Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Neurobiol Lang (Camb) ; 5(3): 676-700, 2024.
Article in English | MEDLINE | ID: mdl-39175785

ABSTRACT

Fluent speech production is a complex task that spans multiple processes, from conceptual framing and lexical access, through phonological encoding, to articulatory control. For the most part, imaging studies portraying the neural correlates of speech fluency tend to examine clinical populations sustaining speech impairments and focus on either lexical access or articulatory control, but not both. Here, we evaluated the contribution of the cerebellar peduncles to speech fluency by measuring the different components of the process in a sample of 45 neurotypical adults. Participants underwent an unstructured interview to assess their natural speaking rate and articulation rate, and completed timed semantic and phonemic fluency tasks to assess their verbal fluency. Diffusion magnetic resonance imaging with probabilistic tractography was used to segment the bilateral cerebellar peduncles (CPs) and frontal aslant tract (FAT), previously associated with speech production in clinical populations. Our results demonstrate distinct patterns of white matter associations with different fluency components. Specifically, verbal fluency is associated with the right superior CP, whereas speaking rate is associated with the right middle CP and bilateral FAT. No association is found with articulation rate in these pathways, in contrast to previous findings in persons who stutter. Our findings support the contribution of the cerebellum to aspects of speech production that go beyond articulatory control, such as lexical access, pragmatic or syntactic generation. Further, we demonstrate that distinct cerebellar pathways dissociate different components of speech fluency in neurotypical speakers.

2.
World Neurosurg ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39209255

ABSTRACT

OBJECTIVE: To evaluate the accuracy of stereotactic coordinates to target the ansa lenticularis (AL) using 2 surgical planning methods, the conventional millimeter method (MM) and the normalized Tenths method (TM), assessed through individualized probabilistic tractography. METHODS: Stereotactic targeting of the AL was assessed in 2 groups: 16 patients with Parkinson's disease and 16 healthy controls from Group 1, and 39 Parkinson's disease patients from Group 2. Structural and diffusion magnetic resonance imaging probabilistic tractography identified the AL based on the Schaltenbrand-Wahren Atlas. The MM defined stereotactic coordinates in millimeters, while the TM refined the planning by dividing the intercommissural line (AC-PC) distance into 10 equal parts, normalizing the "X," "Y," and "Z" coordinates for each patient. We subsequently compared the percentage of structural connectivity (%conn) of the AL with predefined regions of interest (ROIs), including the frontopontine-corticothalamic tracts, globus pallidus internus-ventral oral anterior, and ventral oral posterior, and quantified the streamlines in 142 brain hemispheres using the MM and TM coordinates. RESULTS: Despite anatomical variations in intercommissural (AC-PC) line lengths between both groups (22.5 ± 2.09 mm and 24.4 ± 2.56 mm, respectively; P = 0.002), as well as differences in magnetic resonance imaging acquisition parameters, we found that the TM significantly enhanced streamline identification and %conn compared to the MM. These enhancements were noted across ROIs: frontopontine-corticothalamic and globus pallidus internus-ventral oral anterior in both hemispheres, and globus pallidus internus-ventral oral posterior in the left (P < 0.001) and right hemispheres (P = 0.03). CONCLUSIONS: TM surpasses MM in identifying the structural connectivity between the AL and predefined ROIs, underscoring the advantages of coordinate normalization. However, variations in AC-PC line lengths and Euclidean distances between methods could lead to inaccuracies in the coordinate settings, potentially affecting the precision of structural connectivity and the efficacy of therapeutic outcomes.

