Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 636
Filter
1.
J Environ Manage ; 365: 121668, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963971

ABSTRACT

An in-depth study of the oxidative liquefaction process has been provided to degrade the polymeric waste from personal protective equipment (PPEs) and wind turbine blades (WTBs). Thermogravimetric investigations demonstrate that WTBs have three prominent peaks throughout the degradation, whereas PPEs display solitary peak features. Experiments are carried out employing specific experimental design approaches, namely the Central Composite Face-Centered Plan (CCF) for WTBs and the Central Composition Design with Fractional Factorial Design for PPEs in a batch-type reactor at temperature ranges of 250-350 °C, pressures of 20-40 bar, residence times of 30-90 min, H2O2 concentrations of 15-45 %, and waste/liquid ratios of 5-25 % for WTBs. These values were 200-300 °C, 30 bar, 45 min, 30-60 % and 5-7 % for PPE. A detailed comparison has been provided in the context of total polymer degradation (TPD) for PPE and WTBs. Liquid products from both types of wastes after the oxidative liquefaction process are subjected to gas chromatography with flame ionization detection (GC-FID) to identify the existence of oxygenated chemical compounds (OCCs). For WTBs, TPD was 20-49 % and this value was 55-96 % for PPE while the OCC yield for WTBs (36.31 g/kg - 210.59 g/kg) and PPEs (39.93 g/kg - 212.66 g/kg) was also calculated. Detailed optimization of experimental plans was carried out by performing the analysis of variance (ANOVA) and optimization goals were maximum TPD and OCCs yields against the minimum energy consumption, though a considerable amount of complex polymer waste can be reduced and high concentrations of OCC can be achieved, which could be applied for commercial and environmental benefits.

2.
Microb Cell Fact ; 23(1): 196, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987741

ABSTRACT

BACKGROUND: Telomerase activators are promising agents for the healthy aging process and the treatment/prevention of short telomere-related and age-related diseases. The discovery of new telomerase activators and later optimizing their activities through chemical and biological transformations are crucial for the pharmaceutical sector. In our previous studies, several potent telomerase activators were discovered via fungal biotransformation, which in turn necessitated optimization of their production. It is practical to improve the production processes by implementing the design of experiment (DoE) strategy, leading to increased yield and productivity. In this study, we focused on optimizing biotransformation conditions utilizing Camarosporium laburnicola, a recently discovered filamentous fungus, to afford the target telomerase activators (E-CG-01, E-AG-01, and E-AG-02). RESULTS: DoE approaches were used to optimize the microbial biotransformation processes of C. laburnicola. Nine parameters were screened by Plackett-Burman Design, and three significant parameters (biotransformation time, temperature, shaking speed) were optimized using Central Composite Design. After conducting validation experiments, we were able to further enhance the production yield of target metabolites through scale-up studies in shake flasks (55.3-fold for E-AG-01, 13-fold for E-AG-02, and 1.96-fold for E-CG-01). CONCLUSION: Following a process optimization study using C. laburnicola, a significant increase was achieved in the production yields. Thus, the present study demonstrates a promising methodology to increase the production yield of potent telomerase activators. Furthermore, C. laburnicola is identified as a potential biocatalyst for further industrial utilization.


Subject(s)
Biotransformation , Telomerase , Telomerase/metabolism , Enzyme Activators/metabolism
3.
Materials (Basel) ; 17(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930325

ABSTRACT

This study involved the optimization of the molded pieces manufacturing process from a poly-3-hydroxybutyrate-co-3-hydroxyvalerate biocomposite containing 30% wood flour by mass. The amount of wood flour and preliminary processing parameters were determined on the basis of preliminary tests. The aim of the optimization was to find the configuration of important parameters of the injection process to obtain molded pieces of good quality, in terms of aesthetics, dimensions, and mechanical properties. The products tested for quality were dog bone specimens. The biocomposite was produced using a single-screw extruder, whereas molded pieces were made using an injection molding process. The Taguchi method was applied to optimize the injection molding parameters, which determine the products quality. Control factors were selected at three levels. The L27 orthogonal plan was used. For each set of input parameters from this plan, four processing tests were performed. The sample weight, shrinkage, elongation at break, tensile strength, and Young's modulus were selected to assess the quality of the molded parts. As a result of the research, the processing parameters of the tested biocomposite were determined, enabling the production of good-quality molded pieces. No common parameter configuration was found for different optimization criteria. Further research should focus on finding a different range of technological parameters. At the same time, it was found that the range of processing parameters of the produced biocomposite, especially processing temperature, made it possible to use it in the Wood Polymer Composites segment.

