAT)-saporin as well as electrolytic lesions of the medial olivocochlear bundle to selectively eliminate cholinergic VNTB neurons, and then assessed the ASR and PPI paradigms. Retrograde track-tracing experiments were conducted to precisely determine the site of lesioning VNTB neurons projecting to the CRNs. Additionally, the effects of VNTB lesions and the integrity of the auditory pathway were evaluated via auditory brain responses tests, ChAT- and FOS-immunohistochemistry. Consequently, we established three experimental groups: 1) intact control rats (non-lesioned), 2) rats with bilateral lesions of the olivocochlear bundle (OCB-lesioned), and 3) rats with bilateral immunolesions affecting both the olivocochlear bundle and the VNTB (OCB/VNTB-lesioned). All experimental groups underwent ASR and PPI tests at several interstimulus intervals before the lesion and 7, 14, and 21 days after it. Our results show that the ASR amplitude remained unaffected both before and after the lesion across all experimental groups, suggesting that the VNTB does not contribute to the ASR. The%PPI increased across the time points of evaluation in the control and OCB-lesioned groups but not in the OCB/VNTB-lesioned group. At the ISI of 50 ms, the OCB-lesioned group exhibited a significant increase in%PPI (p < 0.01), which did not occur in the OCB/VNTB-lesioned group. Therefore, the ablation of cholinergic non-olivocochlear neurons in the OCB/VNTB-lesioned group suggests that these neurons contribute to the mediation of auditory PPI at the 50 ms ISI through their cholinergic projections to CRNs. Our study strongly reinforces the notion that auditory PPI encompasses a complex mechanism of top-down cholinergic modulation, effectively attenuating the ASR across different interstimulus intervals within multiple pathways.

4.
Front Neurosci ; 18: 1357368, 2024.
Article in English | MEDLINE | ID: mdl-38841093

ABSTRACT

Prepulse inhibition (PPI) is a well-established phenomenon wherein a weak sensory stimulus attenuates the startle reflex triggered by a subsequent strong stimulus. Within the circuit, variations in target responses observed for PPI paradigms represent prepulse-induced excitability changes. However, little is known about the mechanism of PPI. Here, we focused on short-latency PPI of the trigeminal blink reflex R1 signal with an oligosynaptic reflex arc through the principal sensory trigeminal nucleus and the facial nucleus. As the facial nucleus is facilitatory to any input, R1 PPI is the phenomenon in the former nucleus. Considering that GABAergic modulation may be involved in PPI, this study investigated whether the PPI mechanism includes GABA-A equivalent inhibition, which peaks at approximately 30 ms in humans. In 12 healthy volunteers, the reflex was elicited by electrical stimulation of the supraorbital nerve, and recorded at the ipsilateral lower eyelid by accelerometer. Stimulus intensity was 1.5 times the R1 threshold for test stimulus and 0.9 times for the prepulse. The prepulse-test interval (PTI) was 5-150 ms. Results showed significant inhibition at 40-and 80-150-ms PTIs but not at 20-, 30-, 50-, 60-, and 70-ms PTIs, yielding two distinct inhibitions of different time scales. This corresponds well to the early and late components of inhibitory post synaptic potentials by GABA-A and GABA-B receptor activation. Thus, the data support the contribution of inhibitory post synaptic potentials elicited by the prepulse to the observed PPI. As inhibitory function-related diseases may impair the different inhibition components to varying degrees, methods deconvoluting each inhibitory component contribution are of clinical importance.

5.
Brain Sci ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38790479

ABSTRACT

The sensorimotor gating is a nervous system function that modulates the acoustic startle response (ASR). Prepulse inhibition (PPI) phenomenon is an operational measure of sensorimotor gating, defined as the reduction of ASR when a high intensity sound (pulse) is preceded in milliseconds by a weaker stimulus (prepulse). Brainstem nuclei are associated with the mediation of ASR and PPI, whereas cortical and subcortical regions are associated with their modulation. However, it is still unclear how the modulatory units can influence PPI. In the present work, we developed a computational model of a neural circuit involved in the mediation (brainstem units) and modulation (cortical and subcortical units) of ASR and PPI. The activities of all units were modeled by the leaky-integrator formalism for neural population. The model reproduces basic features of PPI observed in experiments, such as the effects of changes in interstimulus interval, prepulse intensity, and habituation of ASR. The simulation of GABAergic and dopaminergic drugs impaired PPI by their effects over subcortical units activity. The results show that subcortical units constitute a central hub for PPI modulation. The presented computational model offers a valuable tool to investigate the neurobiology associated with disorder-related impairments in PPI.