3.
Schizophr Bull Open ; 5(1): sgae008, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39144116

ABSTRACT

Background and Hypothesis: Studies have linked auditory hallucinations (AH) in schizophrenia spectrum disorders (SCZ) to altered cerebral white matter microstructure within the language and auditory processing circuitry (LAPC). However, the specificity to the LAPC remains unclear. Here, we investigated the relationship between AH and DTI among patients with SCZ using diffusion tensor imaging (DTI). Study Design: We included patients with SCZ with (AH+; n = 59) and without (AH-; n = 81) current AH, and 140 age- and sex-matched controls. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were extracted from 39 fiber tracts. We used principal component analysis (PCA) to identify general factors of variation across fiber tracts and DTI metrics. Regression models adjusted for sex, age, and age2 were used to compare tract-wise DTI metrics and PCA factors between AH+, AH-, and healthy controls and to assess associations with clinical characteristics. Study Results: Widespread differences relative to controls were observed for MD and RD in patients without current AH. Only limited differences in 2 fiber tracts were observed between AH+ and controls. Unimodal PCA factors based on MD, RD, and AD, as well as multimodal PCA factors, differed significantly relative to controls for AH-, but not AH+. We did not find any significant associations between PCA factors and clinical characteristics. Conclusions: Contrary to previous studies, DTI metrics differed mainly in patients without current AH compared to controls, indicating a widespread neuroanatomical distribution. This challenges the notion that altered DTI metrics within the LAPC is a specific feature underlying AH.

4.
World Neurosurg ; 188: e555-e560, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823444

ABSTRACT

BACKGROUND: Geniculocalcarine fibers are thought to be exclusively ipsilateral. However, recent findings challenged this belief, revealing bilateral recruiting responses in occipitotemporoparietal regions upon unilateral stimulation of the lateral geniculate nucleus (LGN) in humans. This raised the intriguing possibility of bilateral projections to primary visual areas (V1). This study sought to explore the hypothetical decussation of the geniculocalcarine tract. METHODS: 40 healthy individuals' 7T magnetic resonance images from the Human Connectome Project were examined. Employing MRtrix3 software with the constrained spherical deconvolution algorithm, scans were processed. LGN served as the seed region and contralateral regions of interest (splenium of the corpus callosum, posterior commissure, LGN, V1, pulvinar, and superior colliculus) were defined to reconstruct the hypothetical decussated fibers. Tractography included contralateral V1 as the target region in all segmentations, excluding ipsilateral V1 to eliminate fibers leading to or originating from this area. Additionally, a segmentation of the tract originating from LGN and projecting to the ipsilateral V1 was performed. Mean fraction anisotropy and mean diffusivity metrics were extracted from the density maps. RESULTS: Observations revealed a substantial volume of decussated fibers between LGN and contralateral V1 via the splenium of the corpus callosum, albeit much smaller than ipsilateral fibers. The volume of ipsilateral fibers was similar in both sides. Left LGN-originating decussated fibers were more than double those originating from the right LGN. Tract segmentation to other regions of interests yielded no fibers. CONCLUSIONS: This study suggests a partial decussation of the fibers between LGN and V1, likely constituting the geniculocalcarine tract.


Subject(s)
Diffusion Tensor Imaging , Geniculate Bodies , Visual Pathways , Humans , Geniculate Bodies/diagnostic imaging , Geniculate Bodies/anatomy & histology , Diffusion Tensor Imaging/methods , Male , Female , Adult , Visual Pathways/diagnostic imaging , Visual Pathways/anatomy & histology , Primary Visual Cortex/diagnostic imaging , Primary Visual Cortex/anatomy & histology , Connectome/methods , Young Adult , Magnetic Resonance Imaging/methods , Corpus Callosum/diagnostic imaging , Corpus Callosum/anatomy & histology
5.
Neuroimage ; 290: 120554, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38431180

ABSTRACT

Following sensory deprivation, areas and networks in the brain may adapt and reorganize to compensate for the loss of input. These adaptations are manifestations of compensatory crossmodal plasticity, which has been documented in both human and animal models of deafness-including the domestic cat. Although there are abundant examples of structural plasticity in deaf felines from retrograde tracer-based studies, there is a lack of diffusion-based knowledge involving this model compared to the current breadth of human research. The purpose of this study was to explore white matter structural adaptations in the perinatally-deafened cat via tractography, increasing the methodological overlap between species. Plasticity was examined by identifying unique group connections and assessing altered connectional strength throughout the entirety of the brain. Results revealed a largely preserved connectome containing a limited number of group-specific or altered connections focused within and between sensory networks, which is generally corroborated by deaf feline anatomical tracer literature. Furthermore, five hubs of cortical plasticity and altered communication following perinatal deafness were observed. The limited differences found in the present study suggest that deafness-induced crossmodal plasticity is largely built upon intrinsic structural connections, with limited remodeling of underlying white matter.


