Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Int J Sports Physiol Perform ; 16(12): 1816-1823, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34044367

ABSTRACT

PURPOSE: Preconditioning exercise is a widely used strategy believed to enhance performance later the same day. The authors examined the influence of preconditioning exercises 6 hours prior to a time-to-exhaustion (TTE) test during treadmill running. METHODS: Ten male competitive runners (age = 26 [3] y, height = 184 [8] cm, weight = 73 [9] kg, maximum oxygen consumption = 72 [7] mL·kg-1·min-1) did a preconditioning session of running (RUN) or resistance exercise (RES) or no morning exercise (NoEx) in a randomized order, separated by >72 hours. The RUN consisted of 15 minutes of low-intensity running and 4 × 15 seconds at race pace (21-24 km·h-1) on a treadmill; RES involved 5 minutes of low-intensity running and 2 × 3 repetitions of isokinetic 1-leg shallow squats with maximal mobilization. Following a 6-hour break, electrically evoked force (m. vastus medialis), countermovement jump, running economy, and a TTE of approximately 2 minutes were examined. RESULTS: Relative to NoEx, no difference was seen for RUN or RES in TTE (mean ± 95% CI: -1.3% ± 3.4% and -0.5% ± 6.0%) or running economy (0.2% ± 1.6% and 1.9% ± 2.7%; all Ps > .05). Jump height was not different for the RUN condition (1.0% ± 2.7%]) but tended to be higher in RES than in the NoEx condition (1.5% ± 1.6%, P = .07). The electrically evoked force tended to reveal low-frequency fatigue (reduced 20:50-Hz peak force ratio) only after RES compared to NoEx (-4.5% ± 4.6%, P = .06). CONCLUSION: The RUN or RES 6 hours prior to approximately 2 minutes of TTE running test did not improve performance in competitive runners.


Subject(s)
Athletic Performance , Running , Adult , Athletic Performance/physiology , Exercise , Exercise Test , Humans , Male , Oxygen Consumption/physiology , Running/physiology
2.
Clinics ; 75: e1293, 2020. tab, graf
Article in English | LILACS | ID: biblio-1055882

ABSTRACT

Exercising prior to experimental infarction may have beneficial effects on the heart. The objective of this study was to analyze studies on animals that had exercised prior to myocardial infarction and to examine any benefits through a systematic review and meta-analysis. The databases MEDLINE, Google Scholar, and Cochrane were consulted. We analyzed articles published between January 1978 and November 2018. From a total of 858 articles, 13 manuscripts were selected in this review. When animals exercised before experimental infarction, there was a reduction in mortality, a reduction in infarct size, improvements in cardiac function, and a better molecular balance between genes and proteins that exhibit cardiac protective effects. Analyzing heart weight/body weight, we observed the following results - Mean difference 95% CI - -0.02 [-0.61,0.57]. Meta-analysis of the infarct size (% of the left ventricle) revealed a statistically significant decrease in the size of the infarction in animals that exercised before myocardial infarction, in comparison with the sedentary animals -5.05 [-7.68, -2.40]. Analysis of the ejection fraction, measured by echo (%), revealed that animals that exercised before myocardial infarction exhibited higher and statistically significant measures, compared with sedentary animals 8.77 [3.87,13.66]. We conclude that exercise performed prior to experimental myocardial infarction confers cardiac benefits to animals.


Subject(s)
Animals , Male , Female , Mice , Rats , Physical Conditioning, Animal , Ventricular Function/physiology , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Rats, Wistar , Rats, Sprague-Dawley , Disease Models, Animal , Heart , Heart Ventricles/physiopathology , Models, Cardiovascular
3.
J Cell Biochem ; 118(4): 678-685, 2017 04.
Article in English | MEDLINE | ID: mdl-27447720

