Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39.911
Filter
1.
Oncol Rep ; 52(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994769

ABSTRACT

Following the publication of the above paper, it was drawn to the Editor's attention by a concerned reader that the 'Control' data panel shown for the EdU assay experiment in Fig. 6D on p. 1209 was strikingly similar to a data panel featured in Fig. 7 that had already been submitted to the journal Cancer Management and Research by different authors at different research institutes [Chen T­J, Gao F, Yang T, Li H, Li Y, Ren H and Chen M­W: Knockdown of linc­POU3F3 suppresses the proliferation, apoptosis, and migration resistance of colorectal cancer. Cancer Manag Res 12: 4379­4390, 2020]. Owing to the fact that contentious data in the above article had already been submitted for publication prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 45: 1202­1212, 2021; DOI: 10.3892/or.2021.7949].

2.
Tissue Cell ; 89: 102477, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018712

ABSTRACT

BACKGROUND: Anti-silencing function 1 (ASF1) is a conserved histone H3-H4 chaperone protein. ASF1B (Anti-Silencing Function 1B Histone Chaperone), a paralog of ASF1, is involved in tumor metabolism and growth. The regulatory network of ASF1B in cancer is intricate and remains inadequately explored. The objective of this study was to examine the biological role of ASF1B in bladder cancer (BC). METHODS: The presence of ASF1B in BC was examined using The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE) databases. In addition, a correlation analysis was performed to evaluate the association between the BC pathway scores and ASF1B. ASF1B expression in BC cells was detected using western blott and RT-PCR. Several investigations were conducted, both within and outside of a living organism, to confirm the involvement of ASF1B in the regulation of biological processes in BC cells. RESULTS: Our examination of the database indicates that ASF1B exhibits significant expression levels in BC cells and is potentially strongly associated with the growth of BC cells and the repair of DNA. The expression of ASF1B in BC cells was found to be significantly elevated, as indicated by the results of western blot and RT-PCR. The findings of the cell plate cloning test, edu analysis, flow cytometry, and transwell experiments demonstrated that the inhibition of ASF1B greatly impeded the proliferation and migration of BC cells. After establishing drug-resistant BC cell lines in a lab, suppressing ASF1B gene expression led to a notable reduction in BC cells' resistance to cisplatin. Confirmation was achieved by flow cytometry and western blott assays. Our in vivo findings demonstrated that the suppression of ASF1B resulted in an amelioration of the pathological condition, a decrease in resistance to cisplatin, and an inhibition of the growth of BC in mice.

3.
Toxicology ; : 153888, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019315

ABSTRACT

Titanium dioxide nanoparticles (TiO2 NPs) can reduce sperm number, but the mechanisms of defective spermatogenesis induced by TiO2 NPs have not been studied through cell-cell interactions at present. A kind of biomimetic three-dimensional blood-testis barrier microfluidic chip capable of intercellular communication was constructed with soft lithography techniques, including Sertoli cell (TM4), spermatogonia (GC-1) and vascular endothelial cell units, to study the mechanisms of TiO2 NPs-induced defective spermatogenesis. TM4 and GC-1 cells cultured in TiO2 NPs exposure and control chips were collected for transcriptomics and metabonomics analysis, and key proteins and metabolites in changed biological processes were validated. In TM4 cells, TiO2 NPs suppressed glucose metabolism, especially lactate production, which reduced energy substrate supply for spermatogenesis. TiO2 NPs also decreased the levels of key proteins and metabolites of lactate production. In GC-1 cells, TiO2 NPs disturbed chemokine signaling pathways regulating cell proliferation and interfered with glutathione metabolism. The Cxcl13, Stat3 and p-Stat3 levels and cell proliferation rate were decreased, and the GSR, GPX4 and GSH contents were increased in GC-1 cells in chips under TiO2 NPs treatment. The decrease in energy substrate supply for spermatogenesis and inhibition of spermatogonia proliferation could be the main mechanisms of defective spermatogenesis induced by TiO2 NPs.