6.
Psychophysiology ; : e14599, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691020

ABSTRACT

Prepulse inhibition (PPI) of the startle reflex serves as a pre-cognitive marker of sensorimotor gating, and its deficit may predict cognitive impairments. Startle reflex is modulated by many factors. Among them, stress has been a topic of interest, but its effects on both pre-cognitive and cognitive variables continue to yield divergent results. This study aims to analyze the effect of acute stress on PPI of the startle reflex and cognitive function (working memory, attention, inhibition, and verbal fluency). Participants were exposed to the MAST stress induction protocol or a stress-neutral task: stress group (n = 54) or control group (n = 54). Following stress induction, participants' startle responses were recorded, and cognition was assessed. The results revealed that participants in the stress group exhibited greater startle magnitude, lower PPI, and lower scores in working memory tests compared with the control group. Additionally, a correlation was found between working memory and PPI across all the participants, independent of stress group. These findings support the notion that after stress, both greater startle magnitude and diminished PPI could play an adaptive role by allowing for increased processing of stimuli potentially dangerous and stress-related. Similarly, our results lend support to the hypothesis that lower PPI may be predictive of cognitive impairment. Considering the impact of stress on both pre-cognitive (PPI) and cognitive (working memory) variables, we discuss the possibility that the effect of stress on PPI occurs through motivational priming and emphasize the relevance of considering stress in both basic and translational science.

8.
Schizophr Res ; 267: 432-440, 2024 May.
Article in English | MEDLINE | ID: mdl-38642484

ABSTRACT

Maternal immune activation (MIA) during pregnancy is known to increase the risk of development of schizophrenia in the offspring. Sex steroid hormone analogues have been proposed as potential antipsychotic treatments but the mechanisms of action involved remain unclear. Estrogen has been shown to alter N-methyl-d-aspartate (NMDA) receptor binding in the brain. We therefore studied the effect of chronic treatment with 17ß-estradiol, its isomer, 17α-estradiol, and the selective estrogen receptor modulator, raloxifene, on MIA-induced psychosis-like behaviour and the effect of the NMDA receptor antagonist, MK-801. Pregnant rats were treated with saline or the viral mimetic, poly(I:C), on gestational day 15. Adult female offspring were tested for changes in baseline prepulse inhibition (PPI) and the effects of acute treatment with MK-801 on PPI and locomotor activity. Poly(I:C) offspring had significantly lower baseline PPI compared to control offspring, and this effect was prevented by 17ß-estradiol and raloxifene, but not 17α-estradiol. MK-801 reduced PPI in control offspring but had no effect in poly(I:C) offspring treated with vehicle. Chronic treatment with 17ß-estradiol and raloxifene restored the effect of MK-801 on PPI. There were no effects of MIA or estrogenic treatment on MK-801 induced locomotor hyperactivity. These results show that MIA affects baseline PPI as well as NMDA receptor-mediated regulation of PPI in female rats, and strengthen the view that estrogenic treatment may have antipsychotic effects.


Subject(s)
Disease Models, Animal , Dizocilpine Maleate , Estradiol , Poly I-C , Prenatal Exposure Delayed Effects , Prepulse Inhibition , Raloxifene Hydrochloride , Receptors, N-Methyl-D-Aspartate , Schizophrenia , Animals , Female , Estradiol/pharmacology , Raloxifene Hydrochloride/pharmacology , Schizophrenia/drug therapy , Schizophrenia/chemically induced , Pregnancy , Prepulse Inhibition/drug effects , Dizocilpine Maleate/pharmacology , Poly I-C/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Rats , Excitatory Amino Acid Antagonists/pharmacology , Male , Selective Estrogen Receptor Modulators/pharmacology , Estrogens/pharmacology , Motor Activity/drug effects
9.
Brain Res ; 1836: 148938, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38615924

