ABSTRACT
Wound healing is a complex and coordinated process involving interactions between cells and various messenger systems. This study conducted in vivo tests to determine the healing effect of propolis (PR)-based cream derived from the Amazon stingless bee, Scaptotrigona aff. postica, reared in açaí (Euterpe oleracea) monoculture, on induced wounds in rats. Data were obtained by monitoring injuries on 14 Wistar rats, divided into three groups (G1, G2 and G3), each receiving specific treatments: propolis-based cream (PR), collagenase (PC) and neutral cream (NC). Over the seven days of treatment, the lesions were measured using photographic records and ImageJ software to evaluate the healing effectiveness of the test cream. ImageJ software version 1.53g was used to compare the wound diameters for each treatment. After seven days, histopathological analyses of the induced lesions were performed. It was observed that collagenase (PC) and the test cream (PR) did not differ significantly in terms of wound diameter reduction. However, the propolis-based cream directly influenced the lesion maturation process and exhibited a milder inflammatory response compared to the positive control (PC). This effect is possibly associated with antimicrobial and anti-inflammatory compounds identified by GC/MS analysis in the propolis. Notably, this is the first report describing propolis of Scaptotrigona aff. postica obtained from açaí monocultures with strong healing potential, highlighting the identification of a high concentration of phenolic compounds that aid directly in wound repair.
Subject(s)
Euterpe , Propolis , Rats, Wistar , Wound Healing , Animals , Propolis/pharmacology , Propolis/chemistry , Wound Healing/drug effects , Rats , Bees , Euterpe/chemistry , Male , Collagenases/metabolismABSTRACT
Edwardsiella ictaluri and Flavobacterium covae are two bacteria species that cause diseases in farm-raised channel catfish (Ictalurus punctatus) that cause heavy economic damage to the aquaculture industry, particularly to the channel catfish farming. In search for environmentally benign antibacterial compounds active against E. ictaluri and F. covae, we investigated the constituents isolated from Brazilian red, brown and green propolis. We have also synthetically modified active constituents to see if lipophilicity plays a role in enhancing antibacterial activities. Vestitol, neovestitol and methylvestitol were found to be the active constituents with minimum inhibitory concentration (MIC) relative to drug control florfenicol (RDCF) values (MIC-RDCF) of 7.6, 7.6 and 7.9 mg/L, respectively, against F. covae. The activity against E. ictaluri was not significant.
ABSTRACT
BACKGROUND: Propolis types differ regarding their chemical composition. OBJECTIVES: To compare patch test results based on Brazilian (Green) propolis with data based on Chinese (poplar-type) propolis, and to evaluate the specifications of raw materials used for the PT preparations. METHODS: In the Information Network of Departments of Dermatology (IVDK), 1290 consecutive patients were patch tested with Brazilian (Green) propolis (NH400, SmartPractice Europe). Patch test reactivity was compared with results obtained with Chinese (poplar-type) propolis (NA71, SmartPractice Europe) by calculating frequencies and corresponding 95% confidence intervals. Data on the specifications of raw materials used for NH400 and NA71 were obtained from the manufacturer. RESULTS: Positive reactions to NH400 were found in 303 (23.5%) patients with unclear clinical relevance in most cases. Patients reacting to NH400 were less often sensitised to fragrances and colophony, but more often to nickel sulphate and cobalt chloride than patients reacting to NA71. The NH400 batch used contained high levels of aerobic bacteria, and was not purified by ethanolic extraction. CONCLUSIONS: Pattern of concomitant reactivity along with raw material properties suggests that the high frequency of positive reactions to NH400 may primarily result from bacterial contamination or impurities in the PT preparation rather than from propolis constituents.
