Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Type of study
Publication year range
1.
Int J Biol Macromol ; 274(Pt 2): 133343, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925191

ABSTRACT

Endophytic fungi can promote plant growth and development, particularly of Orchidaceae species. Previously, we found that the endophytic fungus Phyllosticta fallopiae DN14, collected from Dendrobium nobile growing on rocks in a wild habitat, significantly promoted growth of its host plant D. nobile, an important herb in Chinese traditional medicine that contains the bioactive component dendrobine. Phyllosticta was positively correlated with FW and dendrobine content of D. nobile and with Si content of the epiphytic matrix. Si is also highly beneficial for the growth and productivity of many plants. Here, we co-cultured D. nobile with P. fallopiae DN14 in half-strength Murashige and Skoog medium with and without various concentrations of Si to investigate the effects of DN14 and Si on plant fresh weight and dendrobine content. We also explored the effects of DN14 infection and colonization on host plant growth, Si accumulation and transport, and expression of key genes, as well as the interaction between DN14 and Si. The combination of DN14 and Si promoted the lignification of D. nobile roots, stems, and leaves and markedly increased the thickening of xylem cell walls. Co-culture with DN14 increased transport of Si from roots to stems and from stems to leaves. Transcriptome sequencing and qRT-PCR analyses showed that enhancement of D. nobile growth by DN14 and Si may involve upregulation of plant hormone-related genes (AUX/IAA and MYC) and lignin biosynthesis genes (HCT, PAL1, and PAL2). Insoluble Si promoted the growth of DN14, perhaps through downregulation of genes (e.g., FBP, MPI, RPIAD) related to carbohydrate metabolism, and DN14 in turn promoted the transformation of insoluble Si into soluble Si for plant uptake. These findings demonstrate that endophytic fungi and Si can improve the growth of D. nobile and therefore show promise as organic amendments for commercial cultivation.

2.
J Hazard Mater ; 473: 134656, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38776817

ABSTRACT

Stabilized heavy metals-containing phases and low chlorine utilization limit heavy metals chlorination reactions. The traditional method of adding chlorinating agents can promote heavy metals chlorination volatilization, but the limiting factor has not been resolved and more chlorides are emitted. Herein, a new reaction pathway to promote heavy metals chlorination volatilization through the transformation of stabilized heavy metals-containing phases and chlorine species by the addition of biomass at the sintering is first reported. The Cu volatilization efficiency increased sharply from 50.50% to 93.21% compared with the control, Zn, Pb, and Cd were nearly completely volatilized. Results show that the biomass carbonization process was more important for Cu chlorination volatilization. Stabilized heavy metals-containing phases were converted from Cu2S to CuO and Cu2O with the biochar and oxygen, increasing the activity of Cu. The chlorine species KCl reacted with CH3-containing groups to form CH3Cl, which reacted with CuO with a lower Delta G than HCl and Cl2, increasing the tendency for the conversion of CuO to CuCl. Cu chlorination volatilization process, following shrinking core kinetic model and controlled by chemical reactions. The outcomes fundamentally addresses the limiting step for heavy metals chlorination volatilization, supporting the incineration fly ash harmless treatment.

3.
Sci Total Environ ; 905: 167146, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37726079

ABSTRACT

Carbon nanomaterials (CNMs) possess the properties including large specific surface area, high porosity, and stable chemical structures, presenting significant application advantages in wastewater treatment. Indeed, CNMs are considered to be added to anammox systems to strengthen anammox function, especially to resolve the challenge of anammox technology, i.e., the slow growth rate of anammox bacteria, as well as its high environmental sensitivity. This paper systematically reviews the promotion effects and mechanisms of CNMs on the nitrogen removal performance of anammox system. Among the zero-, one-, and two-dimensional CNMs, two-dimensional CNMs have best promoting effect on the nitrogen removal performance of anammox system due to its excellent conductivity and abundant functional groups. Then, the promotion effects of CNMs on anammox process are summarized from the perspective of anammox activity and bacteria abundance. Furthermore, CNMs not only enhance the anammox process, but also stimulate the coupling of denitrification pathways with anammox, as well as the improvement of system operational stability (alleviating the inhibitions of low temperature and pH fluctuation), thus contributing to the promoted nitrogen removal performance. Essentially, CNMs are capable of facilitating microbial immobilization and electron transfer, which favor to improve the efficiency and stability of anammox process. Finally, this review highlights the gap in knowledge and future work, aiming to provide a deeper understanding of how CNMs can strengthen the anammox system and provide a novel perspective for the engineering of the anammox process.

