Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 269
Filter
1.
Front Psychol ; 15: 1335682, 2024.
Article in English | MEDLINE | ID: mdl-38962237

ABSTRACT

Deep learning from collaboration occurs if the learner enacts interactive activities in the sense of leveraging the knowledge externalized by co-learners as resource for own inferencing processes and if these interactive activities in turn promote the learner's deep comprehension outcomes. This experimental study investigates whether inducing dyad members to enact constructive preparation activities can promote deep learning from subsequent collaboration while examining prior knowledge as moderator. In a digital collaborative learning environment, 122 non-expert university students assigned to 61 dyads studied a text about the human circulatory system and then prepared individually for collaboration according to their experimental conditions: the preparation tasks varied across dyads with respect to their generativity, that is, the degree to which they required the learners to enact constructive activities (note-taking, compare-contrast, or explanation). After externalizing their answer to the task, learners in all conditions inspected their partner's externalization and then jointly discussed their text understanding via chat. Results showed that more rather than less generative tasks fostered constructive preparation but not interactive collaboration activities or deep comprehension outcomes. Moderated mediation analyses considering actor and partner effects indicated the indirect effects of constructive preparation activities on deep comprehension outcomes via interactive activities to depend on prior knowledge: when own prior knowledge was relatively low, self-performed but not partner-performed constructive preparation activities were beneficial. When own prior knowledge was relatively high, partner-performed constructive preparation activities were conducive while one's own were ineffective or even detrimental. Given these differential effects, suggestions are made for optimizing the instructional design around generative preparation tasks to streamline the effectiveness of constructive preparation activities for deep learning from digital collaboration.

2.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38960404

ABSTRACT

Recent advances in microfluidics and sequencing technologies allow researchers to explore cellular heterogeneity at single-cell resolution. In recent years, deep learning frameworks, such as generative models, have brought great changes to the analysis of transcriptomic data. Nevertheless, relying on the potential space of these generative models alone is insufficient to generate biological explanations. In addition, most of the previous work based on generative models is limited to shallow neural networks with one to three layers of latent variables, which may limit the capabilities of the models. Here, we propose a deep interpretable generative model called d-scIGM for single-cell data analysis. d-scIGM combines sawtooth connectivity techniques and residual networks, thereby constructing a deep generative framework. In addition, d-scIGM incorporates hierarchical prior knowledge of biological domains to enhance the interpretability of the model. We show that d-scIGM achieves excellent performance in a variety of fundamental tasks, including clustering, visualization, and pseudo-temporal inference. Through topic pathway studies, we found that d-scIGM-learned topics are better enriched for biologically meaningful pathways compared to the baseline models. Furthermore, the analysis of drug response data shows that d-scIGM can capture drug response patterns in large-scale experiments, which provides a promising way to elucidate the underlying biological mechanisms. Lastly, in the melanoma dataset, d-scIGM accurately identified different cell types and revealed multiple melanin-related driver genes and key pathways, which are critical for understanding disease mechanisms and drug development.


Subject(s)
Deep Learning , RNA-Seq , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , RNA-Seq/methods , Computational Biology/methods , Algorithms , Sequence Analysis, RNA/methods , Neural Networks, Computer , Single-Cell Gene Expression Analysis
4.
Comput Biol Med ; 177: 108637, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824789

ABSTRACT

Radiotherapy is a preferred treatment for brain metastases, which kills cancer cells via high doses of radiation meanwhile hardly avoiding damage to surrounding healthy cells. Therefore, the delineation of organs-at-risk (OARs) is vital in treatment planning to minimize radiation-induced toxicity. However, the following aspects make OAR delineation a challenging task: extremely imbalanced organ sizes, ambiguous boundaries, and complex anatomical structures. To alleviate these challenges, we imitate how specialized clinicians delineate OARs and present a novel cascaded multi-OAR segmentation framework, called OAR-SegNet. OAR-SegNet comprises two distinct levels of segmentation networks: an Anatomical-Prior-Guided network (APG-Net) and a Point-Cloud-Guided network (PCG-Net). Specifically, APG-Net handles segmentation for all organs, where multi-view segmentation modules and a deep prior loss are designed under the guidance of prior knowledge. After APG-Net, PCG-Net refines small organs through the mini-segmentation and the point-cloud alignment heads. The mini-segmentation head is further equipped with the deep prior feature. Extensive experiments were conducted to demonstrate the superior performance of the proposed method compared to other state-of-the-art medical segmentation methods.