ABSTRACT
Native stingless bees (Meliponini) from Brazil make (geo)propolis which is largely used in folk medicine, specially by indigenous and quilombos communities and beekeepers´ families but are progressively being recognized for their pharmacological activities. In this study, the ethanolic extracts of (geo)propolis (EEGs) from Melipona marginata, M. quadrifasciata, M. scutellaris, and Tetragonisca angustula were analysed by Flow injection analysis (FIA) and Ultra-high performance liquid chromatography (UHPLC) in a high resolution Orbitrap mass analyser (HRMS) to investigate and compare their chemical profile. Untargeted metabolomic approach based on UHPLC-HRMS experiments, and bioinformatic tools, allowed to annotate 59 compounds from diverse classes such as: flavonoids, phenolic compounds, sugars, terpenoids, and lipids. In addition, using multivariate tools and Flow injection- high resolution mass spectrometry (FIA-HRMS), it was possible to classify samples and identify marker ions related to the bee species or genus and to the geographical origin as a proof of concept.
ABSTRACT
This study aimed to evaluate the effects of sodium hypochlorite (NaOCl), chlorhexidine (CHX), and the glycolic extract of propolis (GEP) as endodontic irrigants and of calcium hydroxide [Ca(OH)2], CHX, or Ca(OH)2 + CHX as intracanal medications on the capacity of the lipoteichoic acid (LTA) of Enterococcus faecalis in macrophages' proinflammatory cytokines production. Freshly extracted 108 human single-rooted teeth were used in this study. The LTA of E. faecalis was standardized in double-distilled pyrogen-free water (250 µg/mL) and inoculated into the specimens subdivided into nine subgroups (n = 12). Cultures of murine macrophages (RAW 264.7) were treated with 30 µL of each sample collected from root canals and incubated (37 °C, 5% CO2) for 24 h. Lastly, anti-TNF-α, anti-IL-6, anti-IP-10, anti-MIP-1α, anti-G-CSF, and anti-IL-1ß DuoSet kits were used to perform an ELISA assay. Data were analyzed using one-way ANOVA and Tukey test (p ≥ 0.05). It was found that 1% NaOCl was the most effective irrigant in reducing the capacity of LTA in cytokines production, followed by 12% GEP and 2% CHX, respectively. Ca(OH)2 + CHX presented the best results when associated with NaOCl or GEP. Thus, NaOCl or GEP associated with Ca(OH)2 + CHX were effective in reducing the capacity of LTA in different macrophages pro-inflammatory cytokines production.
ABSTRACT
The present work describes the extraction of a polyprenylated benzophenone-rich extract from Brazilian red propolis (ERPB), the development and validation of an RP-HPLC-UV method to characterize it, and its evaluation against breast cancer cell lines MCF-7 and MDA-MB-231, as well as the normal counterpart MCF-10A. A mixture of gutifferone E and xanthochymol (1+2), and isolated oblongifolin B (3) were used as chemical standards for ERPB and were also evaluated. The concentrations of 1+2 and 3 corresponded to 16.68% and 42.25% of the total content of the extract, respectively, and the validation parameters evaluated were satisfactorily met. The cytotoxic effects of ERPB were assessed, and the obtained IC50 values were 19.58 µg/mL (MCF-10A), 11.56 µg/mL (MCF-7), and 5.22 µg/mL (MDA-MB-231). In conclusion, ERPB exhibits promising cytotoxic effects on the tested breast cell lines. However, further investigation to elucidate its potential therapeutic applications and safety profile should be conducted.
ABSTRACT
Baccharis dracunculifolia (DC) is an important botanical source of Brazilian green propolis and have many compounds with potential antihypertensive activity. However, little is known about the specific antihypertensive properties of DC, or the mechanisms involved. Here we aimed to chemically characterise an ethanolic DC extract (eDC), test its antihypertensive properties and the involvement of neurogenic mechanisms using an animal model of salt-dependent hypertension. The chemical analysis of the eDC revealed the presence of many antihypertensive compounds. Administering the eDC in a nanoemulsion formulation (25 to 50 mg/kg) effectively normalised blood pressure in hypertensive rats. The result also suggested that neurogenic mechanisms are involved in the antihypertensive action of eDC. The treatment with p-coumaric acid (0.32 to 3 mg/kg), a polyphenol abundant in the eDC, produced no significant antihypertensive effect. The findings indicate that the eDC has antihypertensive properties, and that these effects may be mediated through neurogenic pressor mechanisms.
