Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
J Mol Cell Cardiol ; 193: 113-124, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960316

ABSTRACT

The sarcolemmal Ca2+ efflux pathways, Na+-Ca2+-exchanger (NCX) and Ca2+-ATPase (PMCA), play a crucial role in the regulation of intracellular Ca2+ load and Ca2+ transient in cardiomyocytes. The distribution of these pathways between the t-tubular and surface membrane of ventricular cardiomyocytes varies between species and is not clear in human. Moreover, several studies suggest that this distribution changes during the development and heart diseases. However, the consequences of NCX and PMCA redistribution in human ventricular cardiomyocytes have not yet been elucidated. In this study, we aimed to address this point by using a mathematical model of the human ventricular myocyte incorporating t-tubules, dyadic spaces, and subsarcolemmal spaces. Effects of various combinations of t-tubular fractions of NCX and PMCA were explored, using values between 0.2 and 1 as reported in animal experiments under normal and pathological conditions. Small variations in the action potential duration (≤ 2%), but significant changes in the peak value of cytosolic Ca2+ transient (up to 17%) were observed at stimulation frequencies corresponding to the human heart rate at rest and during activity. The analysis of model results revealed that the changes in Ca2+ transient induced by redistribution of NCX and PMCA were mainly caused by alterations in Ca2+ concentrations in the subsarcolemmal spaces and cytosol during the diastolic phase of the stimulation cycle. The results suggest that redistribution of both transporters between the t-tubular and surface membranes contributes to changes in contractility in human ventricular cardiomyocytes during their development and heart disease and may promote arrhythmogenesis.

2.
Geriatr Gerontol Int ; 24(6): 634-640, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679586

ABSTRACT

AIM: Protein intake is an important component in retaining muscle mass, especially among older people. This study examined the relationship between total protein intake and/or the distribution of protein intake in each meal and appendicular muscle mass, using data from the National Health and Nutrition Survey (NHNS) in Japan. METHODS: Data from the NHNS were re-analyzed in this study. We used data from a one-day dietary record, physical examination, and lifestyle questionnaire completed by 1766 participants aged over 60 years. Appendicular muscle mass was assessed by multiple-frequency bioimpedance measurement. Leucine intake was calculated by the weighted average amino acid content from all 98 food subcategories used in the NHNS, based on amino acid composition data in the 2020 Standard Tables of Food Composition. RESULTS: Participants with higher protein intake showed significantly higher appendicular muscle mass. This relationship was independent of physical activity, including steps taken per day, exercise habit, and physical labor. Frequent intake of ≥0.4 g protein/kg/meal was not related to appendicular muscle mass. The combination of higher total protein intake and higher physical activity seemed to have the largest association with appendicular muscle mass. CONCLUSIONS: Higher protein intake may be related to higher appendicular muscle mass, independent of higher physical activity, among older Japanese people. Geriatr Gerontol Int 2024; 24: 634-640.


Subject(s)
Dietary Proteins , Muscle, Skeletal , Nutrition Surveys , Humans , Japan , Male , Female , Aged , Cross-Sectional Studies , Dietary Proteins/administration & dosage , Middle Aged , Exercise/physiology , Aged, 80 and over , Sarcopenia/epidemiology , Body Composition , East Asian People
3.
Eur J Nutr ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563983