4.
Small ; 19(35): e2301670, 2023 08.
Article in English | MEDLINE | ID: mdl-37098629

ABSTRACT

As an alternative to traditional oral and intravenous injections with limited efficacy, transdermal drug delivery (TDD) has shown great promise in tumor treatment. Over the past decade, natural polymers have been designed into various nanocarriers due to their excellent biocompatibility, biodegradability, and easy availability, providing more options for TDD. In addition, surface functionalization modification of the rich functional groups of natural polymers, which in turn are developed into targeted and stimulus-responsive functional materials, allows precise delivery of drugs to tumor sites and release of drugs in response to specific stimuli. It not only improves the treatment efficiency of tumor but also reduces the toxic and side effects to normal tissues. Therefore, the development of natural polymer-based TDD (NPTDD) systems has great potential in tumor therapy. In this review, the mechanism of NPTDD systems such as penetration enhancers, nanoparticles, microneedles, hydrogels and nanofibers prepared from hyaluronic acid, chitosan, sodium alginate, cellulose, heparin and protein, and their applications in tumor therapy are overviewed. This review also outlines the future prospects and current challenges of NPTDD systems for local treatment tumors.


Subject(s)
Drug Delivery Systems , Polymers , Administration, Cutaneous , Drug Carriers , Alginates
5.
ACS Nano ; 17(4): 3574-3586, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36602915

ABSTRACT

With the extensive production and application of black phosphorus (BP) nanosheets, release to the environment is inevitable, which raises concerns about the fate and effects of this two-dimensional (2D) material on sensitive receptors such as environmental microbes. Although the bacterial toxicity of BP nanosheets has been demonstrated, whether the biological response differs in pathogenic and nonpathogenic strains of a microorganism is unknown. Here, enteropathogenic Escherichia coli (EPEC) and nonpathogenic Escherichia coli DH5α (E. coli DH5α), Escherichia coli k12 (E. coli k12), and Bacillus tropicus (B. tropicus) are used to comparatively study the microbial toxicity of BP nanosheets. Upon exposure to BP nanosheets across a range of doses from 10 to 100 µg mL-1 for 12 h, EPEC experienced enhanced growth and E. coli DH5α and E. coli k12 were not affected, whereas B. tropicus exhibited clear toxicity. By combining transcriptome sequencing, proteome analysis, and other sensitive biological techniques, the mechanism of BP-induced growth promotion for EPEC was uncovered. Briefly, BP nanosheets activate the antioxidation system to resist oxidative stress, promote protein synthesis and secretion to attenuate membrane damage, enhance the energy supply, and activate growth-related pathways. None of these impacts were evident with nonpathogenic strains. By describing the mechanism of strain-dependent microbial effects, this study not only highlights the potential risks of BP nanosheets to the environment and to human health but also calls attention to the importance of model strain selection when evaluating the hazard and toxicity of emerging nanomaterials.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Proteins , Humans , Carrier Proteins , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Profiling , Phosphorus , Nanostructures
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-991450

ABSTRACT

Under the influence of the coronavirus disease 2019 epidemic, the disadvantages of traditional blended teaching, which has been developed for 20 years, are gradually being revealed. With the help of modern network technology and under the guidance of minimalism, the new blended teaching model adheres to the principle of systematic, holistic, ecological, and collaborative reform and thus can not only efficiently realize the teaching goal of "improvement in self-learning ability and high-order thinking ability", but also achieve innovation and inheritance of "excellent teaching concepts and methods". On this basis, this study forms the "151 framework and BASIC mechanism", which will promote the reform and upgrading of blended teaching from point to surface and then to a three-dimensional structure and ensure that blended teaching has stronger vitality in the new era.