Subject(s)
Connectome , Deafness , Humans , Animals , Cats , Brain
6.
Brain Struct Funct ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528269

ABSTRACT

Multiple neurocognitive processes are involved in the highly complex task of producing written words. Yet, little is known about the neural pathways that support spelling in healthy adults. We assessed the associations between performance on a difficult spelling-to-dictation task and microstructural properties of language-related white matter pathways, in a sample of 73 native English-speaking neurotypical adults. Participants completed a diffusion magnetic resonance imaging scan and a cognitive assessment battery. Using constrained spherical deconvolution modeling and probabilistic tractography, we reconstructed dorsal and ventral white matter tracts of interest, bilaterally, in individual participants. Spelling associations were found in both dorsal and ventral stream pathways. In high-performing spellers, spelling scores significantly correlated with fractional anisotropy (FA) within the left inferior longitudinal fasciculus, a ventral stream pathway. In low-performing spellers, spelling scores significantly correlated with FA within the third branch of the right superior longitudinal fasciculus, a dorsal pathway. An automated analysis of spelling errors revealed that high- and low- performing spellers also differed in their error patterns, diverging primarily in terms of the orthographic distance between their errors and the correct spelling, compared to the phonological plausibility of their spelling responses. The results demonstrate the complexity of the neurocognitive architecture of spelling. The distinct white matter associations and error patterns detected in low- and high- performing spellers suggest that they rely on different cognitive processes, such that high-performing spellers rely more on lexical-orthographic representations, while low-performing spellers rely more on phoneme-to-grapheme conversion.

7.
Neuropsychologia ; 196: 108839, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38401630

ABSTRACT

The existence of unconscious visually triggered behavior in patients with cortical blindness (e.g., homonymous hemianopia) has been amply demonstrated and the neural bases of this phenomenon have been thoroughly studied. However, a crosstalk between the two hemispheres as a possible mechanism of unconscious or partially conscious vision has not been so far considered. Thus, the aim of this study was to assess the relationship between structural and functional properties of the corpus callosum (CC), as shown by probabilistic tractography (PT), behavioral detection/discrimination performance and level of perceptual awareness in the blind field of patients with hemianopia. Twelve patients were tested in two tasks with black-and-white visual square-wave gratings, one task of movement and the other of orientation. The stimuli were lateralized to one hemifield either intact or blind. A PT analysis was carried out on MRI data to extract fiber properties along the CC (genu, body, and splenium). Compared with a control group of participants without brain damage, patients showed lower FA values in all three CC sections studied. For the intact hemifield we found a significant correlation between PT values and visual detection/discrimination accuracy. For the blind hemifield the level of perceptual awareness correlated with PT values for all three CC sections in the movement task. Importantly, significant differences in all three CC sections were found also between patients with above-vs. chance detection/discrimination performance while differences in the genu were found between patients with and without perceptual awareness. Overall, our study provides evidence that the properties of CC fibers are related to the presence of unconscious stimulus detection/discrimination and to hints of perceptual awareness for stimulus presentation to the blind hemifield. These results underline the importance of information exchange between the damaged and the healthy hemisphere for possible partial or full recovery from hemianopia.


Subject(s)
Blindness, Cortical , Hemianopsia , Humans , Hemianopsia/diagnostic imaging , Corpus Callosum/diagnostic imaging , Visual Perception , Unconsciousness , Photic Stimulation
8.
Acta Neuropsychiatr ; : 1-10, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38348668