4.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189147, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955314

ABSTRACT

The cell division cycle-associated protein (CDCA) family is important in regulating cell division. High CDCA expression is significantly linked to tumor development. This review summarizes clinical and basic studies on CDCAs conducted in recent decades. Furthermore, it systematically introduces the molecular expression and function, key mechanisms, cell cycle regulation, and roles of CDCAs in tumor development, cell proliferation, drug resistance, invasion, and metastasis. Additionally, it presents the latest research on tumor diagnosis, prognosis, and treatment targeting CDCAs. These findings are pivotal for further in-depth studies on the role of CDCAs in promoting tumor development and provide theoretical support for their application as new anti-tumor targets.

6.
FASEB J ; 38(14): e23808, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38994637

ABSTRACT

Muscle development is a multistep process regulated by diverse gene networks, and circRNAs are considered novel regulators mediating myogenesis. Here, we systematically analyzed the role and underlying regulatory mechanisms of circRBBP7 in myoblast proliferation and differentiation. Results showed that circRBBP7 has a typical circular structure and encodes a 13 -kDa protein. By performing circRBBP7 overexpression and RNA interference, we found that the function of circRBBP7 was positively correlated with the proliferation and differentiation of myoblasts. Using RNA sequencing, we identified 1633 and 532 differentially expressed genes (DEGs) during myoblast proliferation or differentiation, respectively. The DEGs were found mainly enriched in cell cycle- and skeletal muscle development-related pathways, such as the MDM2/p53 and PI3K-Akt signaling pathways. Further co-IP and IF co-localization analysis revealed that VEGFR-1 is a target of circRBBP7 in myoblasts. qRT-PCR and WB analysis further confirmed the positive correlation between VEGFR-1 and circRBBP7. Moreover, we found that in vivo transfection of circRBBP7 into injured muscle tissues significantly promoted the regeneration and repair of myofibers in mice. Therefore, we speculate that circRBBP7 may affect the activity of MDM2 by targeting VEGFR-1, altering the expression of muscle development-related genes by mediating p53 degradation, and ultimately promoting myoblast development and muscle regeneration. This study provides essential evidence that circRBBP7 can serve as a potential target for myogenesis regulation and a reference for the application of circRBBP7 in cattle genetic breeding and muscle injury treatment.


Subject(s)
Cell Differentiation , Cell Proliferation , Muscle Development , Myoblasts , RNA, Circular , Animals , Male , Mice , Cell Line , Mice, Inbred C57BL , Muscle Development/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Myoblasts/metabolism , Myoblasts/cytology , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
8.
J Proteome Res ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39022804

ABSTRACT

MicroRNAs are short, noncoding RNA molecules that exert pivotal roles in cancer development and progression by modulating various target genes. There is growing evidence that miR-138-5p is significantly involved in cervical cancer (CC). However, its precise molecular mechanism has yet to be fully understood. In the current investigation, a quantitative proteomics approach was utilized to detect possible miR-138-5p targets in HeLa cells systematically. In total, 364 proteins were downregulated, and 150 were upregulated after miR-138-5p overexpression. Bioinformatic analysis of these differentially expressed proteins (DEPs) revealed significant enrichment in several cancer-related pathways. Zinc finger protein 385A (ZNF385A) was determined as a novel direct target of miR-138-5p and discovered to facilitate the proliferation, migration, and cell cycle progression of HeLa cells. SFN and Fas cell surface death receptor(FAS) were then identified as functional downstream effectors of ZNF385A and miR-138-5p. Moreover, a tumor xenograft experiment was conducted to validate the association of miR-138-5p-ZNF385A-SFN/FAS axis with the development of CC in vivo. Our findings have collectively established a catalog of proteins mediated by miR-138-5p and have provided an in-depth comprehension of the molecular mechanisms responsible for the inhibitory effect of miR-138-5p on CC. The miR-138-5p-ZNF385A-SFN/FAS axis could also be beneficial to the identification of new therapeutic targets.