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Propolis is a resinous substance collected by honeybees from various plant sources and has been used in traditional folk medicine for centuries. Propolis has various biological properties, including antibacterial, antiviral, anti-inflammatory, and anti-tumor properties. The use of propolis in oral health care is attributable to its antimicrobial and anti-inflammatory effects. However, limited evidence exists on the in vivo efficacy of propolis against periodontal pathogens. AIM OF THE STUDY: We aimed to evaluate the efficacy of Brazilian green propolis (BGP)-containing toothpaste for improving the oral environment and define its antibacterial compounds. MATERIALS AND METHODS: Overall, 48 student volunteers aged 18-40 years (24 females and 24 males) were randomly categorized into the BGP and placebo groups. The BGP and placebo groups received toothpaste with and without BGP, respectively. After a baseline assessment, the plaque index (PI) score, gingival index (GI) score, and proportion of periodontal pathogens on the tongue surface were analyzed at 0, 1, and 2 weeks. Antibacterial compounds were identified using liquid-liquid partitioning, high-performance liquid chromatography purification, and nuclear magnetic resonance methods. RESULTS: The concentration of BGP in the toothpaste was set at 0.0347 w/v%. Compared with the placebo group, the BGP group demonstrated a reduction in the PI score (p < 0.05) but not in the GI score, as well as a reduction in Porphyromonas gingivalis (Pg)/Total bacteria (Tb), Fusobacterium nucleatum (Fn)/Tb, and Aggregatibacter actinomycetemcomitans (Aa)/Tb (p < 0.05) but not in Streptococcus salivalius/Tb. Effect sizes for Pg, Fn and Aa were 0.360, 0.556, and 0.164, respectively. The antibacterial compounds of the BGP-containing toothpaste included a mixture of kaempferide/betuletol. CONCLUSIONS: We confirmed the efficacy of propolis toothpaste with an optimal kaempferide/betuletol ratio for improving oral microbiota, thereby suggesting that BGP toothpaste is clinically useful in maintaining oral health and preventing periodontal disease.
ABSTRACT
This study reports a combined approach to assess the antioxidant activity of Zuccagnia-type propolis. Fractions exhibiting the highest antioxidant activities evidenced by DPPH, a ß-carotene bleaching and superoxide radical scavenging activity-non-enzymatic assays, were processed by LC-HRMS/MS to characterize the relevant chemical compounds. A computational protocol based on the DFT calculations was used to rationalize the main outcomes. Among the 28 identified flavonoids, caffeic acids derivatives were in the fraction exhibiting the highest antioxidant activity, with 1-methyl-3-(4'-hydroxyphenyl)-propyl caffeic acid ester and 1-methyl-3-(3',4'-dihydroxyphenyl)-propyl caffeic acid ester as major components. Results clearly showed roles of specific chemical motifs, which can be supported by the computational analysis. This is the first report ascribing the antioxidant ability of Zuccagnia-type propolis to its content in specific caffeic acid derivatives, a potential source of radical scavenging phytochemicals. The proposed protocol can be extended to the study of other plant-products to address the most interesting bioactive compounds.
Subject(s)
Antioxidants , Propolis , Tandem Mass Spectrometry , Propolis/chemistry , Antioxidants/chemistry , Caffeic Acids/chemistry , Caffeic Acids/analysis , Flavonoids/chemistry , Flavonoids/analysis , Molecular Structure , Chromatography, Liquid/methods , Chromatography, High Pressure LiquidABSTRACT
Propolis is a natural resinous mixture produced by honeybees with numerous biological activities. Considering the recently reported potential of propolis as an adjuvant in COVID-19 treatment, a methodology for the fractionation of the hexane extract of Brazilian green propolis (HEGP) was developed for the obtention of prenylated biomarkers by countercurrent chromatography. The inhibition of the interaction between the receptor binding domain (RBD) of spike and ACE2 receptor was evaluated by the Lumitáµá´¹ immunoassay. Fractionation of HEGP was performed by both normal (CCC1 and CCC2, with extended elution) and reversed (CCC3) phase elution-extrusion modes with the solvent system hexane-ethanol-water 4:3:1. The normal elution mode of CCC1 (471 mg HEGP in a 80 mL column volume, 1.6 mm id) was scaled-up (CCC5, 1211 mg HEGP in a 112 mL column volume, 2.1 mm id), leading to the isolation of 89.9 mg of artepillin C, 1; 52.7 mg of baccharin, 2; and 26.6 mg of chromene, with purities of 93 %, 83 % and 88 %, respectively, by HPLC-PDA. Among the isolated compounds, artepillin C, 1, and baccharin, 2, presented the best results in the Lumitáµá´¹ immunoassay, showing 67% and 51% inhibition, respectively, at the concentration of 10 µM. This technique proved to be of low operational cost and excellent reproducibility.