ABSTRACT

Prepulse inhibition (PPI) of the auditory startle response, a key measure of sensorimotor gating, diminishes with age and is impaired in various neurological conditions. While PPI deficits are often associated with cognitive impairments, their reversal is routinely used in experimental systems for antipsychotic drug screening. Yet, the cellular and circuit-level mechanisms of PPI remain unclear, even under non-pathological conditions. We recently showed that brainstem neurons located in the caudal pontine reticular nucleus (PnC) expressing the glycine transporter type 2 (GlyT2±) receive inputs from the central nucleus of the amygdala (CeA) and contribute to PPI but via an uncharted pathway. Here, using tract-tracing, immunohistochemistry and in vitro optogenetic manipulations coupled to field electrophysiological recordings, we reveal the neuroanatomical distribution of GlyT2± PnC neurons and PnC-projecting CeA glutamatergic neurons and we provide mechanistic insights on how these glutamatergic inputs suppress auditory neurotransmission in PnC sections. Additionally, in vivo experiments using GlyT2-Cre mice confirm that optogenetic activation of GlyT2± PnC neurons enhances PPI and is sufficient to induce PPI in young mice, emphasizing their role. However, in older mice, PPI decline is not further influenced by inhibiting GlyT2± neurons. This study highlights the importance of GlyT2± PnC neurons in PPI and underscores their diminished activity in age-related PPI decline.


Subject(s)
Brain Stem , Glycine Plasma Membrane Transport Proteins , Glycine , Neurons , Prepulse Inhibition , Reflex, Startle , Animals , Prepulse Inhibition/physiology , Neurons/physiology , Neurons/metabolism , Reflex, Startle/physiology , Mice , Brain Stem/physiology , Brain Stem/metabolism , Glycine Plasma Membrane Transport Proteins/metabolism , Male , Glycine/metabolism , Optogenetics , Mice, Transgenic , Mice, Inbred C57BL , Synaptic Transmission/physiology , Central Amygdaloid Nucleus/physiology , Central Amygdaloid Nucleus/metabolism
10.
Sleep Biol Rhythms ; 22(2): 269-278, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38524169

ABSTRACT

Background: Sleep deprivation (SD) impairs pre-stimulus inhibition, but the effect of quetiapine (QET) remains largely unknown. Objective: This study aimed to investigate the behavioral and cognitive effects of QET in both naïve and sleep-deprived rats. Materials and methods: Seven groups (n = 49) of male Wistar Albino rats were used in this study. SD was performed using the modified multiple platform technique in a water tank for 72 h. Our study consists of two experiments investigating the effect of QET on pre-pulse inhibition (PPI) of the acoustic startle reflex. The first experiment tested the effect of short- and long-term administration of QET on PPI response in non-sleeping (NSD) rats. The second experiment used 72 h REM sleep deprivation as a model for SD-induced impairment of the PPI response. Here, we tested the effect of QET on the % PPI of SD rats by short- and long-term intraperitoneal injection at the last 90 min of sleep SD and immediately subsequently tested for PPI. Results: 72 h SD impaired PPI, reduced startle amplitude, and attenuated the PPI% at + 4 dB, + 8 dB, and + 16 dB prepulse intensities. 10 mg/kg short and long-term QET administration completely improved sensorimotor gating deficit, increased startle amplitude, and restored the impaired PPI% at + 4 dB, + 8 dB, and + 16 dB after 72 h SD in rats. Conclusion: Our results showed short- and long-term administration of QET improved sensorimotor gating deficit in 72 h SD. Further research is required for the etiology of insomnia and the dose-related behavioral effects of QET.