9.
J Am Heart Assoc ; : e034203, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023067

ABSTRACT

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is involved in many types of arterial diseases, including neointima hyperplasia, in which Ca2+ has been recognized as a key player. However, the physiological role of Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3Rs) from endoplasmic reticulum in regulating VSMC proliferation has not been well determined. METHODS AND RESULTS: Both in vitro cell culture models and in vivo mouse models were generated to investigate the role of IP3Rs in regulating VSMC proliferation. Expression of all 3 IP3R subtypes was increased in cultured VSMCs upon platelet-derived growth factor-BB and FBS stimulation as well as in the left carotid artery undergoing intimal thickening after vascular occlusion. Genetic ablation of all 3 IP3R subtypes abolished endoplasmic reticulum Ca2+ release in cultured VSMCs, significantly reduced cell proliferation induced by platelet-derived growth factor-BB and FBS stimulation, and also decreased cell migration of VSMCs. Furthermore, smooth muscle-specific deletion of all IP3R subtypes in adult mice dramatically attenuated neointima formation induced by left carotid artery ligation, accompanied by significant decreases in cell proliferation and matrix metalloproteinase-9 expression in injured vessels. Mechanistically, IP3R-mediated Ca2+ release may activate cAMP response element-binding protein, a key player in controlling VSMC proliferation, via Ca2+/calmodulin-dependent protein kinase II and Akt. Loss of IP3Rs suppressed cAMP response element-binding protein phosphorylation at Ser133 in both cultured VSMCs and injured vessels, whereas application of Ca2+ permeable ionophore, ionomycin, can reverse cAMP response element-binding protein phosphorylation in IP3R triple knockout VSMCs. CONCLUSIONS: Our results demonstrated an essential role of IP3R-mediated Ca2+ release from endoplasmic reticulum in regulating cAMP response element-binding protein activation, VSMC proliferation, and neointima formation in mouse arteries.

10.
Article in English | MEDLINE | ID: mdl-39023781

ABSTRACT

Objective: To examine if METTL5 promotes the proliferation of nonsmall cell lung cancer (NSCLC) cells by interacting with IGF2BP3. Methods: The expression patterns of METTL5 and IGF2BP3 in NSCLC tissues, their relationship with survival rate, and their correlation were analyzed using bioinformatics and clinical sample analyses. The effects of METTL5 overexpression and IGF2BP3 knockdown, as well as those of METTL5 knockdown and IGF2BP3 overexpression, on the proliferation of NSCLC cells were analyzed by transfecting appropriate constructs. The interaction between METTL5 and IGF2BP3 was verified using the co-immunoprecipitation (Co-IP) assay. The in vivo effects of METTL5 and IGF2BP3 on NSCLC growth were analyzed using the tumor-bearing nude mouse model. Results: METTL5 and IGF2BP3 expression levels were positively correlated and were associated with poor clinical prognosis. The METTL5 and IGF2BP3 expression levels were upregulated in the clinical NSCLC samples. IGF2BP3 expression did not affect METTL5 expression but was regulated by METTL5. IGF2BP3 overexpression mitigated the METTL5 knockdown-induced impaired cell proliferation. Meanwhile, IGF2BP3 knockdown suppressed METTL5-mediated NSCLC cell proliferation. The Co-IP assay results revealed the interaction between METTL5 and IGF2BP3 in NSCLC cells. IGF2BP3 knockdown suppressed tumor growth, whereas IGF2BP3 overexpression enhanced tumor volume and quality. Conclusion: METTL5 induces NSCLC cell proliferation by interacting with IGF2BP3. Thus, METTL5 is a potential biomarker and a therapeutic target for NSCLC.

11.
Front Oncol ; 14: 1389136, 2024.
Article in English | MEDLINE | ID: mdl-39015499

ABSTRACT

PRKCI is abnormally expressed in various cancers, but its role in osteosarcoma is unknown. This study aimed to explore the biological function of PRKCI in osteosarcoma and its potential molecular mechanism. PRKCI expression was evaluated in osteosarcoma cell lines using Western blot analysis and reverse transcription PCR. The CCK-8 assay, colony formation assay, flow cytometry, Transwell assay, and wound-healing assay were used to detect the proliferation, colony-forming capacity, cell cycle, migration, and invasion of osteosarcoma cells when PRKCI was overexpressed or knocked down. The interaction between PRKCI and SQSTM1 was explored using immunoprecipitation. Finally, the protein molecule expression of the Akt/mTOR signaling pathway in osteosarcoma was detected when PRKCI was knocked down. Our study found that PRKCI was overexpressed in osteosarcoma cell lines. The overexpression of PRKCI promoted the proliferation and colony-forming capacity of osteosarcoma cells, while silencing PRKCI inhibited the proliferation, colony-forming capacity, migration, and invasion of osteosarcoma cells and arrested the cell cycle at the G2/M phase. Both PRKCI and SQSTM1 were overexpressed in osteosarcoma. The expression of PRKCI was only related to histological type, while that of SQSTM1 was not related to clinical characteristics. The expression of PRKCI and SQSTM1 in osteosarcoma was higher than that in chondrosarcoma. Knockdown of PRKCI inhibited the proliferation of osteosarcoma cells by inactivating the Akt/mTOR signaling pathway, suggesting that PRKCI was a potential target for osteosarcoma therapy.