ABSTRACT

AIMS: Evidence regarding impact of protein intake distribution on skeletal muscle mass in older adults is limited and inconsistent. This study aims to investigate the relationship of evenness of dietary protein distribution and number of meals exceeding a threshold with appendicular skeletal muscle mass (ASM) in healthy and free-living Chinese older adults. METHODS: Repeated measured data of 5689 adult participants aged ≥ 60 years from the China Health and Nutrition Survey (CHNS) 2015 and 2018 waves were analyzed. Mixed-effects linear regression model was performed to examine the relationship between coefficient of variance (CV) of protein intake across meals, number of meals ≥ 0.4 g protein/kg BW and ASM, respectively. Analyses were conducted separately for male and female. RESULTS: The average CV of protein intake in each wave was in the range of 0.34-0.35. More than 40% male and female participants in each wave had no meal reaching 0.4 g protein/kg BW. Female participants in the highest quartile of protein intake CV had significantly lower ASM (ß = -0.18, 95%CI = -0.32, -0.04) compared with those in the lowest quartile, after adjustment for multiple confounders. Significant negative trends were observed across dietary protein CV quartiles with ASM both in male (P trend = 0.043) and female (P trend = 0.007). Significant positive association between number of meals exceeding 0.4 g protein /kg BW and relative ASM were observed in females (2 meals vs. 0 meal: ß = 0.003, 95%CI = 0.0007,0.006;≥3 meals vs. 0 meal: ß = 0.008, 95%CI = 0.003,0.013), after adjusting for multiple covariates. CONCLUSIONS: A more even-distributed protein intake pattern and more meals reaching protein intake threshold were respectively associated with higher appendicular skeletal muscle mass in healthy and free-living older Chinese adults. Prospective studies and intervention trials are needed to confirm these cross-sectional findings.

4.
Chirality ; 36(3): e23655, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38419363

ABSTRACT

This study reports the microscopic measurements of vibrational circular dichroism (VCD) on four different insect wings using a quantum cascade laser VCD system equipped with microscopic scanning capabilities (named multi-dimensional VCD [MultiD-VCD]). Wing samples, including (i) beetle, Anomala albopilosa (female), (ii) European hornet, Verspa crabro flavofasciata Cameron, 1903 (female), (iii) tiny dragonfly, Nannophya pygmae Rambur, 1842 (male), and (iv) dragonfly, Symetrum gracile Oguma, 1915 (male), were used in this study. Two-dimensional patterns of VCD signals (~10 mm × 10 mm) were obtained at a spatial resolution of 100 µm. Measurements covered the absorption peaks assigned to amides I and II in the range of 1500-1740 cm-1 . The measurements were based on the enhancement of VCD signals for the stereoregular linkage of peptide groups. The patterns were remarkably dependent on the species. In samples (i) and (ii), the wings comprised segregated domains of protein aggregates of different secondary structures. The size of each microdomain was approximately 100 µm. In contrast, no clear VCD spectra were detected in samples (iii) and (iv). One possible reason was that the chain of stereoregular polypeptides was too short to achieve VCD enhancement in samples (iii) and (iv). Notably, the unique features were only observed in the VCD spectra because the IR spectra were nearly the same among the species. The VCD results hinted at the connection of protein microscopic structures with the wing flapping mechanisms of each species.


Subject(s)
Odonata , Female , Male , Animals , Circular Dichroism , Stereoisomerism , Peptides/chemistry , Proteins
5.
J Nutr ; 154(4): 1347-1355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38365118

ABSTRACT

BACKGROUND: Preservation of fat-free mass (FFM) during intentional weight loss is challenging yet important to maintain a resting metabolic rate. A balanced protein distribution of 25-30 g per meal improves 24-h muscle protein synthesis, which may promote FFM maintenance and greater reductions in fat mass (FM) during weight loss in women. OBJECTIVES: We aimed to determine whether the daily dietary protein distribution pattern during energy restriction influences changes in body composition in women of reproductive age. We hypothesized that evenly distributing protein across meals compared with the usual intake pattern of consuming most of the protein at the dinner meal would be superior in preserving FFM while reducing FM during weight loss. METHODS: Healthy women (n = 43) aged 20-44 y with a BMI of 28-45 kg/m2 completed a randomized parallel feeding study testing 2 patterns of daily protein intake (even distribution across all meals compared with a skewed distribution with most protein consumed at the evening meal). Participants completed an 8-wk controlled 20% energy restriction (all foods provided), followed by an 8-wk self-choice phase in which participants were asked to maintain a similar diet and dietary pattern when purchasing and consuming their own foods. Body composition was measured at baseline, week 8, and week 16. Data were analyzed using mixed models. Statistical significance was set at P < 0.05. Data are presented as differences in least squares means ± SE. RESULTS: No significant main effects of group or group-by-time interactions were observed. All measures exhibited the main effect of time (P < 0.001). Overall, body weight, FFM, FM, and body fat percentage decreased 5.6 ± 0.4, 1.0 ± 0.2, 4.6 ± 0.4 kg, and 2.3 ± 0.2%, respectively, during this 16-wk study. CONCLUSION: Daily dietary protein distribution at a fixed protein level does not appear to influence changes in body composition during weight loss in women of reproductive age. CLINICAL TRIAL REGISTRY NUMBER AND WEBSITE WHERE IT WAS OBTAINED: NCT03202069 https://classic. CLINICALTRIALS: gov/ct2/show/NCT03202069.