ABSTRACT

INTRODUCTION: It has been suggested that schizophrenia involves dysconnectivity between functional brain regions and also the white matter structural disorganisation. Thus, diffusion tensor imaging (DTI) has widely been used for studying schizophrenia. However, most previous studies have used the region of interest (ROI) based approach. We, therefore, performed the probabilistic tractography method in this study to reveal the alterations of white matter tracts in the schizophrenia brain. METHODS: A total of four different datasets consisted of 189 patients with schizophrenia and 213 healthy controls were investigated. We performed retrospective harmonisation of raw diffusion MRI data by dMRIharmonisation and used the FMRIB Software Library (FSL) for probabilistic tractography. The connectivities between different ROIs were then compared between patients and controls. Furthermore, we evaluated the relationship between the connection probabilities and the symptoms and cognitive measures in patients with schizophrenia. RESULTS: After applying Bonferroni correction for multiple comparisons, 11 different tracts showed significant differences between patients with schizophrenia and healthy controls. Many of these tracts were associated with the basal ganglia or cortico-striatal structures, which aligns with the current literature highlighting striatal dysfunction. Moreover, we found that these tracts demonstrated statistically significant relationships with few cognitive measures related to language, executive function, or processing speed. CONCLUSION: We performed probabilistic tractography using a large, harmonised dataset of diffusion MRI data, which enhanced the statistical power of our study. It is important to note that most of the tracts identified in this study, particularly callosal and cortico-striatal streamlines, have been previously implicated in schizophrenia within the current literature. Further research with harmonised data focusing specifically on these brain regions could be recommended.

9.
Article in English | MEDLINE | ID: mdl-38246218

ABSTRACT

Emerging evidence highlights cerebral microbleeds (CMBs) as hallmarks of cerebral small vessel disease (CSVD) underlying depression and cognitive dysfunction. This study aimed to reveal how depression and cognition-related white matter (WM) abnormalities are topologically presented, and the network-level structural disruptions associated with CMBs in CSVD. We used probabilistic diffusion tractography and graph theory to investigate brain WM network topology in CSVD patients with (n = 64, CSVD-c) and without (n = 138, CSVD-n) CMBs and 90 healthy controls. Then we evaluated the Pearson's correlations between disrupted network metrics and neuropsychological parameters. For global topology, the CSVD-c group exhibited significantly decreased global (Eglob) and local (Eloc) efficiency and increased shortest path length compared with the controls, while no significant difference was found between the CSVD-c and CSVD-n groups. For regional topology, although all groups showed highly similar hub distributions, compare with control group, the CSVD-c group exhibited significantly decreased nodal efficiency mainly in the bilateral supplementary motor area (SMA), median cingulate gyrus (DCG) and right orbital middle frontal gyrus, while the CSVD-n group showed significantly decreased nodal efficiency only in the right SMA. Notably, Eglob, Eloc and nodal efficiency of the right anterior cingulate gyrus, DCG, middle temporal gyrus and left insula showed significantly negative correlations with depression score, significantly positive correlations with Rey auditory verbal learning test and symbol digit modalities test scores in CSVD-n group, as well as significantly negative correlations with Stroop color-word test scores in CSVD-c group. The WM networks of CSVD patients are characterized by decreased global integration and local specialization, and decreased nodal efficiency highly related to depression and cognitive dysfunction in the attention, default mode network and sensorimotor regions. These findings provide new insight into the neurobiological mechanisms of CSVD and concomitant affective and cognitive disorders.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Motor Cortex , Humans , Depression/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging
10.
Brain Lang ; 249: 105378, 2024 02.
Article in English | MEDLINE | ID: mdl-38198905

ABSTRACT

Speech impairments are one of the common symptoms of individuals with Parkinson's disease (PD). However, little is known about the underlying neuroanatomical structural deficits specifically in the basal ganglia-thalamocortical (BGTC) loop in the speech deficits of PD. Here we investigated white matter differences in PD using probabilistic tractography. Diffusion tensor imaging data were downloaded from the Parkinson's Progression Markers Initiative database. We included three groups of participants: 20 PD individuals with speech deficits, 20 PD individuals without speech deficits, and 20 age- and gender-matched control participants. Overall, PD individuals with speech deficits had higher mean diffusivity in the BGTC pathway in the left hemisphere compared with PD individuals without speech deficits. The present study exhibits that there may be a distinct pathophysiological profile of white matter for speech deficits in PD.