11.
Psychopharmacology (Berl) ; 241(6): 1213-1225, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38427059

ABSTRACT

RATIONALE: Prepulse inhibition (PPI) impairment reflects sensorimotor gating problems, i.e. in schizophrenia. This study aims to enlighten the role of orexinergic regulation on PPI in a psychosis-like model. OBJECTIVES: In order to understand the impact of orexinergic innervation on PPI and how it is modulated by age and baseline PPI (bPPI), chronic orexin A (OXA) injections was carried on non-sleep-deprived and sleep-deprived rats that are grouped by their bPPI. METHODS: bPPI measurements were carried on male Wistar rats on P45 or P90 followed by grouping into low-PPI and high-PPI rats. The rats were injected with OXA twice per day for four consecutive days starting on P49 or P94, while the control groups received saline injections. 72 h REMSD was carried on via modified multiple platform technique on P94 and either OXA or saline was injected during REMSD. PPI tests were carried out 30 min. after the last injection. RESULTS: Our previous study with acute OXA injection after REMSD without bPPI grouping revealed that low OXA doses might improve REMSD-induced PPI impairment. Our current results present three important conclusions: (1) The effect of OXA on PPI is bPPI-dependent and age-dependent. (2) The effect of REMSD is bPPI-dependent. (3) The effect of OXA on PPI after REMSD also depends on bPPI. CONCLUSION: Orexinergic regulation of PPI response with and without REMSD can be predicted by bPPI levels. Our findings provide potential insights into the regulation of sensorimotor gating by sleep/wakefulness systems and present potential therapeutic targets for the disorders, where PPI is disturbed.


Subject(s)
Orexins , Prepulse Inhibition , Rats, Wistar , Sleep Deprivation , Animals , Orexins/pharmacology , Orexins/administration & dosage , Orexins/metabolism , Male , Sleep Deprivation/physiopathology , Rats , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Sleep, REM/drug effects , Sensory Gating/drug effects , Age Factors , Disease Models, Animal
12.
J Neurovirol ; 30(1): 71-85, 2024 02.
Article in English | MEDLINE | ID: mdl-38355914

ABSTRACT

Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 messenger RNA (mRNA) from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 µL corresponding to a physical titer of 0, 4.23 × 109, 8.46 × 109, 1.269 × 1010, 1.692 × 1010, 2.115 × 1010, and 2.538 × 1010 gc/µL) of CRISPR/Cas9 for 72 h. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n = 5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the medial prefrontal cortex. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1-associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 protractedly, albeit not permanently, restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.


Subject(s)
CRISPR-Cas Systems , Gene Editing , HIV-1 , RNA, Messenger , Rats, Transgenic , Animals , HIV-1/genetics , HIV-1/physiology , Rats , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Editing/methods , Neuroglia/virology , Neuroglia/metabolism , Dependovirus/genetics , HIV Infections/virology , HIV Infections/genetics , Gene Knockdown Techniques , RNA, Viral/genetics , Cognition/physiology , Humans
13.
Psychophysiology ; 61(5): e14508, 2024 May.
Article in English | MEDLINE | ID: mdl-38164815

ABSTRACT

In emergency medical services, paramedics are informed of an emergency call by a high-intensity acoustic alarm called the "call alert." Sudden, loud sounds like the call alert may cause a startle response and be experienced as aversive. Studies have identified an association between the call alert and adverse health effects in first responders; conceivably, these adverse health effects might be reduced by modifying the call alert to blunt its startling and aversive properties. Here, we assessed whether the call alert causes a startle response and whether its startling and aversive properties are reduced when the call alert is preceded by a weak acoustic "prepulse," a process referred to as "prepulse inhibition" (PPI). Paramedics (n = 50; 34M:13F:3 not reported; ages 20-68) were exposed to four call alerts (two with and two without a prepulse) in counterbalanced order. Responses were measured using electromyography (measuring blink amplitude), visual analog scales (quantifying perceived call alert intensity and aversiveness), and an electrocardiogram (assessing heart rate). Paramedics responded to the call alert with a startle reflex blink and an increased heart rate. Acoustic prepulses significantly reduced the amplitude of the call alert-induced startle blink, the perceived sound intensity, and the perceived "dislike" of the call alert. These findings confirm that the call alert is associated with an acoustic startle response in paramedics; adding a prepulse to the call alert can reduce its startling and aversive properties. Conceivably, such reductions might also diminish adverse health effects associated with the call alert in first responders.