Subject(s)
Brain Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Brain Neoplasms/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk , Brain/diagnostic imaging , Brain/pathology , Image Processing, Computer-Assisted/methods
5.
Sci Prog ; 107(2): 368504241261833, 2024.
Article in English | MEDLINE | ID: mdl-38872470

ABSTRACT

Our memories help us plan for the future. In some cases, we use memories to repeat the choices that led to preferable outcomes in the past. The success of these memory-guided decisions depends on close interactions between the hippocampus and medial prefrontal cortex. In other cases, we need to use our memories to deduce hidden connections between the present and past situations to decide the best choice of action based on the expected outcome. Our recent study investigated neural underpinnings of such inferential decisions by monitoring neural activity in the medial prefrontal cortex and hippocampus in rats. We identified several neural activity patterns indicating awake memory trace reactivation and restructuring of functional connectivity among multiple neurons. We also found that these patterns occurred concurrently with the ongoing hippocampal activity when rats recalled past events but not when they planned new adaptive actions. Here, we discussed how these computational properties might contribute to success in inferential decision-making and propose a working model on how the medial prefrontal cortex changes its interaction with the hippocampus depending on whether it reflects on the past or looks into the future.


Subject(s)
Hippocampus , Memory , Prefrontal Cortex , Animals , Humans , Rats , Decision Making/physiology , Hippocampus/physiology , Memory/physiology , Neurons/physiology , Prefrontal Cortex/physiology
6.
Comput Biol Med ; 178: 108783, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909446

ABSTRACT

Magnetic particle imaging (MPI) is an emerging non-invasive medical imaging tomography technology based on magnetic particles, with excellent imaging depth penetration, high sensitivity and contrast. Spatial resolution and signal-to-noise ratio (SNR) are key performance metrics for evaluating MPI, which are directly influenced by the gradient of the selection field (SF). Increasing the SF gradient can improve the spatial resolution of MPI, but will lead to a decrease in SNR. Deep learning (DL) methods may enable obtaining high-resolution images from low-resolution images to improve the MPI resolution under low gradient conditions. However, existing DL methods overlook the physical procedures contributing to the blurring of MPI images, resulting in low interpretability and hindering breakthroughs in resolution. To address this issue, we propose a dual-channel end-to-end network with prior knowledge embedding for MPI (DENPK-MPI) to effectively establish a latent mapping between low-gradient and high-gradient images, thus improving MPI resolution without compromising SNR. By seamlessly integrating MPI PSF with DL paradigm, DENPK-MPI leads to a significant improvement in spatial resolution performance. Simulation, phantom, and in vivo MPI experiments have collectively confirmed that our method can improve the resolution of low-gradient MPI images without sacrificing SNR, resulting in a decrease in full width at half maximum by 14.8%-23.8 %, and the accuracy of image reconstruction is 18.2 %-27.3 % higher than other DL methods. In conclusion, we propose a DL method that incorporates MPI prior knowledge, which can improve the spatial resolution of MPI without compromising SNR and possess improved biomedical application.

7.
Biom J ; 66(4): e2300173, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38817110

ABSTRACT

We introduce a Bayesian approach for biclustering that accounts for the prior functional dependence between genes using hidden Markov models (HMMs). We utilize biological knowledge gathered from gene ontologies and the hidden Markov structure to capture the potential coexpression of neighboring genes. Our interpretable model-based clustering characterized each cluster of samples by three groups of features: overexpressed, underexpressed, and irrelevant features. The proposed methods have been implemented in an R package and are used to analyze both the simulated data and The Cancer Genome Atlas kidney cancer data.


Subject(s)
Bayes Theorem , Kidney Neoplasms , Markov Chains , Kidney Neoplasms/genetics , Humans , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Biometry/methods
8.
Psychon Bull Rev ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691223

ABSTRACT

Significant progress in the investigation of how prior knowledge influences episodic memory has been made using three sometimes isolated (but not mutually exclusive) approaches: strictly adult behavioral investigations, computational models, and investigations into the development of the system. Here we point out that these approaches are complementary, each approach informs and is informed by the other. Thus, a natural next step for research is to combine all three approaches to further our understanding of the role of prior knowledge in episodic memory. Here we use studies of memory for expectation-congruent and incongruent information from each of these often disparate approaches to illustrate how combining approaches can be used to test and revise theories from the other. This domain is particularly advantageous because it highlights important features of more general memory processes, further differentiates models of memory, and can shed light on developmental change in the memory system. We then present a case study to illustrate the progress that can be made from integrating all three approaches and highlight the need for more endeavors in this vein. As a first step, we also propose a new computational model of memory that takes into account behavioral and developmental factors that can influence prior knowledge and episodic memory interactions. This integrated approach has great potential for offering novel insights into the relationship between prior knowledge and episodic memory, and cognition more broadly.