Subject(s)
Parkinson Disease , White Matter , Humans , Diffusion Tensor Imaging/methods , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , White Matter/diagnostic imaging , Speech , Diffusion Magnetic Resonance Imaging
11.
Mol Neurobiol ; 61(1): 326-339, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37606718

ABSTRACT

To reveal the network-level structural disruptions associated with cognitive dysfunctions in different cerebral small vessel disease (CSVD) burdens, we used probabilistic diffusion tractography and graph theory to investigate the brain network topology in 67 patients with a severe CSVD burden (CSVD-s), 133 patients with a mild CSVD burden (CSVD-m) and 89 healthy controls. We used one-way analysis of covariance to assess the altered topological measures between groups, and then evaluated their Pearson correlation with cognitive parameters. Both the CSVD and control groups showed efficient small-world organization in white matter (WM) networks. However, compared with CSVD-m patients and controls, CSVD-s patients exhibited significantly decreased local efficiency, with partially reorganized hub distributions. For regional topology, CSVD-s patients showed significantly decreased nodal efficiency in the bilateral anterior cingulate gyrus, caudate nucleus, right opercular inferior frontal gyrus (IFGoperc), supplementary motor area (SMA), insula and left orbital superior frontal gyrus and angular gyrus. Intriguingly, global/local efficiency and nodal efficiency of the bilateral caudate nucleus, right IFGoperc, SMA and left angular gyrus showed significant correlations with cognitive parameters in the CSVD-s group, while only the left pallidum showed significant correlations with cognitive metrics in the CSVD-m group. In conclusion, the decreased local specialization of brain structural networks in patients with different CSVD burdens provides novel insights into understanding the brain structural alterations in relation to CSVD severity. Cognitive correlations with brain structural network efficiency suggest their potential use as neuroimaging biomarkers to assess the severity of CSVD.


Subject(s)
Cerebral Small Vessel Diseases , White Matter , Humans , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , White Matter/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Cognition , Magnetic Resonance Imaging
12.
J Neurol ; 271(3): 1451-1461, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38032372

ABSTRACT

BACKGROUND: Current pathophysiological models of Parkinson's disease (PD) assume a malfunctioning network being adjusted by the DBS signal. As various authors showed a main involvement of the cerebellum within this network, cerebello-cerebral fiber tracts are gaining special interest regarding the mediation of DBS effects. OBJECTIVES: The crossing and non-decussating fibers of the dentato-rubro-thalamic tract (c-DRTT/nd-DRTT) and the subthalamo-ponto-cerebellar tract (SPCT) are thought to build up an integrated network enabling a bidimensional communication between the cerebellum and the basal ganglia. The aim of this study was to investigate the influence of these tracts on clinical control of Parkinsonian tremor evoked by DBS. METHODS: We analyzed 120 electrode contacts from a cohort of 14 patients with tremor-dominant or equivalence-type PD having received bilateral STN-DBS. Probabilistic tractography was performed to depict the c-DRTT, nd-DRTT, and SPCT. Distance maps were calculated for the tracts and correlated to clinical tremor control for each electrode pole. RESULTS: A significant difference between "effective" and "less-effective" contacts was only found for the c-DRTT (p = 0.039), but not for the SPCT, nor the nd-DRTT. In logistic and linear regressions, significant results were also found for the c-DRTT only (pmodel logistic = 0.035, ptract logistic = 0,044; plinear = 0.027). CONCLUSIONS: We found a significant correlation between the distance of the DBS electrode pole to the c-DRTT and the clinical efficacy regarding tremor reduction. The c-DRTT might therefore play a major role in the mechanisms of alleviation of Parkinsonian tremor and could eventually serve as a possible DBS target for tremor-dominant PD in future.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Parkinson Disease , Humans , Tremor/etiology , Tremor/therapy , Deep Brain Stimulation/methods , Thalamus , Cerebellum/diagnostic imaging , Parkinson Disease/complications , Parkinson Disease/therapy
13.
J Affect Disord ; 347: 515-525, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38042306