Subject(s)
Obesity , Overweight , Humans , Female , Body Mass Index , Diet , Weight Loss , Body Composition , Meals , Dietary Proteins
6.
J Nutr Sci ; 12: e94, 2023.
Article in English | MEDLINE | ID: mdl-37649694

ABSTRACT

Protein intake, sources and distribution impact on muscle protein synthesis and muscle mass in older adults. However, it is less clear whether dietary protein influences muscle strength. Data were obtained from the Researching Eating Activity and Cognitive Health (REACH) study, a cross-sectional study aimed at investigating dietary patterns, cognitive function and metabolic syndrome in older adults aged 65-74 years. Dietary intake was assessed using a 4-d food record and muscle strength using a handgrip strength dynamometer. After adjusting for confounders, in female older adults (n 212), total protein intake (ß = 0⋅22, P < 0⋅01); protein from dairy and eggs (ß = 0⋅21, P = 0⋅03) and plant food sources (ß = 0⋅60, P < 0⋅01); and frequently consuming at least 0⋅4 g/kg BW per meal (ß = 0⋅08, P < 0⋅01) were associated with higher BMI-adjusted muscle strength. However, protein from meat and fish intake and the coefficient of variance of protein intake were not related to BMI-muscle strength in female older adults. No statistically significant associations were observed in male participants (n = 113). There may be sex differences when investigating associations between protein intake and muscle strength in older adults. Further research is needed to investigate these sex differences.


Subject(s)
Hand Strength , Independent Living , Female , Male , Animals , New Zealand , Cross-Sectional Studies , Muscle Strength , Eggs
7.
Cell Rep ; 42(7): 112796, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37453062

ABSTRACT

The subcellular localization of proteins is critical for their functions in eukaryotic cells and is tightly correlated with protein modifications. Here, we comprehensively investigate the nuclear-cytoplasmic distributions of the phosphorylated, O-GlcNAcylated, and non-modified forms of proteins to dissect the correlation between protein distribution and modifications. Phosphorylated and O-GlcNAcylated proteins have overall higher nuclear distributions than non-modified ones. Different distributions among the phosphorylated, O-GlcNAcylated, and non-modified forms of proteins are associated with protein size, structure, and function, as well as local environment and adjacent residues around modification sites. Moreover, we perform site-mutagenesis experiments using phosphomimetic and phospho-null mutants of two proteins to validate the proteomic results. Additionally, the effects of the OGT/OGA inhibition on glycoprotein distribution are systematically investigated, and the distribution changes of glycoproteins are related to their abundance changes under the inhibitions. Systematic investigation of the relationship between protein modification and localization advances our understanding of protein functions.


Subject(s)
Protein Processing, Post-Translational , Proteomics , Phosphorylation , Proteomics/methods , Glycoproteins/metabolism , Cell Nucleus/metabolism , N-Acetylglucosaminyltransferases/metabolism , Acetylglucosamine/metabolism
8.
J Gerontol A Biol Sci Med Sci ; 78(Suppl 1): 67-72, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37325954