7.
ACS Appl Mater Interfaces ; 14(40): 45373-45381, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36168214

ABSTRACT

The pursuit of strong endurance and nonflammable performances has promoted demand for solid-state batteries (SSBs). Meanwhile, the reduction of electrolytes' thickness is the key to improving battery performance. However, a large-scale feasible method to fabricate an ultrathin solid electrolyte exhibiting high ionic conductivities is still a challenge. Here, we show a large-scale feasible method to prepare a succinonitrile/polyacrylonitrile(SN/PAN)-coated Li6.4La3Zr1.4Ta0.6O12 (LLZTO) with flexibility and high ionic conductivity by tape-casting. The unique dual polymer-coated garnet electrolytes exhibit structural stability through mutual promotion, constructing soft interparticle contact that provides fast lithium-ion transfer channels. In essence, the mutual promotion mechanism is that SN can improve the Li+ conductivity of PAN, while PAN can protect SN from aggregation. Therefore, the flexible SN/PAN-coated LLZTO provides high structural stability and satisfactory electrochemical performance, contributing to a high ionic conductivity of 4 × 10-4 S cm-1 at room temperature (RT). In this way, a long lifespan of over 500 cycles and a high discharge capacity (163 mAh g-1) are achieved based on LiFePO4 (LFP) cathodes at 0.2 C.

8.
J Hazard Mater ; 425: 128037, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34906873

ABSTRACT

High contents of heavy metals and Cl are major challenges for incineration residue disposal. Classification by the Chinese government and the coronavirus disease 2019 pandemic have changed the characteristics of incineration residues, thereby increasing the difficulty of disposal. In this study, medical waste incineration fly ash (MWI FA) was proposed as an additive to promote chlorination volatilization of heavy metals from municipal solid waste incineration fly ash (MSWI FA) and medical waste incineration slag (MWI S). When the mixing ratio of MWI FA to MSWI FA was 1:3, the chlorination volatilization efficiencies of Cu, Zn, Pb, and Cd at 1000 °C for 60 min were 50.2%, 99.4%, 99.7%, and 97.9%, respectively. When MWI FA was mixed with MWI S at a ratio of 1:1, the chlorination volatilization efficiencies of Cu, Zn, Pb, and Cd at 1200 °C for 40 min were 88.9%, 99.7%, 97.3%, and 100%, respectively. Adding MWI FA can replenish Cl in MSWI FA and MWI S while increasing the surface area and forming pore structures by sublimation of NaCl and decomposition of CaSO4, or can reduce the melting point and viscosity by Na2O destroying the glass matrix. Therefore, MWI FA can be co-disposed with MSWI FA and MWI S respectively to enhance the chlorination volatilization of heavy metals.


Subject(s)
COVID-19 , Medical Waste , Metals, Heavy , Refuse Disposal , Carbon , Coal Ash , Halogenation , Humans , Incineration , Metals, Heavy/analysis , Particulate Matter , SARS-CoV-2 , Solid Waste , Volatilization
9.
Mol Plant Microbe Interact ; 34(6): 631-644, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33496609

ABSTRACT

Trichoderma is a genus of filamentous fungi that play notable roles in stimulating plant growth after colonizing the root surface. However, the key proteins and molecular mechanisms governing this stimulation have not been completely elucidated. In this study, Trichoderma guizhouense NJAU 4742 was investigated in a hydroponic culture system after interacting with cucumber roots. The total proteins of the fungus were characterized, and the key metabolic pathways along with related genes were analyzed through proteomic and transcriptomic analyses. The roles played by the regulated proteins during the interaction between plants and NJAU 4742 were further examined. The intracellular or extracellular proteins from NJAU 4742 and extracellular proteins from cucumber were quantified, and the high-abundance proteins were determined which were primarily involved in the shikimate pathway (tryptophan, tyrosine, and phenylalanine metabolism, auxin biosynthesis, and secondary metabolite synthesis). Moreover, 15N-KNO3 labeling analysis indicated that NJAU 4742 had a strong ability to convert nitrogenous amino acids, nitrate, nitrile, and amines into ammonia. The auxin synthesis and ammonification metabolism pathways of NJAU 4742 significantly contributed to plant growth. The results of this study demonstrated the crucial metabolic pathways involved in the interactions between Trichoderma spp. and plants.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Cucumis sativus , Trichoderma , Cucumis sativus/genetics , Hypocreales , Plant Roots , Proteomics
10.
Water Res ; 189: 116612, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33189971