4.
J Chromatogr A ; 1730: 465110, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38941794

ABSTRACT

Maximizing product quality attributes by optimizing process parameters and performance attributes is a crucial aspect of bioprocess chromatography process design. Process parameters include but are not limited to bed height, eluate cut points, and elution pH. An under-characterized chromatography process parameter for protein A chromatography is process temperature. Here, we present a mechanistic understanding of the effects of temperature on the protein A purification of a monoclonal antibody (mAb) using a commercial chromatography resin for batch and continuous counter-current systems. A self-designed 3D-printed heating jacket controlled the 1 mL chromatography process temperature during the loading, wash, elution, and cleaning-in-place (CIP) steps. Batch loading experiments at 10, 20, and 30 °C demonstrated increased dynamic binding capacity (DBC) with temperature. The experimental data were fit to mechanistic and correlation-based models that predicted the optimal operating conditions over a range of temperatures. These model-based predictions optimized the development of a 3-column temperature-controlled periodic counter-current chromatography (TCPCC) and were validated experimentally. Operating a 3-column TCPCC at 30 °C led to a 47% increase in DBC relative to 20 °C batch chromatography. The DBC increase resulted in a two-fold increase in productivity relative to 20 °C batch. Increasing the number of columns to the TCPCC to optimize for increasing feed concentration resulted in further improvements to productivity. The feed-optimized TCPCC showed a respective two, three, and four-fold increase in productivity at feed concentrations of 1, 5, and 15 mg/mL mAb, respectively. The derived and experimentally validated temperature-dependent models offer a valuable tool for optimizing both batch and continuous chromatography systems under various operating conditions.

5.
Membranes (Basel) ; 14(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38921510

ABSTRACT

Design considerations concerning the maximum purity of a membrane separator, and the resultant maximum effective selectivity of the membranes were explored by modeling a binary gas membrane separator (pressure-driven permeance) using a dimensionless form. Although the maximum purity has an analytical solution at the limit of zero recovery or stage cut, this solution over-predicts the obtained purity as the recovery is increased. Furthermore, at combinations of high recovery, low feed mole fraction, and low pressure ratio, the maximum purity becomes independent of selectivity above some critical selectivity. As a consequence of this purity limitation, a maximum selectivity is defined at which further increases in selectivity will result in less than a 1% change in the final purity. An equation is obtained that specifies the region in which a limiting purity is less than unity (indicating the existence of a limiting selectivity); operating at less than the limiting pressure ratio results in a purity limitation less than unity. This regime becomes larger and more significant as the inlet mole fraction decreases (e.g., inlet feed mole fraction of 10% and pressure ratio of 100 results in a maximum useful membrane selectivity of only 130 at 95% recovery). These results suggest that membrane research should focus on increasing permeance rather than selectivity for low-concentration separations. The results found herein can be used to set benchmarks for membrane development in various gas separation applications.

6.
Polymers (Basel) ; 16(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38891508

ABSTRACT

Fused Deposition Modelling (FDM) is one of the layer-based technologies that fall under the umbrella term "Additive Manufacturing", where the desired part is created through the successive layer-by-layer addition process with high accuracy using computer-aided design data. Additive manufacturing technology, or as it is commonly known, 3D (three-dimensional) printing, is a rapidly growing sector of manufacturing that is incorporated in automotive, aerospace, biomedical, and many other fields. This work explores the impact of the Additive Manufacturing process on the mechanical proprieties of the fabricated part. To conduct this study, the 3D printed tensile specimens are designed according to the ASTM D638 standards and printed from a digital template file using the FDM 3D printer Raise3D N2. The material chosen for this 3D printing parameter optimization is Polylactic acid (PLA). The FDM process parameters that were studied in this work are the infill pattern, the infill density, and the infill cell orientation. These factors' effects on the tensile behavior of printed parts were analyzed by the design of experiments method, using the statistical software MINITAB2020.