ABSTRACT

Diabetes mellitus is a metabolic disorder characterized by hyperglycemia. We investigated the effect of a prior 30 days voluntary exercise protocol on STZ-diabetic CF1 mice. Glycemia, and the liver and skeletal muscle glycogen, mitochondrial function, and redox status were analyzed up to 5 days after STZ injection. Animals were engaged in the following groups: Sedentary vehicle (Sed Veh), Sedentary STZ (Sed STZ), Exercise Vehicle (Ex Veh), and Exercise STZ (Ex STZ). Exercise prevented fasting hyperglycemia in the Ex STZ group. In the liver, there was decreased on glycogen level in Sed STZ group but not in EX STZ group. STZ groups showed decreased mitochondrial oxygen consumption compared to vehicle groups, whereas mitochondrial H2 O2 production was not different between groups. Addition of ADP to the medium did not decrease H2 O2 production in Sed STZ mice. Exercise increased GSH level. Sed STZ group increased nitrite levels compared to other groups. In quadriceps muscle, glycogen level was similar between groups. The Sed STZ group displayed decreased O2 consumption, and exercise prevented this reduction. The H2 O2 production was higher in Ex STZ when compared to other groups. Also, GSH level decreased whereas nitrite levels increased in the Sed STZ compared to other groups. The PGC1 α levels increased in Sed STZ, Ex Veh, and Ex STZ groups. In summary, prior exercise training prevents hyperglycemia in STZ-mice diabetic associated with increased liver glycogen storage, and oxygen consumption by the mitochondria of skeletal muscle implying in increased oxidative/biogenesis capacity, and improved redox status of both tissues. J. Cell. Biochem. 118: 678-685, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Hyperglycemia/metabolism , Hyperglycemia/prevention & control , Liver Glycogen/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/therapy , Mice , Mitochondria, Muscle/metabolism , Oxidation-Reduction , Oxygen Consumption
4.
Clin Physiol Funct Imaging ; 37(4): 384-393, 2017 Jul.
Article in English | MEDLINE | ID: mdl-26576503

ABSTRACT

Increased local blood supply is thought to be one of the mechanisms underlying oxidative adaptations to interval training regimes. The relationship of exercise intensity with local blood supply and oxygen availability has not been sufficiently evaluated yet. The aim of this study was to examine the effect of six different intensities (40-90% peak oxygen uptake, VO2peak ) on relative changes in oxygenated, deoxygenated and total haemoglobin (ΔO2 Hb, ΔHHb, ΔTHb) concentration after exercise as well as end-exercise ΔHHb/ΔVO2 as a marker for microvascular O2 distribution. Seventeen male subjects performed an experimental protocol consisting of 3 min cycling bouts at each exercise intensity in randomized order, separated by 5 min rests. ΔO2 Hb and ΔHHb were monitored with near-infrared spectroscopy of the vastus lateralis muscle, and VO2 was assessed. ΔHHb/ΔVO2 increased significantly from 40% to 60% VO2 peak and decreased from 60% to 90% VO2 peak. Post-exercise ΔTHb and ΔO2 Hb showed an overshoot in relation to pre-exercise values, which was equal after 40-60% VO2peak and rose significantly thereafter. A plateau was reached following exercise at ≥80% VO2peak . The results suggest that there is an increasing mismatch of local O2 delivery and utilization during exercise up to 60% VO2peak . This insufficient local O2 distribution is progressively improved above that intensity. Further, exercise intensities of ≥80% VO2peak induce highest local post-exercise O2 availability. These effects are likely due to improved microvascular perfusion by enhanced vasodilation, which could be mediated by higher lactate production and the accompanying acidosis.