9.
Artif Intell Med ; 151: 102840, 2024 May.
Article in English | MEDLINE | ID: mdl-38658129

ABSTRACT

High-throughput technologies are becoming increasingly important in discovering prognostic biomarkers and in identifying novel drug targets. With Mammaprint, Oncotype DX, and many other prognostic molecular signatures breast cancer is one of the paradigmatic examples of the utility of high-throughput data to deliver prognostic biomarkers, that can be represented in a form of a rather short gene list. Such gene lists can be obtained as a set of features (genes) that are important for the decisions of a Machine Learning (ML) method applied to high-dimensional gene expression data. Several studies have identified predictive gene lists for patient prognosis in breast cancer, but these lists are unstable and have only a few genes in common. Instability of feature selection impedes biological interpretability: genes that are relevant for cancer pathology should be members of any predictive gene list obtained for the same clinical type of patients. Stability and interpretability of selected features can be improved by including information on molecular networks in ML methods. Graph Convolutional Neural Network (GCNN) is a contemporary deep learning approach applicable to gene expression data structured by a prior knowledge molecular network. Layer-wise Relevance Propagation (LRP) and SHapley Additive exPlanations (SHAP) are methods to explain individual decisions of deep learning models. We used both GCNN+LRP and GCNN+SHAP techniques to construct feature sets by aggregating individual explanations. We suggest a methodology to systematically and quantitatively analyze the stability, the impact on the classification performance, and the interpretability of the selected feature sets. We used this methodology to compare GCNN+LRP to GCNN+SHAP and to more classical ML-based feature selection approaches. Utilizing a large breast cancer gene expression dataset we show that, while feature selection with SHAP is useful in applications where selected features have to be impactful for classification performance, among all studied methods GCNN+LRP delivers the most stable (reproducible) and interpretable gene lists.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Neural Networks, Computer , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Biomarkers, Tumor/genetics , Female , Gene Expression Profiling/methods , Deep Learning , Prognosis , Machine Learning
10.
Front Psychol ; 15: 1251238, 2024.
Article in English | MEDLINE | ID: mdl-38449762

ABSTRACT

Introduction: How an event is framed impacts how people judge the morality of those involved, but prior knowledge can influence information processing about an event, which also can impact moral judgments. The current study explored how blame framing and self-reported prior knowledge of a historical act of racial violence, labeled as Riot, Massacre, or Event, impacted individual's cumulative moral judgments regarding the groups involved in the Tulsa Race Massacre (Black Tulsans, the Tulsa Police, and White Tulsans). Methods and results: This study was collected in two cohorts including undergraduates attending the University of Oklahoma and individuals living in the United Kingdom. Participants were randomly assigned to a blame framing condition, read a factual summary of what happened in Tulsa in 1921, and then responded to various moral judgment items about each group. Individuals without prior knowledge had higher average Likert ratings (more blame) toward Black Tulsans and lower average Likert ratings (less blame) toward White Tulsans and the Tulsa Police compared to participants with prior knowledge. This finding was largest when what participants read was framed as a Massacre rather than a Riot or Event. We also found participants with prior knowledge significantly differed in how they made moral judgments across target groups; those with prior knowledge had lower average Likert ratings (less blame) for Black Tulsans and higher average Likert ratings (more blame) for White Tulsans on items pertaining to causal responsibility, intentionality, and punishment compared to participants without prior knowledge. Discussion: Findings suggest that the effect of blame framing on moral judgments is dependent on prior knowledge. Implications for how people interpret both historical and new events involving harmful consequences are discussed.