7.
Molecules ; 29(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893305

ABSTRACT

There has been an increase in interest in the application of ω-3 PUFAs, especially EPA and DHA, in the development of various food products owing to their myriad health benefits. However, most fish oils do not contain more than 30% combined levels of EPA and DHA. In this study, through the urea complexation procedure, the production of EPA and DHA concentrate in their free fatty acids (FFAs) form was achieved from an enzymatic oil extracted from common kilka (Clupeonella cultriventris caspia). To gain the maximum value of EPA and DHA, the response surface methodology (RSM), which is an effective tool to categorize the level of independent variables onto the responses of an experimental process, was also used. Different variables including the urea-fatty acids (FAs) ratio (in the range of 2-6, w/w), the temperature of crystallization (in the range of -24-8 °C), and the time of crystallization (in the range of 8-40 h) were investigated by response surface methodology (RSM) for maximizing the EPA and DHA contents. Following the model validation, the levels of the variables at which the maximum desirability function (0.907 score) was obtained for response variables were 5:1 (urea-FAs ratio), -9 °C (the temperature of crystallization), and 24 h (the time of crystallization). Under these optimal conditions, increases of 2.2 and 4.4 times in the EPA and DHA concentrations were observed, respectively, and an increase in the concentrations of EPA and DHA from 5.39 and 13.32% in the crude oil to 12.07 and 58.36% in the ω-3 PUFA concentrates were observed, respectively. These findings indicate that the urea complexation process is efficient at optimizated conditions.


Subject(s)
Fatty Acids, Omega-3 , Fish Oils , Urea , Urea/chemistry , Fatty Acids, Omega-3/chemistry , Fish Oils/chemistry , Docosahexaenoic Acids/chemistry , Docosahexaenoic Acids/analysis , Eicosapentaenoic Acid/chemistry , Eicosapentaenoic Acid/analysis , Animals , Crystallization
8.
Biotechnol Prog ; : e3483, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856182

ABSTRACT

While high-throughput (HT) experimentation and mechanistic modeling have long been employed in chromatographic process development, it remains unclear how these techniques should be used in concert within development workflows. In this work, a process development workflow based on HT experiments and mechanistic modeling was constructed. The integration of HT and modeling approaches offers improved workflow efficiency and speed. This high-throughput in silico (HT-IS) workflow was employed to develop a Capto MMC polishing step for mAb aggregate removal. High-throughput batch isotherm data was first generated over a range of mobile phase conditions and a suite of analytics were employed. Parameters for the extended steric mass action (SMA) isotherm were regressed for the multicomponent system. Model validation was performed using the extended SMA isotherm in concert with the general rate model of chromatography using the CADET modeling software. Here, step elution profiles were predicted for eight RoboColumn runs across a range of ionic strength, pH, and load density. Optimized processes were generated through minimization of a complex objective function based on key process metrics. Processes were evaluated at lab-scale using two feedstocks, differing in composition. The results confirmed that both processes obtained high monomer yield (>85%) and removed ∼ 50 % $$ \sim 50\% $$ of aggregate species. Column simulations were then carried out to determine sensitivity to a wide range of process inputs. Elution buffer pH was found to be the most critical process parameter, followed by resin ionic capacity. Overall, this study demonstrated the utility of the HT-IS workflow for rapid process development and characterization.

9.
Sensors (Basel) ; 24(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931802

ABSTRACT

Inefficient patient transport in hospitals often leads to delays, overworked staff, and suboptimal resource utilization, ultimately impacting patient care. Existing dispatch management algorithms are often evaluated in simulation environments, raising concerns about their real-world applicability. This study presents a real-world experiment that bridges the gap between theoretical dispatch algorithms and real-world implementation. It applies process capability analysis at Taichung Veterans General Hospital in Taichung, Taiwan, and utilizes IoT for real-time tracking of staff and medical devices to address challenges associated with manual dispatch processes. Experimental data collected from the hospital underwent statistical evaluation between January 2021 and December 2021. The results of our experiment, which compared the use of traditional dispatch methods with the Beacon dispatch method, found that traditional dispatch had an overtime delay of 41.0%; in comparison, the Beacon dispatch method had an overtime delay of 26.5%. These findings demonstrate the transformative potential of this solution for not only hospital operations but also for improving service quality across the healthcare industry in the context of smart hospitals.