12.
Proc Natl Acad Sci U S A ; 121(30): e2309686121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39024115

ABSTRACT

Antibody responses require the proliferative expansion of B cells controlled by affinity-dependent signals. Yet, proliferative bursts are heterogeneous, varying between 0 and 8 divisions in response to the same stimulus. NFκB cRel is activated in response to immune stimulation in B cells and is genetically required for proliferation. Here, we asked whether proliferative heterogeneity is controlled by natural variations in cRel abundance. We developed a fluorescent reporter mTFP1-cRel for the direct observation of cRel in live proliferating B cells. We found that cRel is heterogeneously distributed among naïve B cells, which are enriched for high expressors in a heavy-tailed distribution. We found that high cRel expressors show faster activation of the proliferative program, but do not sustain it well, with population expansion decaying earlier. With a mathematical model of the molecular network, we showed that cRel heterogeneity arises from balancing positive feedback by autoregulation and negative feedback by its inhibitor IκBε, confirmed by mouse knockouts. Using live-cell fluorescence microscopy, we showed that increased cRel primes B cells for early proliferation via higher basal expression of the cell cycle driver cMyc. However, peak cMyc induction amplitude is constrained by incoherent feedforward regulation, decoding the fold change of cRel activity to terminate the proliferative burst. This results in a complex nonlinear, nonmonotonic relationship between cRel expression and the extent of proliferation. These findings emphasize the importance of direct observational studies to complement gene knockout results and to learn about quantitative relationships between biological processes and their key regulators in the context of natural variations.


Subject(s)
B-Lymphocytes , Cell Proliferation , NF-kappa B , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Mice , NF-kappa B/metabolism , Mice, Knockout , Mice, Inbred C57BL , Proto-Oncogene Proteins c-rel/metabolism , Proto-Oncogene Proteins c-rel/genetics
13.
Article in English | MEDLINE | ID: mdl-39021189

ABSTRACT

BACKGROUND: Triple-Negative Breast Cancer (TNBC) accounts for 15-20% of all breast cancers and approximately 50% of breast cancer deaths. Chemotherapy remains the mainstay of systemic treatment due to the lack of effective therapy targets. Thus, more studies are urgently needed to identify new therapeutic targets in TNBC patients. METHODS: GAPVD1 expression and prognosis value in breast cancer samples were explored in The Cancer Genome Atlas database (TCGA). GAPVD1 knockdown and overexpression TNBC cell lines were constructed. CCK-8 and colony formation assays were performed to detect cell viability. Flow cytometry analysis was performed to detect cell cycle variation. Western blotting was conducted to determine the levels of target genes. Finally, an enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. RESULTS: GAPVD1 is overexpressed in breast cancer tissues and predicts poor prognosis. In vitro experiments demonstrated that GAPVD1 is correlated with cell proliferation and the cell cycle of TNBC cells. Mechanistically, alteration in GAPVD1 expression was found to be associated with cell cycle-related proteins PCNA, Cyclin A, and the activity of the ERK/MAPK signaling pathway. Consistent with these findings, enrichment analysis of GAPVD1-involving partners and signaling pathways revealed that the cellular biosynthetic process, macromolecule biosynthetic process, and cell cycle signaling are related to GAPVD1. In vivo experiment demonstrated that GAPVD1 inhibition impedes tumor growth and expression of cell cyclerelated proteins. CONCLUSION: Taken together, our results indicate that GAPVD1 may participate in TNBC cell growth by regulating the cell cycle and ERK/MAPK signaling pathway.