Subject(s)
Angiotensin-Converting Enzyme 2 , Countercurrent Distribution , Propolis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Propolis/chemistry , Countercurrent Distribution/methods , SARS-CoV-2/drug effects , Humans , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/isolation & purification , Biomarkers/metabolism , COVID-19 , Protein Binding , COVID-19 Drug Treatment , Phenylpropionates/chemistry , Phenylpropionates/isolation & purificationABSTRACT
Helicobacter pylori is associated with gastrointestinal diseases, and its treatment is challenging due to antibiotic-resistant strains, necessitating alternative therapies. Brazilian red propolis (BRP), known for its diverse bioactive compounds with pharmaceutical properties, was investigated for its anti-H. pylori activity, focusing on biofilm formation inhibition and eradication. BRP was tested against H. pylori (ATCC 43526) using several assays: time-kill, nucleotide leakage, biofilm formation inhibition (determining the minimum inhibitory concentration of biofilm of 50%-MICB50, and cell viability), and biofilm eradication (determining the minimum eradication concentration of biofilm of 99.9%-MBEC). Standardization of H. pylori biofilm formation was also conducted. In the time-kill assay, BRP at 50 µg/mL eliminated all H. pylori cells after 24 h. The nucleotide leakage assay showed no significant differences between control groups and BRP-treated groups at 25 µg/mL and 50 µg/mL. H. pylori formed biofilms in vitro at 109 CFU/mL after 72 h. The MICB50 of BRP was 15.6 µg/mL, and at 500, 1000, and 2000 µg/mL, BRP eradicated all bacterial cells. The MBEC was 2000 µg/mL. These findings suggest that BRP has promising anti-H. pylori activity, effectively inhibiting and eradicating biofilms. Further studies are necessary to elucidate BRP's mechanisms of action against H. pylori.
ABSTRACT
Beekeeping is an activity that generates various products, mainly honey and propolis, with different biological activities that are studied extensively using various methodologies. The influence of various phenolic compounds, such as phenols and flavonoids, which are synthesized and concentrated differently in each product depending on the melliferous flora and sources of resources, on the manufacture of propolis or honey has been investigated. However, the analysis of these products has been performed separately and is outdated in time, and depending on the area and the flowering periods, different crops may be harvested. The analysis of the honey and propolis produced in Cuautitlan, State of Mexico, in the high plateau beekeeping zone, for a period of four years, both in the dry and rainy seasons, was proposed to determine the botanical origin of the honey and propolis. The primary pollen type in both honey and propolis was from Brassica rapa. Physicochemical tests were conducted, revealing higher concentrations of antimicrobial activity in the dry season than in the rainy season. Honey, propolis, and a vegetation extract showed activity against S. aureus, while only honey had an effect on E. coli in both seasons. For antifungal activity, only propolis collected in the rainy season had this activity. The biological properties of these products are closely related to the flora that varies both annually and between seasons, influencing the concentrations of phenolic compounds, as well as the biological activity of honey and propolis.