ABSTRACT

BACKGROUND: This narrative review describes foundational and emerging evidence of how dietary protein intakes may influence muscle-related attributes of older adults. METHODS: PubMed was used to identify pertinent research. RESULTS: Among medically stable older adults, protein intakes below the recommended dietary allowance (RDA) (0.8 g/kg body weight [BW]/d) exacerbate age-related reductions in muscle size, quality, and function. Dietary patterns with total protein intakes at or moderately above the RDA, including one or preferably more meals containing sufficient dietary protein to maximize protein anabolism, promote muscle size and function. Some observational studies suggest protein intakes from 1.0 to 1.6 g/kg BW/d may promote greater muscle strength and function more so than muscle size. Experimental findings from randomized controlled feeding trials indicate protein intakes greater than the RDA (averaging ~1.3 g/kg BW/d) do not influence indices of lean body mass or muscle and physical functions with non-stressed conditions, but positively influence changes in lean body mass with purposeful catabolic (energy restriction) or anabolic (resistance exercise training) stressors. Among older adults with diagnosed medical conditions or acute illness, specialized protein or amino acid supplements that stimulate muscle protein synthesis and improve protein nutritional status may attenuate the loss of muscle mass and function and improve survival of malnourished patients. Observational studies favor animal versus plant protein sources for sarcopenia-related parameters. CONCLUSIONS: Quantity, quality, and patterning of dietary protein consumed by older adults with varied metabolic states, and hormonal and health status influence the nutritional needs and therapeutic use of protein to support muscle size and function.


Subject(s)
Muscle, Skeletal , Sarcopenia , Humans , Muscle, Skeletal/metabolism , Sarcopenia/prevention & control , Sarcopenia/metabolism , Nutritional Status , Muscle Strength/physiology , Body Composition/physiology , Dietary Supplements , Dietary Proteins/metabolism
9.
Int J Biol Macromol ; 242(Pt 4): 124909, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37230453

ABSTRACT

This study aimed to compare the effect of various exogenous proteins on wheat starch (WS) digestion and assess the relevant mechanisms based on the distribution behaviors of exogenous proteins in the starch matrix. Rice protein (RP), soy protein isolate (SPI), and whey protein isolate (WPI) all effectively suppressed the rapid digestion of WS but with different modes. RP increased the slowly digestible starch content, while SPI and WPI increased the resistant starch content. Fluorescence images showed that RP aggregated and competed for effective space with starch granules, while SPI and WPI formed continuous network structures among the starch matrix. These distribution behaviors endowed different reductions in starch digestion by influencing the gelatinization and ordered structure of starch. Pasting and water mobility results suggested all exogenous proteins inhibited the water migration and swelling of starch. Simultaneously, X-ray diffraction and Fourier transform infrared spectroscopy analysis showed that exogenous proteins improved the ordered structures of starch. RP had a more significant effect on the long-term ordered structure, while SPI and WPI had a more effective effect on the short-term ordered structure. These findings will enrich the theory of exogenous protein inhibiting starch digestion and inspire the applications in low-glycemic index food.


Subject(s)
Oryza , Starch , Starch/chemistry , Triticum/chemistry , Soybean Proteins , Digestion , Water , Oryza/chemistry
10.
Clin Nutr ; 42(6): 899-908, 2023 06.
Article in English | MEDLINE | ID: mdl-37086618

ABSTRACT

BACKGROUND & AIM: For older adults, the dietary protein intake has shown to be skewed towards the evening meal. Resultingly, the vital source of essential amino acids could be insufficient after some meals, while after the evening meal the dietary protein could be suboptimally utilized for protein synthesis. The present study explored if an even distribution of the protein intake could improve the dietary amino acid absorption and whole-body protein net-balance. METHODS: Twenty-four healthy elderly males and females were included in a randomized controlled trial. Ten days of habituation to either an EVEN (n = 12) or SKEWED (n = 12) protein intake, was followed by a trial day. The total protein intake was controlled at 1.5 g/kg LBM, divided into 30% at each main meal in EVEN, and into 15% at breakfast and lunch and 60% at dinner in SKEWED. Snacks with 5% of the protein intake were served between meals. Energy intake in the meals and snacks were equal in both groups. Intrinsically labelled 2H5-phenylalanine minced meat was served as the dietary protein to assess the amino acid absorption. On the trial day, infusion of 2H8-phenylalanine and 2H2-tyrosine, and blood samples taken over 11 h were used to measure whole-body protein turnover. Vastus lateralis muscle biopsies were taken to measure 9 h muscle protein FSR. RESULTS: Amino acid absorption rates and concentrations were greater in EVEN compared to SKEWED protein intake. Whole-body protein breakdown rates were lower with similar protein synthesis rates, and consequently the net-balance was greater in EVEN after breakfast and lunch compared to SKEWED and were the same in both groups after dinner. Muscle protein FSR were not different between EVEN and SKEWED. CONCLUSIONS: The whole-body protein net-balance was more positive in EVEN compared to SKEWED for an extended time of the measured period, driven by a lower whole-body protein breakdown in EVEN. CLINICAL TRIALS REGISTRATION: NCT03870425, https://clinicaltrials.gov/ct2/show/NCT03870425.