11.
Comput Biol Med ; 172: 108255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461696

ABSTRACT

Retinal fundus images serve as a non-invasive modality to obtain information pertaining to retinal vessels through fundus photography, thereby offering insights into cardiovascular and cerebrovascular diseases. Retinal arteriolar morphometry has emerged as the most convenient and fundamental clinical methodology in the realm of patient screening and diagnosis. Nevertheless, the analysis of retinal arterioles is challenging attributable to imaging noise, stochastic fuzzy characteristics, and blurred boundaries proximal to blood vessels. In response to these limitations, we introduce an innovative methodology, named PKSEA-Net, which aims to improve segmentation accuracy by enhancing the perception of edge information in retinal fundus images. PKSEA-Net employs the universal architecture PVT-v2 as the encoder, complemented by a novel decoder architecture consisting of an Edge-Aware Block (EAB) and a Pyramid Feature Fusion Module (PFFM). The EAB block incorporates prior knowledge for supervision and multi-query for multi-task learning, with supervision information derived from an enhanced Full Width at Half Maximum (FWHM) algorithm and gradient map. Moreover, PFFM efficiently integrates multi-scale features through a novel attention fusion method. Additionally, we have collected a Retinal Cross-Sectional Vessel (RCSV) dataset derived from approximately 200 patients in Quzhou People's Hospital to serve as the benchmark dataset. Comparative evaluations with several state-of-the-art (SOTA) networks confirm that PKSEA-Net achieves exceptional experimental performance, thereby establishing its status as a SOTA approach for precise boundary delineation and retinal vessel segmentation.


Subject(s)
Learning , Retinal Vessels , Humans , Arterioles/diagnostic imaging , Cross-Sectional Studies , Retinal Vessels/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted
12.
Comput Biol Med ; 171: 108147, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387385

ABSTRACT

Instance segmentation plays an important role in the automatic diagnosis of cervical cancer. Although deep learning-based instance segmentation methods can achieve outstanding performance, they need large amounts of labeled data. This results in a huge consumption of manpower and material resources. To solve this problem, we propose an unsupervised cervical cell instance segmentation method based on human visual simulation, named HVS-Unsup. Our method simulates the process of human cell recognition and incorporates prior knowledge of cervical cells. Specifically, firstly, we utilize prior knowledge to generate three types of pseudo labels for cervical cells. In this way, the unsupervised instance segmentation is transformed to a supervised task. Secondly, we design a Nucleus Enhanced Module (NEM) and a Mask-Assisted Segmentation module (MAS) to address problems of cell overlapping, adhesion, and even scenarios involving visually indistinguishable cases. NEM can accurately locate the nuclei by the nuclei attention feature maps generated by point-level pseudo labels, and MAS can reduce the interference from impurities by updating the weight of the shallow network through the dice loss. Next, we propose a Category-Wise droploss (CW-droploss) to reduce cell omissions in lower-contrast images. Finally, we employ an iterative self-training strategy to rectify mislabeled instances. Experimental results on our dataset MS-cellSeg, the public datasets Cx22 and ISBI2015 demonstrate that HVS-Unsup outperforms existing mainstream unsupervised cervical cell segmentation methods.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Computer Simulation , Uterine Cervical Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted
13.
JMIR Form Res ; 8: e32690, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329788

ABSTRACT

BACKGROUND: The automatic generation of radiology reports, which seeks to create a free-text description from a clinical radiograph, is emerging as a pivotal intersection between clinical medicine and artificial intelligence. Leveraging natural language processing technologies can accelerate report creation, enhancing health care quality and standardization. However, most existing studies have not yet fully tapped into the combined potential of advanced language and vision models. OBJECTIVE: The purpose of this study was to explore the integration of pretrained vision-language models into radiology report generation. This would enable the vision-language model to automatically convert clinical images into high-quality textual reports. METHODS: In our research, we introduced a radiology report generation model named ClinicalBLIP, building upon the foundational InstructBLIP model and refining it using clinical image-to-text data sets. A multistage fine-tuning approach via low-rank adaptation was proposed to deepen the semantic comprehension of the visual encoder and the large language model for clinical imagery. Furthermore, prior knowledge was integrated through prompt learning to enhance the precision of the reports generated. Experiments were conducted on both the IU X-RAY and MIMIC-CXR data sets, with ClinicalBLIP compared to several leading methods. RESULTS: Experimental results revealed that ClinicalBLIP obtained superior scores of 0.570/0.365 and 0.534/0.313 on the IU X-RAY/MIMIC-CXR test sets for the Metric for Evaluation of Translation with Explicit Ordering (METEOR) and the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) evaluations, respectively. This performance notably surpasses that of existing state-of-the-art methods. Further evaluations confirmed the effectiveness of the multistage fine-tuning and the integration of prior information, leading to substantial improvements. CONCLUSIONS: The proposed ClinicalBLIP model demonstrated robustness and effectiveness in enhancing clinical radiology report generation, suggesting significant promise for real-world clinical applications.