ABSTRACT
There is evidence that propolis exhibits anti-inflammatory, anticancer, and antioxidant properties. We assessed the potential beneficial effects of Brazilian propolis on liver injury in nonalcoholic fatty liver disease (NAFLD). Our findings demonstrate that Brazilian propolis suppresses inflammation and fibrosis in the liver of mice with NAFLD by inhibiting the expression of genes involved in endoplasmic reticulum (ER) stress. Additionally, Brazilian propolis also suppressed the expression of ER stress-related genes in HepG2 cells treated with an excess of free fatty acids, leading to cell apoptosis. A deeper analysis revealed that kaempferol, one of the components present in Brazilian propolis, induces cell proliferation through the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway and protects against oxidative stress. In conclusion, Brazilian propolis exhibits hepatoprotective properties against oxidative stress by inhibiting ER stress in NAFLD-induced model mice.
Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Liver , Non-alcoholic Fatty Liver Disease , Oxidative Stress , Propolis , Propolis/pharmacology , Propolis/therapeutic use , Animals , Endoplasmic Reticulum Stress/drug effects , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Hep G2 Cells , Oxidative Stress/drug effects , Male , Liver/drug effects , Liver/pathology , Liver/metabolism , Apoptosis/drug effects , Mice , Kaempferols/pharmacology , Kaempferols/therapeutic use , Brazil , Cell Proliferation/drug effects , Mice, Inbred C57BLABSTRACT
The limited availability of antivirals for new highly pathogenic strains of virus has become a serious public health. Therefore, news products against these pathogens has become an urgent necessity. Among the multiple sources for news antibiotics and antivirals, insect exudates or their products has become an increasingly frequent option. Insects emerged 350 million years ago and have showed a high adaptability and resistance to the most varied biomes. Their survival for so long, in such different environments, is an indication that they have a very efficient protection against environmental infections, despite not having a developed immune system like mammals. Since the ancient civilizations, the products obtained from the bee have been of great pharmacological importance, being used as antimicrobial, anti-inflammatory, antitumor and several other functions. Investigations of biological activity of propolis have been carried out, mainly in the species Apis mellifera, and its product have showed activity against some important viruses. However, for the Meliponini species, known as stingless bees, there are few studies, either on their chemical composition or on their biological activities. The importance of studying these bees is because they come from regions with native forests, and therefore with many species of plants not yet studied, in addition to which they are regions still free of pesticides, which guarantees a greater fidelity of the obtained data. Previous studies by our group with crude hydroalcoholic extract of propolis demonstrated an intense antiviral activity against Herpes, influenza, and rubella viruses. In this work, we chose to use aqueous extracts, which eliminates the presence of other compounds besides those originally present in propolis, in addition to extracting substances different from those obtained in alcoholic extracts. Therefore, this study aimed to identify, isolate and characterize compounds with antiviral effects from aqueous propolis extracts from Scaptotrigona aff postica, in emerging viruses such as zicavirus, chikungunya, and mayaro virus. The evaluation of the antiviral activity of the crude and purified material was performed by reducing infectious foci in VERO cell cultures. The results obtained with crude propolis, indicate a high reduction of zica virus (64×) and mayaro (128×) when was used 10% v/v of propolis. The reduction of chikungunya virus was of 256 fold, even when was used 5% v/v of propolis. The chemical characterization of the compounds present in the extracts was performed by high-pressure liquid chromatography. Through the purification of propolis by HPLC and mass spectrometry, it was possible to identify and isolate a peak with antiviral activity. This substance showed activity against all viruses tested. When purified fraction was used, the reduction observed was of 16 fold for zicavirus, 32 fold for mayaro virus and 512 fold for chikungunya virus. Likewise, it was observed that the antiviral response was concentration dependent, being more intense when propolis was added 2 h after the viral infection. Now we are carrying out the chemical characterization of the purified compounds that showed antiviral action.