Subject(s)
Emergency Medical Services , Prepulse Inhibition , Humans , Reflex, Startle/physiology , Acoustic Stimulation , Electromyography
14.
Psychopharmacology (Berl) ; 241(3): 489-511, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38214743

ABSTRACT

RATIONALE: The 5-methoxy-N-methyl-N-isopropyltryptamine (5-MeO-MiPT, known online as "Moxy") is a new psychedelic tryptamine first identified on Italian national territory in 2014. Its hallucinogen effects are broadly well-known; however, only few information is available regarding its pharmaco-toxicological effects. OBJECTIVES: Following the seizure of this new psychoactive substances by the Arm of Carabinieri and the occurrence of a human intoxication case, in the current study we had the aim to characterize the in vivo acute effects of systemic administration of 5-MeO-MiPT (0.01-30 mg/kg i.p.) on sensorimotor (visual, acoustic, and overall tactile) responses, thermoregulation, and stimulated motor activity (drag and accelerod test) in CD-1 male mice. We also evaluated variation on sensory gating (PPI, prepulse inhibition; 0.01-10 mg/kg i.p.) and on cardiorespiratory parameters (MouseOx and BP-2000; 30 mg/kg i.p.). Lastly, we investigated the in silico ADMET (absorption, distribution, metabolism, excretion, toxicity) profile of 5-MeO-MiPT compared to 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) and N,N-dimethyltryptamine (DMT). RESULTS: This study demonstrates that 5-MeO-MiPT dose-dependently inhibits sensorimotor and PPI responses and, at high doses, induces impairment of the stimulated motor activity and cardiorespiratory changes in mice. In silico prediction shows that the 5-MeO-MiPT toxicokinetic profile shares similarities with 5-MeO-DIPT and DMT and highlights a cytochrome risk associated with this compound. CONCLUSIONS: Consumption of 5-MeO-MiPT can affect the ability to perform activities and pose a risk to human health status, as the correspondence between the effects induced in mice and the symptoms occurred in the intoxication case suggests. However, our findings suggest that 5-MeO-MiPT should not be excluded from research in the psychiatric therapy field.


Subject(s)
5-Methoxytryptamine/analogs & derivatives , Hallucinogens , Humans , Mice , Male , Animals , Hallucinogens/toxicity , Tryptamines/toxicity
15.
Clin Neurophysiol ; 160: 130-152, 2024 04.
Article in English | MEDLINE | ID: mdl-38102022

ABSTRACT

The blink reflex (BR) is a protective eye-closure reflex mediated by brainstem circuits. The BR is usually evoked by electrical supraorbital nerve stimulation but can be elicited by a variety of sensory modalities. It has a long history in clinical neurophysiology practice. Less is known, however, about the many ways to modulate the BR. Various neurophysiological techniques can be applied to examine different aspects of afferent and efferent BR modulation. In this line, classical conditioning, prepulse and paired-pulse stimulation, and BR elicitation by self-stimulation may serve to investigate various aspects of brainstem connectivity. The BR may be used as a tool to quantify top-down modulation based on implicit assessment of the value of blinking in a given situation, e.g., depending on changes in stimulus location and probability of occurrence. Understanding the role of non-nociceptive and nociceptive fibers in eliciting a BR is important to get insight into the underlying neural circuitry. Finally, the use of BRs and other brainstem reflexes under general anesthesia may help to advance our knowledge of the brainstem in areas not amenable in awake intact humans. This review summarizes talks held by the Brainstem Special Interest Group of the International Federation of Clinical Neurophysiology at the International Congress of Clinical Neurophysiology 2022 in Geneva, Switzerland, and provides a state-of-the-art overview of the physiology of BR modulation. Understanding the principles of BR modulation is fundamental for a valid and thoughtful clinical application (reviewed in part 2) (Gunduz et al., submitted).


Subject(s)
Blinking , Reflex , Humans , Reflex/physiology , Brain Stem/physiology , Electric Stimulation , Electromyography
16.
Behav Brain Res ; 461: 114831, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38142861