Subject(s)
Diet , Dietary Proteins , Male , Female , Humans , Aged , Dietary Proteins/metabolism , Muscle Proteins/metabolism , Phenylalanine , Amino Acids , Meals
11.
EMBO Rep ; 24(5): e56114, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36929726

ABSTRACT

Vesicular transport is a means of communication. While cells can communicate with each other via secretion of extracellular vesicles, less is known regarding organelle-to organelle communication, particularly in the case of mitochondria. Mitochondria are responsible for the production of energy and for essential metabolic pathways in the cell, as well as fundamental processes such as apoptosis and aging. Here, we show that functional mitochondria isolated from Saccharomyces cerevisiae release vesicles, independent of the fission machinery. We isolate these mitochondrial-derived vesicles (MDVs) and find that they are relatively uniform in size, of about 100 nm, and carry selective protein cargo enriched for ATP synthase subunits. Remarkably, we further find that these MDVs harbor a functional ATP synthase complex. We demonstrate that these vesicles have a membrane potential, produce ATP, and seem to fuse with naive mitochondria. Our findings reveal a possible delivery mechanism of ATP-producing vesicles, which can potentially regenerate ATP-deficient mitochondria and may participate in organelle-to-organelle communication.


Subject(s)
Mitochondria , Saccharomyces cerevisiae , Membrane Potentials , Mitochondria/metabolism , Biological Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism
12.
Ann Anat ; 245: 152017, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36280189

ABSTRACT

BACKGROUND: The mammalian tongue is a highly specialized muscular organ. The Wnt5a ligand regulates muscle development by mediating the activation of several noncanonical Wnt signaling pathways in a receptor context-dependent fashion. However, there is poor information on the expression and behavior of Wnt5a proteins during muscle development of the embryonic tongue. METHODS: The spatiotemporal distribution profiles of the Wnt5a ligand and its receptors, receptor tyrosine kinase-like orphan receptor 2 (Ror2), Frizzled2 (Fzd2), and Frizzled5 (Fzd5), in the developing tongue muscles of prenatal mice from embryonic day 12.5-18.5 were analyzed using immunofluorescence (IF) double staining of a target protein and desmin, a marker protein of myogenic cells. Immunolabeling images were subjected to digital detection analysis using the WinROOF 2018 version 4.19.0 image processing software when needed. RESULTS: IF signals of the Wnt5a ligand protein and its receptors Ror2 and Fzd2 were detected in developing myoblasts and myotubes of the embryonic tongue, but they were undetectable in mature myofibers equipped with sarcomere structures. Fzd2 expression was specific for desmin-positive developing muscle cells, whereas those of Ror2 and the Wnt5a ligand were widespread and nonselective for desmin-positive cells and that of Fzd5 was predominant in desmin-negative cells of the epithelium and subepithelial mesenchyme. CONCLUSION: Developing muscle cells but not mature myofibers of the mouse embryonic tongue express the Wnt5a ligand and its receptors Ror2 and Fzd2, which may mediate Wnt5a signaling in the development processes of tongue muscle fibers.


Subject(s)
Muscle Development , Tongue , Wnt Signaling Pathway , Animals , Female , Mice , Pregnancy , Desmin/metabolism , Ligands , Muscles/embryology , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Tongue/embryology , Wnt-5a Protein/metabolism , Frizzled Receptors/metabolism
13.
Insect Sci ; 30(2): 375-397, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36102008