Subject(s)
Antiviral Agents , Propolis , Propolis/pharmacology , Propolis/chemistry , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Bees , Chikungunya virus/drug effects , Chlorocebus aethiops , Vero CellsABSTRACT
Propolis is a complex mixture formed from exudates that bees collect from plants and then mix with beeswax and their own salivary enzymes. Chilean propolis is characterized by the presence of phenolic compounds, which are considered responsible for the biological activities. The endemic species Escallonia pulverulenta (Ruiz and Pav.) Pers. [Escalloniaceae] is a recognized source of exudate to produce propolis. This study reports for the first time the chemical profile and antibacterial activity of E. pulverulenta exudate and leaves, as well as two samples of Chilean propolis. Palynological and morphological analysis showed the presence of E. pulverulenta as one of the main species in the propolis samples. UPLC-MS/MS analyses enabled the identification of phenolic acids in the leaves and in the propolis. Conversely, flavonoids are mainly present in exudates and propolis. Quercetin is the most abundant flavonol in the exudate, with similar concentrations in the propolis samples. Nevertheless, the main compound present in both samples of propolis was the flavanone pinocembrin. The antibacterial results obtained for exudate and propolis have shown a similar behavior, especially in the inhibition of Streptococcus pyogenes. These results show the importance of the exudates collected by the bees in the chemical composition and antibacterial capacity of propolis.
ABSTRACT
OBJECTIVE: To investigate the effects of Araucaria sp. brown propolis (ABP) against trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. METHODS: Animals received vehicle (1% DMSO, 1 ml/kg) or hydroalcoholic extract of ABP (hydroalcoholic extract of Araucaria sp. brown propolis (HEABP), 30, 100, and 300 mg/kg) orally, or dexamethasone (25 mg/kg, s.c.) for 5 days. On day 4, the animals received intracolonic TNBS (150 mg/kg), on day 6 they were euthanized. The weight of the animals, the macroscopic and microscopic colonic damage, reduced glutathione (GSH) and malondialdehyde (MDA) levels, and the activity of glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), and myeloperoxidase (MPO) were measured in colon homogenate. The action of HEABP and two isolated compounds in neutrophil migration was recorded. KEY FINDINGS: HEABP (100 and 300 mg/kg), but not dexamethasone, decreased colonic lesion, and increased colonic mucin staining. In parallel, HEABP decreased MDA and restored GSH levels and the activity of SOD, CAT, and GST in the colon. A dose-dependent inhibition of MPO activity was observed (LogIC50 = 1.9). Moreover, HEBPA and the junicedric and abietic acids inhibited the neutrophil chemotaxis in vitro and HEBPA reduced neutrophil migration in vivo. CONCLUSION: HEABP may be promising in the therapies for inflammatory bowel diseases, reducing oxidative and inflammatory damage, especially mediated by neutrophils.
Subject(s)
Colitis, Ulcerative , Malondialdehyde , Oxidative Stress , Plant Extracts , Propolis , Rats, Wistar , Trinitrobenzenesulfonic Acid , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Propolis/pharmacology , Male , Oxidative Stress/drug effects , Rats , Plant Extracts/pharmacology , Malondialdehyde/metabolism , Colon/drug effects , Colon/pathology , Colon/metabolism , Peroxidase/metabolism , Glutathione/metabolism , Superoxide Dismutase/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Disease Models, Animal , Dexamethasone/pharmacology , Tracheophyta/chemistry , Catalase/metabolism , Dose-Response Relationship, Drug , Antioxidants/pharmacology , Glutathione Transferase/metabolismABSTRACT
Prenylated cinnamic acid derivatives are the bioactive components of Brazilian green propolis (BGP). The effect of other botanical components on the pharmacokinetic profiles of these derivatives remains relatively unexplored. In the present study, we investigated the influence of several herbal extracts (turmeric, ginkgo leaf, coffee fruit, soybean, and gotu kola) on the plasma concentrations of cinnamic acid derivatives after BGP consumption. When the herbal extracts were co-administered with BGP in the clinical study, the area under the curve (AUC) values of artepillin C and drupanin, the major BGP components in plasma, were significantly increased by 1.7- and 1.5-fold, respectively, compared to those after BGP administration alone. Among the herbal extracts administered to rats, turmeric extract increased the AUC. Furthermore, a bidirectional transport assay suggested that artepillin C and drupanin are substrates of breast cancer resistance protein (BCRP), a drug elimination transporter. These results suggest that curcumin-containing turmeric extract may increase the plasma concentrations of artepillin C and drupanin via BCRP. Our findings enabled us to estimate the food-herb and herb-herb interactions in vivo in foods and herbal medicines containing cinnamic acid derivatives and prenylated compounds.