ABSTRACT

Early life adversities are known to exert long-term negative impacts on psychological and brain functions in adulthood. The present work examined how a prenatal brain insult and a postnatal stressor independently or interactively influence the quality of maternal care of postpartum female rats and their cognitive and emotional functions, as a way to identify the behavioral dysfunctions underlying childhood trauma-induced postpartum mental disorders (as indexed by impaired maternal care). Sprague-Dawley female offspring born from mother rats exposed to polyinosinic:polycytidylic acid (PolyI:C, 4.0-6.0 mg/kg) intended to cause gestational maternal immune activation (MIA) or saline were subjected to a repeated maternal separation stress (RMS, 3 h/day) or no separation for 9 days in the first two weeks of life (a 2 × 2 design). When these offspring became mothers, their attentional filtering ability (as measured in the prepulse inhibition of acoustic startle reflex test), positive hedonic response (as measured in the sucrose preference test), and negative emotional response (as measured in the startle reflex and fear-potentiated startle test) were examined, along with their home-cage maternal behavior. Virgin littermates served as controls in all the behavioral tests except in maternal behavior. Results showed that mother rats who experienced RMS displayed impaired nest building and crouching/nursing activities. RMS also interacted with MIA to alter pup retrieval latency and startle reactivity, such that MIA-RMS dams demonstrated significantly slower pup retrieval latency and higher startle magnitude compared to either RMS-only and MIA-only mothers. MIA also disrupted attentional filtering ability, with significantly lower prepulse inhibition. However, neither prenatal MIA nor postnatal RMS impaired sucrose preference or the acquisition of fear-potentiated startle. These results indicate that prenatal stress and postnatal adversity could impair maternal behavior individually, and interact with each other, causing impairments in attention, emotion and maternal motivation.


Subject(s)
Mental Disorders , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Rats , Animals , Female , Rats, Sprague-Dawley , Maternal Deprivation , Reflex, Startle/physiology , Postpartum Period , Maternal Behavior/physiology , Sucrose , Behavior, Animal/physiology
17.
Addict Behav ; 148: 107868, 2024 01.
Article in English | MEDLINE | ID: mdl-37774527

ABSTRACT

Prepulse inhibition (PPI) is a measure of sensorimotor filtering thought to shield the processing of initial weaker auditory stimuli from interruption by a later startle response. Previous studies have shown smoking withdrawal to have a negative impact on sensorimotor filtering, particularly in individuals with psychopathology. Because tobacco use may alleviate sensory and sensorimotor filtering deficits, we examined whether smoking withdrawal-induced changes in PPI were associated with maintenance of smoking abstinence in trauma-exposed individuals with and without PTSD who were attempting to quit smoking. Thirty-eight individuals (n = 24 with current or past PTSD; 14 trauma-exposed healthy controls) made an acute biochemically-verified smoking cessation attempt supported by 8 days of contingency management (CM) and cognitive behavioral therapy (CBT) for smoking. Participants completed a PPI task at the pre-quit baseline, 2 days post-quit, and 5 days post-quit. Post-quit changes in PPI were compared between those who remained abstinent for the first 8-days of the quit attempt and those who lapsed back to smoking. PPI changes induced by biochemically-verified smoking abstinence were associated with maintenance of abstinence across the 8-day CM/CBT-supported quit attempt. As compared to those who maintained tobacco abstinence, participants who lapsed to smoking had significantly lower PPI at 2 and 5 days post-quit relative to baseline. Thus, among trauma-exposed individuals, decreases in PPI during acute smoking cessation supported by CM/CBT are associated with lapse back to smoking. Interventions that improve PPI during early smoking abstinence may facilitate smoking cessation among such individuals who are at high risk for chronic, refractory tobacco use.


Subject(s)
Smoking Cessation , Tobacco Use Disorder , Humans , Smoking/therapy , Smoking/psychology , Tobacco Smoking , Smoking Cessation/psychology , Tobacco Use Disorder/psychology , Tobacco Products
18.
Methods Mol Biol ; 2746: 121-133, 2024.
Article in English | MEDLINE | ID: mdl-38070085

ABSTRACT

Prepulse inhibition (PPI) is a measure of sensorimotor gating which is widely used in rodents to study information processing and attention dysfunction. PPI is commonly measured in rats and mice using automated equipment. Here, we present details of a PPI testing protocol extensively used in previous studies. The protocol includes a set pulse-alone startle level and prepulse-pulse combinations with varying interval and intensity. Variations of this protocol can be used depending on the experimental aim or equipment and software version.