14.
Front Bioeng Biotechnol ; 12: 1398052, 2024.
Article in English | MEDLINE | ID: mdl-38952668

ABSTRACT

Electrical stimulation has emerged as a cornerstone technique in the rapidly evolving field of biomedical engineering, particularly within the realms of tissue engineering and regenerative medicine. It facilitates cell growth, proliferation, and differentiation, thereby advancing the development of accurate tissue models and enhancing drug-testing methodologies. Conductive hydrogels, which enable the conduction of microcurrents in 3D in vitro cultures, are central to this advancement. The integration of high-electroconductive nanomaterials, such as graphene oxide (GO), into hydrogels has revolutionized their mechanical and conductivity properties. Here, we introduce a novel electrostimulation assay utilizing a hybrid hydrogel composed of methacryloyl-modified small intestine submucosa (SIS) dECM (SISMA), chitosan methacrylate (ChiMA), and GO-polyethylene glycol (GO-PEG) in a 3D in vitro culture within a hypoxic environment of umbilical cord blood cells (UCBCs). Results not only demonstrate significant cell proliferation within 3D constructs exposed to microcurrents and early growth factors but also highlight the hybrid hydrogel's physiochemical prowess through comprehensive rheological, morphological, and conductivity analyses. Further experiments will focus on identifying the regulatory pathways of cells subjected to electrical stimulation.

15.
J Neurooncol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960965

ABSTRACT

BACKGROUND: Quantifying tumor growth and treatment response noninvasively poses a challenge to all experimental tumor models. The aim of our study was, to assess the value of quantitative and visual examination and radiomic feature analysis of high-resolution MR images of heterotopic glioblastoma xenografts in mice to determine tumor cell proliferation (TCP). METHODS: Human glioblastoma cells were injected subcutaneously into both flanks of immunodeficient mice and followed up on a 3 T MR scanner. Volumes and signal intensities were calculated. Visual assessment of the internal tumor structure was based on a scoring system. Radiomic feature analysis was performed using MaZda software. The results were correlated with histopathology and immunochemistry. RESULTS: 21 tumors in 14 animals were analyzed. The volumes of xenografts with high TCP (H-TCP) increased, whereas those with low TCP (L-TCP) or no TCP (N-TCP) continued to decrease over time (p < 0.05). A low intensity rim (rim sign) on unenhanced T1-weighted images provided the highest diagnostic accuracy at visual analysis for assessing H-TCP (p < 0.05). Applying radiomic feature analysis, wavelet transform parameters were best for distinguishing between H-TCP and L-TCP / N-TCP (p < 0.05). CONCLUSION: Visual and radiomic feature analysis of the internal structure of heterotopically implanted glioblastomas provide reproducible and quantifiable results to predict the success of transplantation.

16.
J Cancer ; 15(13): 4417-4429, 2024.
Article in English | MEDLINE | ID: mdl-38947391

ABSTRACT

Background: Gastric cancer (GC) is one of the most common malignancies worldwide, with high incidence and mortality rate. Tripartite motif-containing 28 (TRIM28) is an important molecule that affects the occurrence and development of tumors, but its function in GC has not been elucidated clearly. The purpose of this study is to explore the molecular mechanism by which TRIM28 affect the GC. Methods: TRIM28 expression was tested in RNA-seq data from TCGA database, tumor tissue samples from patients and GC cell lines. Genes were silenced or overexpressed by siRNA, lentivirus-mediated shRNA, or plasmids. Cell Counting Kit-8 (CCK-8) and colony formation assays were performed to explore the proliferation of GC cells after TRIM28 knockdown. RNA-seq and TCGA database were used to identify target genes. Luciferase report assay was employed to detect the possible mechanism between TRIM28 and Indoleamine 2,3-dioxygenase (IDO1). Tryptophan concentration in cell supernatant was measured using a fluorometric assay kit. MGC-803 and 746T cells were injected into mice to establish xenograft animal models. Results: The expression of TRIM28 was positively correlated with tumor size and poorer prognosis. Upregulation of TRIM28 was observed in GC tissues and cells. In vitro, we proved that knockdown of TRIM28 significantly inhibited the proliferation of GC cells. Then TRIM28 was found to be positively correlated with the expression of IDO1 in GC cells. In accordance with this, tryptophan levels in cell supernatants were increased in TRIM28 knockdown GC cells and overexpression of IDO1 could reverse this phenotype. Serum response factor (SRF), a reported regulator of IDO1, was also regulated by TRIM28 in GC cells. And decreased expression of IDO1 induced by TRIM28 knockdown could be partly reversed through overexpression of serum response factor (SRF) in GC cells. Functional research demonstrated that the expression of IDO1 was increased in GC and IDO1 knockdown could also inhibited the proliferation of GC cells. Furthermore, overexpression of IDO1 could partly reverse proliferation inhibited by TRIM28 knockdown in GC cells. In vivo, knockdown of TRIM28 significantly inhibited the tumor growth and overexpression of IDO1 and SRF both could reverse proliferation inhibited by TRIM28 knockdown. Conclusions: TRIM28 is crucial in the development of GC, and may regulate IDO1 through SRF. TRIM28 promote GC cell proliferation through SRF/IDO1 axis.