Subject(s)
Algorithms , Humans , Taiwan , Hospitals , Transportation of Patients , Patient Care/methods , Efficiency, Organizational
10.
J Imaging ; 10(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38786554

ABSTRACT

In this paper, we present a new processing method, called MOSES-Impacts, for the detection of micrometer-sized damage on glass plate surfaces. It extends existing methods by a separation of damaged areas, called impacts, to support state-of-the-art recycling systems in optimizing their parameters. These recycling systems are used to repair process-related damages on glass plate surfaces, caused by accelerated material fragments, which arise during a laser-matter interaction in a vacuum. Due to a high number of impacts, the presented MOSES-Impacts algorithm focuses on the separation of connected impacts in two-dimensional images. This separation is crucial for the extraction of relevant features such as centers of gravity and radii of impacts, which are used as recycling parameters. The results show that the MOSES-Impacts algorithm effectively separates impacts, achieves a mean agreement with human users of (82.0 ± 2.0)%, and improves the recycling of glass plate surfaces by identifying around 7% of glass plate surface area as being not in need of repair compared to existing methods.

11.
Foods ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38790806

ABSTRACT

The aim of this study is to produce a biodegradable food packaging material that reduces environmental pollution and protects food safety. The effects of total solids content, substrate ratio, polyphenol content, and magnetic stirring time on bovine bone gelatin/sodium carboxymethylcellulose nanoemulsion (BBG/SCMC-NE) were investigated using particle size, PDI, turbidity, rheological properties, and zeta potential as evaluation indexes. The micro, structural, antioxidant, encapsulation, and release properties were characterized after deriving its optimal preparation process. The results showed that the nanoemulsion was optimally prepared with a total solids content of 2%, a substrate ratio of 9:1, a polyphenol content of 0.2%, and a magnetic stirring time of 60 min. SEM showed that the nanoemulsion showed a dense and uniform reticulated structure. FTIR and XRD results showed that covalent cross-linking of proteins and polysaccharides altered the structure of gelatin molecular chains to a more compact form but did not change its semi-crystalline structure. DSC showed that the 9:1 BBG/SCMC-NE had a higher thermal denaturation temperature and greater thermal stability, and its DPPH scavenging rate could reach 79.25% and encapsulation rate up to 90.88%, with excellent slow-release performance. The results of the study provide basic guidance for the preparation of stable active food packaging with excellent properties.

12.
Polymers (Basel) ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732724

ABSTRACT

The traditional preparation process of natural rubber latex requires tedious treatment of a variety of rubber additives. In this paper, a new process of wet mixed grinding was used to prepare a reinforced vulcanization mixture and a rapid vulcanization effect. The effect of different amounts of vulcanization mixtures on the mechanical properties of natural latex film was studied, and the pre-vulcanization process of latex and the vulcanization process of film were optimized. The results showed that with the increase in the amount of vulcanization mixture, the tensile strength increased from 5.96 MPa to 29.28 MPa, and the tear strength increased from 7.59 kN/m to 52.81 kN/m. When the vulcanization temperature of the latex film is heated from 80 °C to 100 °C, the vulcanization time is shortened by 5~6 times. The new vulcanization mixture prepared in this work has the characteristics of simple production and fast vulcanization speed, which provides a new solution for the development of the latex product industry.

13.
Food Chem ; 452: 139523, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38728889

ABSTRACT

Rye leaven, the basic constituent of sour rye soup ('zurek' or white borsch), was obtained through three methods of initiating lacto-fermentation of rye flour. Optimal concentrations of NaCl (1.5%) and garlic (0.5%) were selected by utilizing the response surface methodology. During the production and storage of leaven at 10 °C and 20 °C, the secalin proteins of rye flour degraded significantly and the concentration of free amino acids increased, making the rye leaven an environment potentially conducive to the formation of biogenic amines. Putrescine (max. conc: 116.7 mg kg-1) and tyramine (max. conc: 63.4 mg kg-1) were the amines that occurred in the largest amounts in the leavens. The final concentration of histamine (after 150 days of storage) did not exceed 22 mg kg-1. Regardless of the method of initiation of fermentation, the products that contained fewer biogenic amines better retained their sensory characteristics (r ≤ -0.89, p < 0.05) and had a higher number of lactic acid bacteria (r ≤ -0.66, p < 0.05).