14.
Stud Health Technol Inform ; 310: 951-955, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38269949

ABSTRACT

Segmentation of pancreatic tumors on CT images is essential for the diagnosis and treatment of pancreatic cancer. However, low contrast between the pancreas and the tumor, as well as variable tumor shape and position, makes segmentation challenging. To solve the problem, we propose a Position Prior Attention Network (PPANet) with a pseudo segmentation generation module (PSGM) and a position prior attention module (PPAM). PSGM and PPAM maps pancreatic and tumor pseudo segmentation to latent space to generate position prior attention map and supervises location classification. The proposed method is evaluated on pancreatic patient data collected from local hospital and the experimental results demonstrate that our method can significantly improve the tumor segmentation results by introducing the position information in the training phase.


Subject(s)
Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnostic imaging , Hospitals
15.
Gut Microbes ; 16(1): 2302076, 2024.
Article in English | MEDLINE | ID: mdl-38214657

ABSTRACT

We developed MicroKPNN, a prior-knowledge guided interpretable neural network for microbiome-based human host phenotype prediction. The prior knowledge used in MicroKPNN includes the metabolic activities of different bacterial species, phylogenetic relationships, and bacterial community structure, all in a shallow neural network. Application of MicroKPNN to seven gut microbiome datasets (involving five different human diseases including inflammatory bowel disease, type 2 diabetes, liver cirrhosis, colorectal cancer, and obesity) shows that incorporation of the prior knowledge helped improve the microbiome-based host phenotype prediction. MicroKPNN outperformed fully connected neural network-based approaches in all seven cases, with the most improvement of accuracy in the prediction of type 2 diabetes. MicroKPNN outperformed a recently developed deep-learning based approach DeepMicro, which selects the best combination of autoencoder and machine learning approach to make predictions, in all of the seven cases. Importantly, we showed that MicroKPNN provides a way for interpretation of the predictive models. Using importance scores estimated for the hidden nodes, MicroKPNN could provide explanations for prior research findings by highlighting the roles of specific microbiome components in phenotype predictions. In addition, it may suggest potential future research directions for studying the impacts of microbiome on host health and diseases. MicroKPNN is publicly available at https://github.com/mgtools/MicroKPNN.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Microbiota , Humans , Phylogeny , Diabetes Mellitus, Type 2/microbiology , Microbiota/genetics , Phenotype
16.
Comput Biol Med ; 170: 108002, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277921

ABSTRACT

The HER2 expression status in breast cancer liver metastases is a crucial indicator for the diagnosis, treatment, and prognosis assessment of patients. And typical diagnosis involves assessing the HER2 expression status through invasive procedures like biopsy. However, this method has certain drawbacks, such as being difficult in obtaining tissue samples and requiring long examination periods. To address these limitations, we propose an AI-aided diagnostic model. This model enables rapid diagnosis. It diagnoses a patient's HER2 expression status on the basis of preprocessed images, which is the region of the lesion extracted from a CT image rather than from an actual tissue sample. The algorithm of the model adopts a parallel structure, including a Branch Block and a Trunk Block. The Branch Block is responsible for extracting the gradient characteristics between the tumor sub-environments, and the Trunk Block is for fusing the characteristics extracted by the Branch Block. The Branch Block contains CNN with self-attention, which combines the advantages of CNN and self-attention to extract more meticulous and comprehensive image features. And the Trunk Block is so designed that it fuses the extracted image feature information without affecting the transmission of the original image features. The Conv-Attention is used to calculate the attention in the Trunk Block, which uses kernel dot product and is responsible for providing the weight for the self-attention in the process of using convolution induced deviation calculation. Combined with the structure of the model and the method used, we refer to this model as TBACkp. The dataset comprises the enhanced abdominal CT images of 151 patients with liver metastases from breast cancer, together with the corresponding HER2 expression levels for each patient. The experimental results are as follows: (AUC: 0.915, ACC: 0.854, specificity: 0.809, precision: 0.863, recall: 0.881, F1-score: 0.872). The results demonstrate that this method can accurately assess the HER2 expression status in patients when compared with other advanced deep learning model.