Subject(s)
Prepulse Inhibition , Reflex, Startle , Rats , Mice , Animals , Prepulse Inhibition/physiology , Reflex, Startle/physiology , Rodentia , Acoustic Stimulation/methods , Acoustics
19.
Yakugaku Zasshi ; 143(11): 883-887, 2023.
Article in Japanese | MEDLINE | ID: mdl-37914334

ABSTRACT

p-Hydroxyamphetamine (p-OHA) is an active metabolite of amphetamine (AMPH) and methamphetamine (METH), and can be detected in the brain for a relatively long period after high-dose administration of AMPH in rodents. p-OHA may be involved in the abnormal behavior observed during the withdrawal period after a chronic administration of AMPH or METH. Therefore, the author investigated the effect of an intracerebroventricular (i.c.v.) administration of p-OHA on the changes of locomotor activity and prepulse inhibition (PPI) in the acoustic startle response in rodents. The i.c.v. administration of p-OHA significantly increased locomotor activity in mice. This effect was prevented by a pretreatment with a dopamine (DA) uptake inhibitor. Furthermore, local infusion of p-OHA into the nucleus accumbens (NAc) significantly increased locomotor activity in rats. Together these results suggest that dopaminergic systems in the rodent NAc may play important roles in p-OHA-induced locomotor activity. Next, the author tested the effects of the i.c.v. administration of p-OHA on PPI in mice. p-OHA induced PPI disruptions that were significantly improved by the pretreatment with a typical or an atypical antipsychotic, D2 or D4 receptor antagonists, respectively. p-OHA-induced PPI disruptions were also improved by a serotonin (5-HT)2A receptor antagonist, a 5-HT synthesis inhibitor or a 5-HT neurotoxin. These results suggest that p-OHA-induced PPI disruptions were mediated by DA and 5-HT release and subsequent stimulation of D2, D4 and 5-HT2A receptors. Our recent series of reports indicate that the study of p-OHA may provide new insights into drug abuse as well as psychiatric disorders such as schizophrenia.


Subject(s)
Dopamine , Methamphetamine , Humans , Rats , Mice , Animals , Dopamine/metabolism , p-Hydroxyamphetamine , Serotonin/metabolism , Rodentia/metabolism , Reflex, Startle , Amphetamine/pharmacology , Synaptic Transmission , Dose-Response Relationship, Drug
20.
Front Mol Biosci ; 10: 1233743, 2023.
Article in English | MEDLINE | ID: mdl-37900918

ABSTRACT

There is now evidence from multiple Phase II clinical trials that psychedelic drugs can exert long-lasting anxiolytic, anti-depressant, and anti-drug abuse (nicotine and ethanol) effects in patients. Despite these benefits, the hallucinogenic actions of these drugs at the serotonin 2A receptor (5-HT2AR) limit their clinical use in diverse settings. Activation of the 5-HT2AR can stimulate both G protein and ß-arrestin (ßArr) -mediated signaling. Lisuride is a G protein biased agonist at the 5-HT2AR and, unlike the structurally-related lysergic acid diethylamide (LSD), the drug does not typically produce hallucinations in normal subjects at routine doses. Here, we examined behavioral responses to lisuride, in wild-type (WT), ßArr1-knockout (KO), and ßArr2-KO mice. In the open field, lisuride reduced locomotor and rearing activities, but produced a U-shaped function for stereotypies in both ßArr lines of mice. Locomotion was decreased overall in ßArr1-KOs and ßArr2-KOs relative to wild-type controls. Incidences of head twitches and retrograde walking to lisuride were low in all genotypes. Grooming was decreased in ßArr1 mice, but was increased then decreased in ßArr2 animals with lisuride. Serotonin syndrome-associated responses were present at all lisuride doses in WTs, but they were reduced especially in ßArr2-KO mice. Prepulse inhibition (PPI) was unaffected in ßArr2 mice, whereas 0.5 mg/kg lisuride disrupted PPI in ßArr1 animals. The 5-HT2AR antagonist MDL100907 failed to restore PPI in ßArr1 mice, whereas the dopamine D2/D3 antagonist raclopride normalized PPI in WTs but not in ßArr1-KOs. Clozapine, SCH23390, and GR127935 restored PPI in both ßArr1 genotypes. Using vesicular monoamine transporter 2 mice, lisuride reduced immobility times in tail suspension and promoted a preference for sucrose that lasted up to 2 days. Together, it appears ßArr1 and ßArr2 play minor roles in lisuride's actions on many behaviors, while this drug exerts anti-depressant drug-like responses without hallucinogenic-like activities.

SELECTION OF CITATIONS
SEARCH DETAIL
...