Subject(s)
Biogenic Amines , Fermentation , Food Storage , Secale , Biogenic Amines/analysis , Secale/chemistry , Flour/analysis , Humans , Taste
14.
World J Microbiol Biotechnol ; 40(7): 214, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789837

ABSTRACT

Levan, a ß-(2,6)-linked fructose polymer, exhibits diverse properties that impart versatility, rendering it a highly sought-after biopolymer with various industrial applications. Levan can be produced by various microorganisms using sucrose, food industry byproducts and agricultural wastes. Microbial levan represents the most potent cost-effective process for commercial-scale levan production. This study reviews the optimization of levan production by understanding its biosynthesis, physicochemical properties and the fermentation process. In addition, genetic and protein engineering for its increased production and emerging methods for its detection are introduced and discussed. All of these comprehensive studies could serve as powerful tools to optimize levan production and broaden its applications across various industries.


Subject(s)
Fermentation , Fructans , Fructans/biosynthesis , Fructans/metabolism , Bacteria/metabolism , Bacteria/genetics , Protein Engineering/methods , Sucrose/metabolism , Hexosyltransferases/metabolism , Hexosyltransferases/genetics , Industrial Microbiology/methods
15.
Heliyon ; 10(9): e30326, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726140

ABSTRACT

With increasing demand for meat and dairy products, the volume of wastewater generated from the livestock industry has become a significant environmental concern. The treatment of livestock wastewater (LWW) is a challenging process that involves removing nutrients, organic matter, pathogens, and other pollutants from livestock manure and urine. In response to this challenge, researchers have developed and investigated different biological, physical, and chemical treatment technologies that perform better upon optimization. Optimization of LWW handling processes can help improve the efficacy and sustainability of treatment systems as well as minimize environmental impacts and associated costs. Response surface methodology (RSM) as an optimization approach can effectively optimize operational parameters that affect process performance. This review article summarizes the main steps of RSM, recent applications of RSM in LWW treatment, highlights the advantages and limitations of this technique, and provides recommendations for future research and practice, including its cost-effectiveness, accuracy, and ability to improve treatment efficiency.

16.
J Pharm Sci ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38763415

ABSTRACT

This study introduces a modification to the roller compaction model proposed by Sousa et al.1 to account for the effect of roll speed on powder compaction in the dry granulation process. The proposed model enhances the prediction accuracy, particularly at higher roll speeds, which are often overlooked in existing models. The modified model is validated using literature data, demonstrating improved performance compared to the original model. Additionally, the model is applied to a pharmaceutical formulation, showing its applicability in an industrial context. The integration of the model into gPROMS allows for global sensitivity analysis and design space exploration, providing valuable insights for process optimization and scale-up. The study contributes to the understanding of roller compaction dynamics and offers a practical tool for decision-making in pharmaceutical manufacturing.

17.
ChemSusChem ; : e202400413, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702956

ABSTRACT

Continuous flow synthesis is pivotal in dye production to address batch-to-batch variations. However, synthesizing water-insoluble dyes in an aqueous system poses a challenge that can lead to clogging. This study successfully achieved the safe and efficient synthesis of azo dyes by selecting and optimizing flow reactor modules for different reaction types in the two-step reaction and implementing cascade cooperation. Integrating continuous flow microreactor with continuous stirred tank reactor (CSTR) enabled the continuous flow synthesis of Sudan Yellow 3G without introducing water-soluble functional groups or using organic solvents to enhance solubility. Optimizing conditions (acidity/alkalinity, temperature, residence time) within the initial modular continuous flow reactor resulted in a remarkable 99.5% isolated yield, 98.6 % purity, and a production rate of 2.90 g h-1. Scaling-up based on different reactor module characteristics further increased the production rate to 74.4 g h-1 while maintaining high yield and purity. The construction of this small 3D-printing modular cascaded reactor and process scaling-up provide technical support for continuous flow synthesis of water-insoluble dyes, particularly high-market-share azo dyes. Moreover, this versatile methodology proves applicable to continuous flow processes involving various homogeneous and heterogeneous reaction cascades.