ABSTRACT

The slow electron transfer rate is the bottleneck to the biological wastewater treatment process, and the nanoparticles (NPs) has been verified as a feasible strategy to improve the biological degradation efficiency by accelerating the electron transfer. Here, we employed the Gram-positive Bacillus megaterium Y-4, capable of synthetizing Pd(0), to investigate the intra/extracellular electron transfer (IET/EET) mechanisms mediated by NPs in aerobic denitrification for the first time. Kinetic and thermodynamic results showed that the bio-Pd(0) could significantly promote the removal of both nitrate and nitrite by improving affinity and decreasing activation energy. The enzymic activity and the respiration chain inhibition experiment indicated that the bio-Pd(0) could facilitate the nitrate biotic reduction by improving the Fe-S center activity and serving as parallel H carriers to replace coenzyme Q to selectively increase the electron flux toward nitrate in IET, while promoting the nitrite reduction by abiotic catalysis. Most importantly, the detection of DPV peak at -226~-287 mV proved that the one-electron EET via multiheme cytochrome-bound flavins also occurred in Gram-positive bacteria and enhanced in Pd-loaded cells. In addition, the remarkable increase of the formal charge in EPS indicated that the bio-Pd(0) could act as an electron shuttle to increase the redox site in EPS, eventually accelerating the electron hopping in long-distance electron transfer. Overall, this study expanded our understanding of the roles of bio-Pd(0) on the aerobic denitrification process and provided an insight into the IET/EET of Gram-positive strains.


Subject(s)
Metal Nanoparticles , Palladium , Denitrification , Electron Transport , Electrons
11.
J Biosci Bioeng ; 130(3): 306-310, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32386822

ABSTRACT

Photosynthetic bacteria (PSB) wastewater treatment is a novel technology for wastewater purification and resources recovery but is restricted by low efficiency. This paper applied zero-valent iron nanoparticles (Fe0 NPs) to enhance its performance. Results showed that 20 mg/L Fe0 NPs under light-anaerobic condition significantly increased the PSB biomass production and wastewater chemical oxygen demand removal by 122% and 164.3%, and shortened the time required for wastewater purification by 33%; these effects were far more better than the addition of Fe2+. The mechanism was because the addition of Fe0 NPs promoted the intracellular ATP content and pigments (carotenoid and bacteriochlorophyll) contents, and up-regulated dehydrogenase and succinate dehydrogenase activity; the increase rate reached 38.7%, 39.6%, 22.0%, 23.9% and 218.2%, respectively.


Subject(s)
Bacteria/metabolism , Biomass , Iron/pharmacology , Metal Nanoparticles/chemistry , Photosynthesis/drug effects , Wastewater/microbiology , Water Purification/methods , Bacteria/drug effects , Bacteriochlorophylls/metabolism , Biological Oxygen Demand Analysis , Carotenoids/metabolism , Iron/chemistry , Wastewater/chemistry
12.
Environ Sci Pollut Res Int ; 27(12): 13617-13636, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32030589

ABSTRACT

CO pretreatment was found to effectively improve the SCR performance of CeO2, with over 90% at about 300 °C. The larger specific area and the decrease of CeO2 crystallization indicated the modification of the surface structure after CO pretreatment. Abundant Ce3+ species and active oxygen, better reducibility, and the higher surface adsorption capacity were mainly responsible for its enhanced SCR performance. DRIFT analysis revealed the presumed coexistence of two reaction routes that the L-H mechanism was related to the reaction temperature, while the reaction rate of E-R route was almost directly proportional to the NO concentration at a certain temperature, based on the kinetic calculation. In addition, the CO-pretreated CeO2 also exhibited a better poisoning tolerance for SO2 and H2O and excellent thermal stability and circularity. Graphical abstract The process of NH3-SCR reaction over CeO2-CO catalyst.


Subject(s)
Ammonia , Cerium , Adsorption , Catalysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...