Subject(s)
Exercise/physiology , Hemoglobins/metabolism , Muscle Contraction , Oxygen/blood , Oxyhemoglobins/metabolism , Quadriceps Muscle/blood supply , Quadriceps Muscle/metabolism , Adolescent , Adult , Bicycling , Biomarkers/blood , Exercise Test , Healthy Volunteers , Humans , Male , Microcirculation , Oxygen Consumption , Random Allocation , Regional Blood Flow , Spectroscopy, Near-Infrared , Time Factors , Vasodilation , Young Adult
5.
Article in English | MEDLINE | ID: mdl-27087981

ABSTRACT

BACKGROUND: Aerobic adaptations following interval training are supposed to be mediated by increased local blood supply. However, knowledge is scarce on the detailed relationship between exercise duration and local post-exercise blood supply and oxygen availability. This study aimed to examine the effect of five different exercise durations, ranging from 30 to 240 s, on post-exercise muscle oxygenation and relative changes in hemoglobin concentration. METHODS: Healthy male subjects (N = 18) performed an experimental protocol of five exercise bouts (30, 60, 90, 120, and 240 s) at 80 % of peak oxygen uptake [Formula: see text] in a randomized order, separated by 5-min recovery periods. To examine the influence of aerobic fitness, we compared subjects with gas exchange thresholds (GET) above 60 % [Formula: see text] (GET60+) with subjects reaching GET below 60 % [Formula: see text] (GET60-). [Formula: see text] and relative changes in concentrations of oxygenated hemoglobin, deoxygenated hemoglobin, and total hemoglobin were continuously measured with near-infrared spectroscopy of the vastus lateralis muscle. RESULTS: Post-exercise oxygen availability and local blood supply increased significantly until the 90-s exercise duration and reached a plateau thereafter. Considering aerobic fitness, the GET60+ group reached maximum post-exercise oxygen availability earlier (60 s) than the GET60- group (90 s). CONCLUSIONS: Our results suggest that (1) 90 s has evolved as the minimum interval duration to enhance local oxygen availability and blood supply following cycling exercise at 80 % [Formula: see text]; whereas (2) 60 s is sufficient to trigger the same effects in subjects with GET60 + .

6.
Appl Physiol Nutr Metab ; 41(4): 430-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26988766

ABSTRACT

The purpose of this study was to compare whole-body fat oxidation kinetics after prior exercise with overnight fasting in elite endurance athletes. Thirteen highly trained athletes (9 men and 4 women; maximal oxygen uptake: 66 ± 1 mL·min(-1)·kg(-1)) performed 3 identical submaximal incremental tests on a cycle ergometer using a cross-over design. A control test (CON) was performed 3 h after a standardized breakfast, a fasting test (FAST) 12 h after a standardized evening meal, and a postexercise test (EXER) after standardized breakfast, endurance exercise, and 2 h fasting recovery. The test consisted of 3 min each at 30%, 40%, 50%, 60%, 70%, and 80% of maximal oxygen uptake and fat oxidation rates were measured through indirect calorimetry. During CON, maximal fat oxidation rate was 0.51 ± 0.04 g·min(-1) compared with 0.69 ± 0.04 g·min(-1) in FAST (P < 0.01), and 0.89 ± 0.05 g·min(-1) in EXER (P < 0.01). Across all intensities, EXER was significantly higher than FAST and FAST was higher than CON (P < 0.01). Blood insulin levels were lower and free fatty acid and cortisol levels were higher at the start of EXER compared with CON and FAST (P < 0.05). Plasma nuclear magnetic resonance-metabolomics showed similar changes in both EXER and FAST, including increased levels of fatty acids and succinate. In conclusion, prior exercise significantly increases whole-body fat oxidation during submaximal exercise compared with overnight fasting. Already high rates of maximal fat oxidation in elite endurance athletes were increased by approximately 75% after prior exercise and fasting recovery.


Subject(s)
Adipose Tissue/metabolism , Exercise , Lipid Metabolism , Physical Endurance , Adult , Athletes , Bicycling , Blood Glucose/metabolism , Breakfast , Calorimetry, Indirect , Cross-Over Studies , Fasting , Fatty Acids, Nonesterified/blood , Female , Humans , Hydrocortisone/blood , Insulin/blood , Linear Models , Magnetic Resonance Spectroscopy , Male , Metabolomics , Multivariate Analysis , Oxygen Consumption
SELECTION OF CITATIONS
SEARCH DETAIL
...