17.
Oncol Res ; 32(7): 1209-1219, 2024.
Article in English | MEDLINE | ID: mdl-38948021

ABSTRACT

Objective: This study aimed to investigate the role of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in triple-negative breast cancer (TNBC). Methods: ROR2 expression in primary TNBC and metastatic TNBC tissues was analyzed by immunohistochemical staining and PCR. ROR2 expression in TNBC cell lines was detected by PCR and Western blot analysis. The migration, invasion and chemosensitivity of TNBC cells with overexpression or knockdown of ROR2 were examined. Results: ROR2 expression was high in metastatic TNBC tissues. ROR2 knockdown suppressed the migration, invasion and chemoresistance of TNBC cells. ROR2 overexpression in MDA-MB-435 cells promoted the migration, invasion, and chemoresistance. Moreover, ROR2 knockdown in HC1599 and MDA-MB-435 adriamycin-resistant cells enhanced chemosensitivity to adriamycin. ROR2 could activate PI3K/AKT/mTOR signaling in TNBC cells. Conclusion: ROR2 is upregulated and promotes metastatic phenotypes of TNBC by activating PI3K/AKT/mTOR signaling.


Subject(s)
Cell Movement , Drug Resistance, Neoplasm , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptor Tyrosine Kinase-like Orphan Receptors , Signal Transduction , TOR Serine-Threonine Kinases , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Drug Resistance, Neoplasm/genetics , Female , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Doxorubicin/pharmacology
18.
Regen Ther ; 26: 203-212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948130

ABSTRACT

Introduction: With the increasing emphasis on the use of nonanimal ingredients in clinical care, studies have proposed the use of TrypLE™ as an alternative to trypsin. However, previous research has reported insufficient cell yield and viability when using TrypLE to isolate skin cells compared to the dispase/trypsin-EDTA method. This study aimed to propose an improved method for increasing the yield and viability of cells isolated by TrypLE and to evaluate isolated keratinocytes and melanocytes. Methods: Foreskin tissues were isolated to keratinocytes and melanocytes using the trypsin-EDTA protocol and our modified TrypLE protocol. The yield and viability of freshly isolated cells were compared, the epidermal residue after cell suspension filtration was analyzed histologically, and the expression of cytokeratin 14 (CK14) and Melan-A was detected by flow cytometry. After cultivation, keratinocytes and melanocytes were further examined for marker expression and proliferation. A coculture model of melanocytes and HaCaT cells was used to evaluate melanin transfer. Results: The yield, viability of total cells and expression of the keratinocyte marker CK14 were similar for freshly isolated cells from both protocols. No differences were observed in the histologic analysis of epidermal residues. Moreover, no differences in keratinocyte marker expression or melanocyte melanin transfer function were observed after culture. However, melanocytes generated using the TrypLE protocol exhibited increased Melan-A expression and proliferation in culture. Conclusion: Our TrypLE protocol not only solved the problems of insufficient cell yield and viability in previous studies but also preserved normal cell morphology and function, which enables the clinical treatment of depigmentation diseases.