ABSTRACT

The ubiquitously expressed transmembrane enzyme Na,K-ATPase (NKA) is vital in maintaining functionality of cells. The association of α- and ß-subunits is believed to be essential for forming a functional enzyme. In the large milkweed bug Oncopeltus fasciatus four α1-paralogs and four ß-subunits exist that can associate into NKA complexes. This diversity raises the question of possible tissue-specific distribution and function. While the α1-subunits are known to modulate cardenolide-resistance and ion-transport efficiency, the functional importance of the ß-subunits needed further investigation. We here characterize all four different ß-subunits at the cellular, tissue, and whole organismal scales. A knockdown of different ß-subunits heavily interferes with molting success resulting in strongly hampered phenotypes. The failure of ecdysis might be related to disrupted septate junction (SJ) formation, also reflected in ß2-suppression-induced alteration in tracheal morphology. Our data further suggest the existence of isolated ß-subunits forming homomeric or ß-heteromeric complexes. This possible standalone and structure-specific distribution of the ß-subunits predicts further, yet unknown pump-independent functions. The different effects caused by ß knockdowns highlight the importance of the various ß-subunits to fulfill tissue-specific requirements.


Subject(s)
Heteroptera , Sodium-Potassium-Exchanging ATPase , Animals , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Molting , Heteroptera/genetics
14.
Proteomics Clin Appl ; 17(2): e2200088, 2023 03.
Article in English | MEDLINE | ID: mdl-36333925

ABSTRACT

PURPOSE: The distribution and expression level of a protein among animal tissues is indicative of its possible roles. It is important to establish a generally applicable method to prepare protein samples with high-quality and achieve near 100% recovery of proteins from animal tissues. EXPERIMENTAL DESIGN: During preparation, to sufficiently dissolve and maintain stability of almost all proteins from tissues, as well as to avoid most contaminations affecting protein detection, 2×SDS Sample Buffer, sonication and trichloroacetic acid precipitation are applied. RESULTS: Here we provide a relatively simple, reproducible, and broadly applicable method for studying protein distribution in most tissues, in which the issues resulting from protein degradation and modification during sample preparation and assay interference by other cellular components like neutral lipids and glycogen could be overcome. Furthermore, this method represents the protein content by equal wet tissue mass, which is a better means to present the expression level of a protein in various tissues. High-quality protein samples from almost all tissues could be prepared. CONCLUSIONS AND CLINICAL RELEVANCE: The samples produced are amenable to tissue distribution analysis by Western blotting and for silver/Coomassie staining, proteomics, and other protein analyses, which would contribute to potential biomarkers or treatments for a disease.


Subject(s)
Proteins , Trichloroacetic Acid , Animals , Tissue Distribution , Proteomics/methods , Specimen Handling
15.
Foods ; 12(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38231659

ABSTRACT

Within the wheat starchy endosperm, the protein content increases biexponentially from the inner to outer endosperm. Here, we studied how this protein gradient is reflected in mill fractions using three cultivars (Claire, Apache, and Akteur) grown without and with N-fertilization (300 kg N ha-1). The increasing protein content in successive break fractions was shown to reflect the protein gradient within the starchy endosperm. The increasing protein content in successive reduction fractions was primarily due to more aleurone contamination and protein-rich material being harder to reduce in particle size. The miller's bran fractions had the highest protein content because of their high sub-aleurone and aleurone content. Additionally, the break fractions were used to deepen our understanding of the protein composition gradient. The gradient in relative gluten content, increasing from inner to outer endosperm, was more pronounced without N-fertilization than with and reached levels up to 87.3%. Regarding the gluten composition gradient, no consistent trends were observed over cultivars when N-fertilization was applied. This could, at least partly, explain why there is no consensus on the gluten composition gradient in the literature. This study aids millers in managing fluctuations in the functionality of specific flour streams, producing specialized flours, and coping with lower-quality wheat.