ABSTRACT

BACKGROUND: Patients with thyroid-associated opthalmopathy (TAO) have widespread white matter (WM) abnormalities in the emotional and cognitive functional regions. However, the topological representation of these WM abnormalities and the network-level structural aberrations underlying TAO and concomitant affective disorders are still unclear. METHODS: We used probabilistic diffusion tractography and graph theory to investigate brain network topology in 37 active, 35 inactive TAO patients and 23 healthy controls. Then, we evaluated the partial correlations between network topological metrics and clinical parameters. RESULTS: For global topology, only active TAO patients exhibited significantly decreased global (Eglob) and local (Eloc) efficiency compared with controls, while no significant difference was observed between active and inactive TAO patients. For regional topology, we found a significantly decreased nodal efficiency in the left orbital superior frontal gyrus (ORBsup), medial orbital superior frontal gyrus (ORBsupmed), hippocampus and amygdala in active TAO patients compared with inactive ones. Intriguingly, Eglob, Eloc, and nodal efficiency of left ORBsup, ORBsupmed, olfactory cortex, gyrus rectus, hippocampus, right parahippocampal gyrus and amygdala had significantly positive correlations with anxiety/depression scores, bilateral exophthalmos and intraocular pressure in active TAO patients, while no significant correlation was observed in inactive TAO patients. LIMITATIONS: No longitudinal follow-up. CONCLUSIONS: WM networks of TAO are characterized by decreased local specialization and global integration in the active phase, and decreased nodal efficiency highly related to anxiety and depression in the emotional and cognitive regions. Our findings provide new insight regarding the neurobiological mechanisms of TAO and contribute to the treatment of concomitant affective disorders.


Subject(s)
Depression , Graves Ophthalmopathy , Humans , Depression/diagnostic imaging , Brain/diagnostic imaging , Diffusion Tensor Imaging , Anxiety
14.
Brain Res Bull ; 206: 110847, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103800

ABSTRACT

OBJECTIVE: The objective of this study was to use probabilistic tractography in combination with white matter microstructure metrics to characterize differences in white matter networks between shunt-treated pediatric hydrocephalus patients relative to healthy controls. We were also able to explore the relationship between these white matter networks and postoperative ventricle volume. METHODS: Network-based statistics was used in combination with whole-brain probabilistic tractography to determine dysregulated white matter networks in a sample of patients with pediatric hydrocephalus (n = 8), relative to controls (n = 36). Metrics such as streamline count (SC), as well as the mean of the fractional anisotropy along a tract, axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) were assessed. In networks that were found to be significantly different for patients with hydrocephalus, tracts were evaluated to assess their relationship with postoperative lateral ventricle volume. RESULTS: Patients with pediatric hydrocephalus had various networks that were either upregulated or downregulated relative to controls across all white matter measures. Predominately, network dysregulation occurred in tracts involving structures located outside of the frontal lobe. Furthermore tracts with values suggesting decreased white matter integrity were not only found between subcortical structures, but also cortical structures. While there were various tracts with white matter metrics that were initially predicted by lateral ventricle volume, only two tracts remained significant following multiple comparisons. CONCLUSIONS: This cross-sectional study in pediatric patients with hydrocephalus and healthy controls demonstrated using whole-brain probabilistic tractography that there are various networks with dysregulated white matter integrity in hydrocephalus patients relative to controls. These dysregulated networks have tracts connecting structures throughout the brain, and the regions were predominately located centrally and posteriorly. Postoperative ventricle volume did not predict the white matter integrity of many tracts. Future studies with larger sample sizes are needed to further understand these results.


Subject(s)
Hydrocephalus , White Matter , Humans , Child , White Matter/diagnostic imaging , Cross-Sectional Studies , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Brain/surgery , Hydrocephalus/diagnostic imaging , Hydrocephalus/surgery
15.
Front Hum Neurosci ; 17: 1147352, 2023.
Article in English | MEDLINE | ID: mdl-37868699