19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 731-738, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948282

ABSTRACT

Objective: To explore the effects of microRNA-342-3p/Mg2+Mn2+-dependent protein phosphatase 1E (miR-342-3p/PPM1E) on the proliferation, migration, and invasion of clear cell renal cell carcinoma (ccRCC) cells. Methods: The gene chips GSE12105, GSE23085, GSE66271, and GSE66270 were searched, and the relationship between miR-342-3p, PPM1E, and the clinical malignant phenotypes of ccRCC was analyzed. ACHN and 769-P cells were transfected with miR-342-3p inhibitor. The effects of miR-342-3p on cell proliferation, migration, and invasion were examined. ACHN cell line with stable and high expression of miR-342-3p was constructed, and the tumorigenicity of the cell line in BALB/c nude mice was observed. The targeted relationship between miR-342-3p and PPM1E was verified by dual-luciferase reporter gene assay. The cells were transfected with miR-342-3p mimic and pcDNA-PPM1E plasmids to observe whether PPM1E could reverse the effects of miR-342-3p overexpression on the proliferation, migration, and invasion of the cells. Results: The expression of miR-342-3p was upregulated in ccRCC, and there were significant differences among patients with tumors of different T stages and G stages and those with different prognoses (P<0.05). The overall survival in the miR-342-3p high-expression group was significantly shorter than that in the low-expression group (P<0.05). Compared with those in the miR-NC group, the miR-342-3p level was significantly downregulated in the inhibitor group, and the cell proliferation ability and the numbers of migrating and invading cells were also significantly decreased (P<0.05). Compared with the miR-NC group, miR-342-3p group had significantly increased volume and mass of tumor tissues and miR-342-3p level, but significantly decreased level of PPM1E mRNA (P<0.05). The expression of PPM1E was downregulated in ccRCC, and there were significant differences among patients with tumors of different M stages, N stages, and G stages, and different recurrence statuses (P<0.05). The miR-342-3p could inhibit the expression of PPM1E in a targeted way. Compared with the miR-NC group, the miR-342-3p group had significantly increased cell proliferation ability and increased numbers of migrating and invading cells (P<0.05). However, PPM1E could reverse the promotion effect of miR-342-3p mimic on ccRCC cells (P<0.05). Conclusion: The miR-342-3p can inhibit PPM1E expression in a targeted way, and thus promotes the proliferation, migration, and invasion of ccRCC cells.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Kidney Neoplasms , Mice, Inbred BALB C , Mice, Nude , MicroRNAs , Neoplasm Invasiveness , Protein Phosphatase 2C , MicroRNAs/genetics , MicroRNAs/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Cell Proliferation/genetics , Cell Movement/genetics , Humans , Animals , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mice , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , Cell Line, Tumor
20.
World J Hepatol ; 16(6): 932-950, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38948436

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a primary contributor to cancer-related mortality on a global scale. However, the underlying molecular mechanisms are still poorly understood. Long noncoding RNAs are emerging markers for HCC diagnosis, prognosis, and therapeutic target. No study of LINC01767 in HCC was published. AIM: To conduct a multi-omics analysis to explore the roles of LINC01767 in HCC for the first time. METHODS: DESeq2 Package was used to analyze different gene expressions. Receiver operating characteristic curves assessed the diagnostic performance. Kaplan-Meier univariate and Cox multivariate analyses were used to perform survival analysis. The least absolute shrinkage and selection operator (LASSO)-Cox was used to identify the prediction model. Subsequent to the validation of LINC01767 expression in HCC fresh frozen tissues through quantitative real time polymerase chain reaction, next generation sequencing was performed following LINC01767 over expression (GSE243371), and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes/Gene Set Enrichment Analysis/ingenuity pathway analysis was carried out. In vitro experiment in Huh7 cell was carried out. RESULTS: LINC01767 was down-regulated in HCC with a log fold change = 1.575 and was positively correlated with the cancer stemness. LINC01767 was a good diagnostic marker with area under the curve (AUC) [0.801, 95% confidence interval (CI): 0.751-0.852, P = 0.0106] and an independent predictor for overall survival (OS) with hazard ratio = 1.899 (95%CI: 1.01-3.58, P = 0.048). LINC01767 nomogram model showed a satisfied performance. The top-ranked regulatory network analysis of LINC01767 showed the regulation of genes participating various pathways. LASSO regression identified the 9-genes model showing a more satisfied performance than 5-genes model to predict the OS with AUC > 0.75. LINC01767 was down-expressed obviously in tumor than para-tumor tissues in our cohort as well as in cancer cell line; the over expression of LINC01767 inhibit cell proliferation and clone formation of Huh7 in vitro. CONCLUSION: LINC01767 was an important tumor suppressor gene in HCC with good diagnostic and prognostic performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...