ABSTRACT
Aim: To evaluate the salivary biomarkers and plaque index after a treatment with a propolis-contained toothpaste. Materials and Methods: This is a longitudinal, randomized, double-blind study where 76 participants were randomized into two groups: Group I: Fluoridated Red Propolis toothpaste; Group II: Fluoridated toothpaste. The participants were selected in a municipality without fluoridated public water. All participants received standardized oral hygiene instructions from the same instructor for 3 daily brushings (after breakfast, after lunch, and before bed) for a period of 2 min; Saliva samples were collected before (D0) and after 28 days (D28) of treatment for analysis of pH and total protein, amylase, and IL-10. Saliva was collected in the initial consultation and on return, totaling two collections. All samples were collected under the same conditions, by the same operator and between 9:00 AM and 11:00 AM in order to minimize the influence of circadian rhythm on salivary flow. Results: On D0 and D28, the various treatments had no effect on total salivary proteins (G1: P = 0.0746; G2: P = 0.2144), and the pH stayed about the same. Additionally, there was no change in the amylase activity in G1 (P = 0.1877) or G2 (P = 0.4674). Significant decreases in G1 (P < 0.0001) and G2 (P = 0.03) were observed with IL-10. There was no statistically significant difference in the salivary flow between the BRP toothpaste-treated group (P = 0.172) and the commercial fluoridated toothpaste-treated group (P = 0.329). Compared to G2 (P = 0.03), G1 showed a superior decline in the plaque index (P = <0.0001). Conclusions: After 28 days of using the toothpastes, there were no changes in the amylase, pH, or total protein indicators. After 28 days, there was a decrease in the propolis group's IL-10 dose and plaque index.
ABSTRACT
Green propolis is a resin produced from Baccharis dracunculifolia, which has as its main compounds flavonoids, derivatives of cinnamic acids, such as artepillin C and baccarin. This resin has antibacterial, antifungal, anti-inflammatory, antioxidant, and anticancer activities. This review aimed to analyze pharmaceutical patents containing green propolis in various formulations. The search was conducted in the National Institute of Industrial Property (INPI), the Patent Search of Spain and Latin America (Latipat-Espacenet), the World Intellectual Property Organization (WIPO), and Google Patents, with a combination of the keywords green propolis, green propolis extract, pharmacology, and pharmaceutical product. Primary research identified 60 patents, from which 22 were selected after applying the inclusion criteria. The selected patents referred to products with pharmacological activities, from cancer treatment to food supplements and included innovations for improved controlled release of the green propolis compounds. Most of the documents concerned the preparation and/or formulation of the green propolis extract, followed by innovative extraction methods, treatment and systemic use, and finally by topical use and quality control techniques and procedures. Thus, the reviewed patents of green propolis provided valuable insights into the pharmaceutical applications of green propolis, showing its potential in diverse formulations and treatments.
ABSTRACT
The aim of this study was to evaluate the effect of the combination of neovestitol-vestitol (CNV) compounds obtained from Brazilian red propolis on the microbiological profile of a mature multispecies subgingival biofilm. The biofilm with 32 bacterial species associated with periodontitis was formed for seven days using a Calgary device. Treatment with CNV (1600, 800, 400, and 200 µg/mL), amoxicillin (54 µg/mL), and vehicle control was performed for 24 h on the last day of biofilm formation. Biofilm metabolic activity and DNA-DNA hybridization (checkerboard) assays were performed. The groups treated with CNV 1600 and amoxicillin reduced 25 and 13 species, respectively, compared to the control vehicle treatment (p ≤ 0.05); both reduced P. gingivalis, while only CNV reduced T. forsythia. When the data from the two treatments (CNV and AMOXI) were compared, a statistically significant difference was observed in 13 species, particularly members of Socransky's orange complex. Our results showed that CNV at 1600 µg/mL showed the best results regarding the metabolic activity of mature biofilms and obtained a reduction in species associated with the disease, such as T. forsythia, showing a better reduction than amoxicillin. Therefore, CNV seems to be a promising alternative to eradicate biofilms and reduce their pathogenicity.