Subject(s)
Breast Neoplasms , Liver Neoplasms , Female , Humans , Algorithms , Biopsy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/secondary
17.
Sensors (Basel) ; 23(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38139584

ABSTRACT

In action recognition, obtaining skeleton data from human poses is valuable. This process can help eliminate negative effects of environmental noise, including changes in background and lighting conditions. Although GCN can learn unique action features, it fails to fully utilize the prior knowledge of human body structure and the coordination relations between limbs. To address these issues, this paper proposes a Multi-level Topological Channel Attention Network algorithm: Firstly, the Multi-level Topology and Channel Attention Module incorporates prior knowledge of human body structure using a coarse-to-fine approach, effectively extracting action features. Secondly, the Coordination Module utilizes contralateral and ipsilateral coordinated movements in human kinematics. Lastly, the Multi-scale Global Spatio-temporal Attention Module captures spatiotemporal features of different granularities and incorporates a causal convolution block and masked temporal attention to prevent non-causal relationships. This method achieved accuracy rates of 91.9% (Xsub), 96.3% (Xview), 88.5% (Xsub), and 90.3% (Xset) on NTU-RGB+D 60 and NTU-RGB+D 120, respectively.


Subject(s)
Algorithms , Extremities , Humans , Knowledge , Learning , Skeleton
18.
GMS J Med Educ ; 40(6): Doc69, 2023.
Article in English | MEDLINE | ID: mdl-38125896

ABSTRACT

Objective: Previous research on problem-based learning (PBL) describes that videotaped observations develop meaningful insights into cognitive processes in tutorial groups. Analysis regarding the amount of prior knowledge on learning achievement has not been investigated in medical education so far, although both are key factors of PBL success. Thus, we intended to analyse videos of digital problem-based learning (dPBL) sessions, focusing on knowledge acquisition and interaction dynamics among groups with different levels of prior knowledge to reveal any distinctions. Methods: This study employed a pilot design by dividing 60 dental students into twelve subgroups with less or more prior knowledge, determined by a pre-semester multiple choice test (MCQ). The groups engaged in videotaped dPBL cases, which were examined regarding group interactions and tutor effectiveness. The learning achievement was assessed through a post-semester MCQ, an oral and practical exam. Results: The video analysis showed that dPBL groups with less prior knowledge achieved significantly higher tutor effectiveness and group interaction utterances, but that the percentage of time in which utterances occurred was similar in both groups. Related to the MCQ results, the students with less prior knowledge learned four times more than those with profound previous abilities, but no significant difference was found in the results of the oral exam and practical exam. Conclusions: The interaction dynamics in dPBL depend on the group's amount of prior knowledge. Especially groups including participants with less prior knowledge seemed to benefit from dPBL in comparison to groups with more prior knowledge. The dPBL groups acquired knowledge in different ways during the courses but, finally, all students arrived at a similar level of knowledge.


Subject(s)
Education, Medical, Undergraduate , Education, Medical , Humans , Problem-Based Learning/methods , Pilot Projects , Education, Medical, Undergraduate/methods , Learning
19.
Micromachines (Basel) ; 14(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38004880

ABSTRACT

In this paper, an aging small-signal model for degradation prediction of microwave heterojunction bipolar transistor (HBT) S-parameters based on prior knowledge neural networks (PKNNs) is explored. A dual-extreme learning machine (D-ELM) structure with an adaptive genetic algorithm (AGA) optimization process is used to simulate the fresh S-parameters of InP HBT devices and the degradation of S-parameters after accelerated aging, respectively. In addition to the reliability parametric inputs of the original aging problem, the S-parameter degradation trend obtained from the aging small-signal equivalent circuit is used as additional information to inject into the D-ELM structure. Good agreement was achieved between measured and predicted results of the degradation of S-parameters within a frequency range of 0.1 to 40 GHz.

20.
Proteomics ; 23(21-22): e2200402, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37986684

ABSTRACT

For decades, molecular biologists have been uncovering the mechanics of biological systems. Efforts to bring their findings together have led to the development of multiple databases and information systems that capture and present pathway information in a computable network format. Concurrently, the advent of modern omics technologies has empowered researchers to systematically profile cellular processes across different modalities. Numerous algorithms, methodologies, and tools have been developed to use prior knowledge networks (PKNs) in the analysis of omics datasets. Interestingly, it has been repeatedly demonstrated that the source of prior knowledge can greatly impact the results of a given analysis. For these methods to be successful it is paramount that their selection of PKNs is amenable to the data type and the computational task they aim to accomplish. Here we present a five-level framework that broadly describes network models in terms of their scope, level of detail, and ability to inform causal predictions. To contextualize this framework, we review a handful of network-based omics analysis methods at each level, while also describing the computational tasks they aim to accomplish.


Subject(s)
Algorithms , Databases, Factual
SELECTION OF CITATIONS
SEARCH DETAIL
...