18.
Meat Sci ; 215: 109539, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38761532

ABSTRACT

Salt content variability of dry-cured ham production is a challenge for the industry since many factors can influence salt uptake during the salting procedure. The aim of this work was to define and evaluate different modifications of the salting procedure to reduce the salt content variability of an industrial dry-cured ham production. Results showed that magnetic induction (MI) is a valid technology for industrial purposes as it can predict in-line the fat and salt contents of hams with a percentage error of 1.75% and 0.38%, respectively. Modifications of the salting process defined according to raw material characteristics obtained in-line reduced the salt content variability (SD) of the global production from 0.337% to 0.283%. Moreover, a 25% reduction of the salt content variability in hams of similar weight and fat content could be achieved when using a reclassification of the defined categories with MI technology after 6 days of salting. Because of the complexity of the salting process, new tools combined with strategies need to be investigated and developed to overcome the variability coming from other sources than weight and the fat content of hams.


Subject(s)
Food Handling , Meat Products , Sodium Chloride, Dietary , Animals , Meat Products/analysis , Food Handling/methods , Sodium Chloride, Dietary/analysis , Swine
19.
Int J Biol Macromol ; 269(Pt 1): 131881, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677705

ABSTRACT

This work focuses on the precipitation of lignin from kraft black liquor (BL) along with its valorization into lignin nanoparticles (LNP). Two organic acids namely, acetic acid, and lactic acid were used for the precipitation of lignin as an alternative to sulfuric acid. An optimization study was carried out to determine the effect of three key variables, namely acid type, temperature, and pH, on the isolation yield and purity of lignin. The study showed that all factors primarily influenced the lignin yield, while the purity of precipitated lignin varied only around 1 % between minimum to maximum purity. Further, the acid precipitation method was selected for the preparation of LNP. The study aimed to observe the effect of pH, lignin concentration, and surfactant concentration over the properties of the prepared nanoparticles. The results showed that a smaller nanoparticle size and maximization of phenolic content was achieved with a lignin concentration of 35 mg/mL, a surfactant concentration of 10 % (w/w lignin), and a pH of 5. Additionally, the antibacterial activity of LNPs against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa bacteria was evaluated. The results showed only minor activity against Staphylococcus aureus. Overall, the study demonstrates the potential method for precipitation and valorization of lignin through the production of LNP with desirable properties.


Subject(s)
Chemical Precipitation , Lignin , Nanoparticles , Lignin/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Temperature , Acids/chemistry , Surface-Active Agents/chemistry
20.
Environ Sci Pollut Res Int ; 31(20): 28856-28869, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38564133

ABSTRACT

This study investigates the impact of three key variables on the performance of nanoporous AM-3 and layered AM-4 titanosilicates in removing nine REEs (Y, La, Ce, Pr, Nd, Eu, Gd, Tb, and Dy) from natural mineral water and identifies optimal operational conditions using Response Surface Methodology (RSM). The experimental conditions were determined by a Box-Behnken Design of 3 factors-3 levels (pH 4, 6, and 8; sorbent dose 20, 100, and 180 mg/L; and element concentration 1, 3, and 5 µmol/L). Three-dimensional response surfaces were used to assess the linear, quadratic, and interaction influences of each factor on the REEs' removal percentage. The pH was the most significant factor in the removal process using AM-3, while the sorbent dose was more important for AM-4. The results highlighted the sorbents' strong capacity for REE removal. The optimal operating conditions obtained by RSM were applied to aqueous solutions with salinity 10 (common in coastal and transitional systems) and 30 (average seawater salinity). The results showed that AM-3 has a strong potential for removing REEs in solutions with salinity 10 and 30, while AM-4 was less efficient due to competition between REEs and other ions present in the solution.


Subject(s)
Metals, Rare Earth , Water Pollutants, Chemical , Metals, Rare Earth/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...