16.
Nutrients ; 14(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36364705

ABSTRACT

Sarcopenia is a multifactorial disease that limits autonomy for the growing elderly population. An optimal amount of dietary protein has shown to be important to maintain muscle mass during aging. Yet, the optimal distribution of that dietary protein has not been fully clarified. The aim of the present study was to examine whether an even, compared to a skewed, distribution of daily dietary protein leads to higher muscle protein synthesis and amino acid utilization. Twelve healthy males and twelve healthy females aged between 65 and 80 years were block randomized to either an even (EVEN, n = 12) or skewed (SKEWED, n = 12) dietary protein distribution for three daily main meals. Seven days of habituation were followed by three trial days, which were initiated by oral intake of deuterium oxide (D2O). The dietary protein throughout all trial meals was intrinsically labelled with 2H5-phenylalanine. Blood samples were drawn daily, and muscle biopsies were taken before and at the end of the trial to measure muscle protein synthesis (FSR) and muscle protein incorporation of the dietary-protein-derived tracer. Muscle protein FSR was no different between the two groups (EVEN 2.16 ± 0.13%/day and SKEWED 2.23 ± 0.09%/day, p = 0.647), and the muscle protein incorporation of the intrinsically labeled 2H5-phenylalanine tracer was not different between the two groups (EVEN 0.0049 ± 0.0004 MPE% and SKEWED 0.0054 ± 0.0003 MPE%, p = 0.306). In conclusion, the daily distribution pattern of the dietary protein did not affect muscle protein synthesis or the utilization of dietary protein.


Subject(s)
Amino Acids , Muscle Proteins , Aged , Aged, 80 and over , Female , Humans , Male , Dietary Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Phenylalanine
17.
Nutrients ; 14(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35684089

ABSTRACT

There is increasing evidence that dietary protein intake with leucine and vitamin D is an important factor in muscle protein synthesis. This study investigated the combined effects of consuming whey protein and vitamin D3 in the evening before bedtime or in the morning after sleeping on muscle mass and strength. Healthy, untrained males (N = 42; Age = 18-24 year) were randomly assigned into three groups: before bedtime, after sleeping, and control. Subjects underwent a 6-week resistance training program in combination with supplements that provided 25 g whey protein and 4000 IU vitamin D3 for the before bedtime and after sleeping groups and a 5 g maltodextrin placebo for the control group. A significant increase in serum vitamin D was observed in both before bedtime and after sleeping groups. All groups experienced a significant gain in leg press. However, the control group did not experience significant improvements in muscle mass and associated blood hormones that were experienced by the before bedtime and after sleeping groups. No significant differences in assessed values were observed between the before bedtime and after sleeping groups. These findings suggest that the combination of whey protein and vitamin D supplements provided either before or after sleep resulted in beneficial increases in muscle mass in young males undergoing resistance training that exceeded the changes observed without these supplements.


Subject(s)
Resistance Training , Adolescent , Adult , Body Composition , Cholecalciferol/pharmacology , Dietary Proteins , Dietary Supplements , Double-Blind Method , Humans , Male , Muscle Strength , Muscle, Skeletal , Muscles , Vitamin D/pharmacology , Whey Proteins/pharmacology , Young Adult
18.
Nutr Metab Insights ; 15: 11786388221101829, 2022.
Article in English | MEDLINE | ID: mdl-35734029

ABSTRACT

Background: Evenness of protein intake is associated with increased lean mass, but its relationship with muscle strength and performance is uncertain. Objectives: We determined the association of evenness of protein intake with lean mass, muscle strength and endurance, and functional ability. Design: This was a cross-sectional study. Setting: Data were collected at a research university in the upper midwestern United States. Participants: One hundred ninety-two healthy women, aged 18 to 79 years, mean ± SEM 41.9 ± 1.3, completed the study. Measurements: Dietary intake was assessed using 3-day food diaries verified with food frequency questionnaires. To assess evenness of protein intake, the day was divided into 3 periods: waking to 11:30, 11:31 to 16:30, and after 16:30. Lean mass was measured with dual energy X-ray absorptiometry. Lower-body muscle strength and endurance were determined using isokinetic dynamometry. Upper-body muscle strength was maximal handgrip strength. Functional ability was assessed using 6-m gait speed and 30-second chair stand tests. Accelerometry measured physical activity. Results: Intakes of 25 g or more of protein at 1 or more of the 3 periods was positively associated with lean mass (ß ± S.E.; 1.067 ± 0.273 kg, P < .001) and upper-body (3.274 ± 0.737 kg, P < .001) and lower-body strength (22.858 ± 7.918 Nm, P = .004) when controlling for age, body mass index, physical activity, and energy and protein intakes. Consuming at least 0.24 g/kg/period for those under 60 years and 0.4 g/kg/period for those 60 years and older was related to lean mass (0.754 ± 0.244 kg, P = .002), upper-body strength (2.451 ± 0.658 kg, P < .001), and lower-body endurance (184.852 ± 77.185 J, P = .018), controlling for the same variables. Conclusions: Evenness of protein intake is related to lean mass, muscle strength, and muscular endurance in women. Spreading protein intake throughout the day maximizes the anabolic response to dietary protein, benefiting muscle mass and performance.