ABSTRACT

Developmental dyscalculia is a neurodevelopmental disorder specific to arithmetic learning even with normal intelligence and age-appropriate education. Difficulties often persist from childhood through adulthood lowering the individual's quality of life. However, the neural correlates of developmental dyscalculia are poorly understood. This study aimed to identify brain structural connectivity alterations in developmental dyscalculia. All participants were recruited from a large scale, non-referred population sample in a longitudinal design. We studied 10 children with developmental dyscalculia (11.3 ± 0.7 years) and 16 typically developing peers (11.2 ± 0.6 years) using diffusion-weighted magnetic resonance imaging. We assessed white matter microstructure with tract-based spatial statistics in regions-of-interest tracts that had previously been related to math ability in children. Then we used global probabilistic tractography for the first time to measure and compare tract length between developmental dyscalculia and typically developing groups. The high angular resolution diffusion-weighted magnetic resonance imaging and crossing-fiber probabilistic tractography allowed us to evaluate the length of the pathways compared to previous studies. The major findings of our study were reduced white matter coherence and shorter tract length of the left superior longitudinal/arcuate fasciculus and left anterior thalamic radiation in the developmental dyscalculia group. Furthermore, the lower white matter coherence and shorter pathways tended to be associated with the lower math performance. These results from the regional analyses indicate that learning, memory and language-related pathways in the left hemisphere might be related to developmental dyscalculia in children.

16.
Neuroradiology ; 65(12): 1737-1747, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37851020

ABSTRACT

PURPOSE: Neuroimaging studies employing analyses dependent on regional assumptions and specific neuronal circuits could miss characteristics of whole-brain structural connectivity critical to the pathophysiology of fibromyalgia (FM). This study applied the whole-brain graph-theoretical approach to identify whole-brain structural connectivity disturbances in FM. METHODS: This cross-sectional study used probabilistic diffusion tractography and graph theory analysis to evaluate the topological organization of brain white matter networks in 20 patients with FM and 20 healthy controls (HCs). The relationship between brain network metrics and clinical variables was evaluated. RESULTS: Compared with HCs, FM patients had lower clustering coefficient, local efficiency, hierarchy, synchronization, and higher normalized characteristic path length. Regionally, patients demonstrated a significant reduction in nodal efficiency and centrality; these regions were mainly located in the prefrontal, temporal cortex, and basal ganglia. The network-based statistical analysis (NBS) identified decreased structural connectivity in a subnetwork of prefrontal cortex, basal ganglia, and thalamus in FM. There was no correlation between network metrics and clinical variables (false discovery rate corrected). CONCLUSIONS: The current research demonstrated disrupted topological architecture of white matter networks in FM. Our results suggested compromised neural integration and segregation and reduced structural connectivity in FM.


Subject(s)
Fibromyalgia , White Matter , Humans , White Matter/diagnostic imaging , Cross-Sectional Studies , Fibromyalgia/diagnostic imaging , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods
17.
Adv Exp Med Biol ; 1423: 11-20, 2023.
Article in English | MEDLINE | ID: mdl-37525029

ABSTRACT

The fornix, the limbic system's white matter tract connecting the extended hippocampal system to subcortical structures of the medial diencephalon, is strongly associated with learning and memory in humans and nonhuman primates (NHPs). Here, we sought to investigate alterations in structural connectivity across key cortical and subcortical regions after fornix transection in NHPs. We collected diffusion-weighted MRI (dMRI) data from three macaque monkeys that underwent bilateral fornix transection during neurosurgery and from four age- and cohort-matched control macaques that underwent surgery to implant a head-post but remained neurologically intact. dMRI data were collected from both groups at two time points, before and after the surgeries, and scans took place at around the same time for the two groups. We used probabilistic tractography and employed the number of tracking streamlines to quantify connectivity across our regions of interest (ROIs), in all dMRI sessions. In the neurologically intact monkeys, we observed high connectivity across certain ROIs, including the CA3 hippocampal subfield with the retrosplenial cortex (RSC), the anterior thalamus with the RSC, and the RSC with the anterior cingulate cortex (ACC). However, we found that, compared to the control group, the fornix-transected monkeys showed marked, significant, connectivity changes including increases between the anterior thalamus and the ACC and between the CA3 and the ACC, as well as decreases between the CA3 and the RSC. Our results highlight cortical and subcortical network changes after fornix transection and identify candidate indirect connectivity routes that may support memory functions after damage and/or neurodegeneration.