19.
Front Nutr ; 9: 873512, 2022.
Article in English | MEDLINE | ID: mdl-35634414

ABSTRACT

Background: Research on the role of protein in the diet has evolved beyond a focus on quantity to include the impact of its quality and distribution across meal times in an effort to optimize dietary protein recommendations. Objective: To determine the association of dietary protein amount, type, and intake pattern with grip strength in adults. Design: Data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 for adults 19 + years (N = 9,214) were used with exclusions for pregnant and lactating women. Intakes of dietary total protein (TP), animal protein (AP, including dairy), plant protein (PP), and leucine (Leu) were determined using day 1 24 h dietary recall data after adjusting for the complex sample design of NHANES. Regression analyses were used to assess the association of dietary protein and leucine intake quartiles, and whether consuming > 20 g of dietary protein at one or more meals was related to grip strength with adjustment for age, gender, and ethnicity. Results: Mean intake of TP among adults aged 19 + years was 83.6 ± 0.5 g/day, and 2/3rd of this was from animal sources (including dairy). Grip strength increased (p < 0.05) with increasing quartiles of TP, AP, PP, and leucine among all adults 19 + years (ß = 1.340.19, 1.27 ± 0.19, 0.76 ± 0.20, and 1.33 ± 0.23, respectively), 19-50 years (ß = 1.14 ± 0.27, 1.06 ± 0.25, 0.77 ± 0.30, and 1.18 ± 0.27, respectively), and 51 + years (ß = 0.95 ± 0.26, 1.08 ± 0.27, and 1.05 ± 0.27, respectively, for TP, AP, and Leu); however, the increase was more pronounced for AP than PP. Grip strength also increased (p < 0.05) with increasing the number of meal occasions containing > 20 g of dietary protein (ß = 1.50 ± 0.20, 1.41 ± 0.25, and 0.91 ± 0.37 for 19+, 19-50, and 51 + years, respectively), and significant increases were detected for two meals compared to zero meals. Conclusion: Dietary protein quantity, quality, and distribution should be considered collectively when looking to optimize protein intake to support muscle strength and function.

20.
Nutrition ; 97: 111607, 2022 05.
Article in English | MEDLINE | ID: mdl-35231855

ABSTRACT

OBJECTIVE: The aim of this study was to observe the relationship of protein intake at each meal and daily total with change in lean tissue mass with progressive resistance exercise training (RET) in healthy middle-aged women. METHODS: Twenty-two healthy Japanese women were recruited from Shiga Prefecture, Japan, and a supervised whole body RET program was conducted twice a week for 16 wk. The dietary intake was assessed using 3-d dietary records. Dual-energy x-ray absorptiometry was used to measure the whole body lean soft tissue mass (WLTM). Multiple regression analysis was performed to examine the relationship between the protein intake and RET-induced changes in the WLTM after adjusting for age, sleep quality, physical activity, and energy intake. RESULTS: The 16-wk RET program caused a significant gain in the WLTM (1.46 ± 0.45%, P = 0.004). Multiple regression analysis showed that the baseline protein intake at breakfast was negatively associated with the percent change in the WLTM (ß = -1.598; P = 0.022). Additionally, the percent change (ß = 0.624; P = 0.018) in protein intake at breakfast was positively associated with the percent change in WLTM. CONCLUSION: Increasing protein intake at breakfast may contribute to RET-induced muscle hypertrophy in middle-aged women, especially among those who habitually consume low-protein levels at breakfast. However, future studies with larger sample sizes are required to confirm the importance of protein intake at breakfast.


Subject(s)
Resistance Training , Body Composition , Dietary Proteins/metabolism , Female , Humans , Hypertrophy/metabolism , Middle Aged , Muscle Strength , Muscle, Skeletal/metabolism , Pilot Projects , Resistance Training/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...