Subject(s)
Diffusion Tensor Imaging , Fornix, Brain , Animals , Humans , Fornix, Brain/diagnostic imaging , Fornix, Brain/surgery , Hippocampus/diagnostic imaging , Hippocampus/surgery , Gyrus Cinguli , Macaca mulatta , Neural Pathways/diagnostic imaging
18.
CNS Neurosci Ther ; 29(12): 4160-4171, 2023 12.
Article in English | MEDLINE | ID: mdl-37408389

ABSTRACT

AIMS: The purpose of this study was to clarify the dentato-rubro-thalamic (DRT) pathway in action tremor in comparison to normal controls (NC) and disease controls (i.e., rest tremor) by using multi-modality magnetic resonance imaging (MRI). METHODS: This study included 40 essential tremor (ET) patients, 57 Parkinson's disease (PD) patients (29 with rest tremor, 28 without rest tremor), and 41 NC. We used multi-modality MRI to comprehensively assess major nuclei and fiber tracts of the DRT pathway, which included decussating DRT tract (d-DRTT) and non-decussating DRT tract (nd-DRTT), and compared the differences in DRT pathway components between action and rest tremor. RESULTS: Bilateral dentate nucleus (DN) in the ET group had excessive iron deposition compared with the NC group. Compared with the NC group, significantly decreased mean diffusivity and radial diffusivity were observed in the left nd-DRTT in the ET group, which were negatively correlated with tremor severity. No significant difference in each component of the DRT pathway was observed between the PD subgroup or the PD and NC. CONCLUSION: Aberrant changes in the DRT pathway may be specific to action tremor and were indicating that action tremor may be related to pathological overactivation of the DRT pathway.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Humans , Tremor/diagnostic imaging , Diffusion Tensor Imaging/methods , Thalamus/diagnostic imaging , Magnetic Resonance Imaging , Essential Tremor/diagnostic imaging , Essential Tremor/therapy , Deep Brain Stimulation/methods
19.
Front Neurol ; 14: 1135305, 2023.
Article in English | MEDLINE | ID: mdl-37251238

ABSTRACT

Introduction: Childhood absence epilepsy (CAE) is a well-known pediatric epilepsy syndrome. Recent evidence has shown the presence of a disrupted structural brain network in CAE. However, little is known about the rich-club topology. This study aimed to explore the rich-club alterations in CAE and their association with clinical characteristics. Methods: Diffusion tensor imaging (DTI) datasets were acquired in a sample of 30 CAE patients and 31 healthy controls. A structural network was derived from DTI data for each participant using probabilistic tractography. Then, the rich-club organization was examined, and the network connections were divided into rich-club connections, feeder connections, and local connections. Results: Our results confirmed a less dense whole-brain structural network in CAE with lower network strength and global efficiency. In addition, the optimal organization of small-worldness was also damaged. A small number of highly connected and central brain regions were identified to form the rich-club organization in both patients and controls. However, patients exhibited a significantly reduced rich-club connectivity, while the other class of feeder and local connections was relatively spared. Moreover, the lower levels of rich-club connectivity strength were statistically correlated with disease duration. Discussion: Our reports suggest that CAE is characterized by abnormal connectivity concentrated to rich-club organizations and might contribute to understanding the pathophysiological mechanism of CAE.

20.
Hum Brain Mapp ; 44(10): 4064-4076, 2023 07.
Article in English | MEDLINE | ID: mdl-37145963

ABSTRACT

Tractography is widely used in human studies of connectivity with respect to every brain region, function, and is explored developmentally, in adulthood, ageing, and in disease. However, the core issue of how to systematically threshold, taking into account the inherent differences in connectivity values for different track lengths, and to do this in a comparable way across studies has not been solved. By utilising 54 healthy individuals' diffusion-weighted image data taken from HCP, this study adopted Monte Carlo derived distance-dependent distributions (DDDs) to generate distance-dependent thresholds with various levels of alpha for connections of varying lengths. As a test case, we applied the DDD approach to generate a language connectome. The resulting connectome showed both short- and long-distance structural connectivity in the close and distant regions as expected for the dorsal and ventral language pathways, consistent with the literature. The finding demonstrates that the DDD approach is feasible to generate data-driven DDDs for common thresholding and can be used for both individual and group thresholding. Critically, it offers a standard method that can be applied to various probabilistic tracking datasets.


Subject(s)
Connectome , Diffusion Tensor Imaging , Humans , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Connectome/methods
SELECTION OF CITATIONS
SEARCH DETAIL