Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Data Brief ; 56: 110765, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39263229

ABSTRACT

The data presented in this article is generated by a steady-state simulation for performing a techno-economic assessment for comparing three electrolysis technologies in the PtM context. The data is focused on two aspects. First, the description of the steady-state simulation of six PtM systems modeled using Aspen Custom Modeler (ACM) and Aspen Plus (AP). Second, an economic assessment is carried out for each of the mentioned PtM systems to compare the feasibility, the profitability and performance of these systems on a larger scale to produce synthetic natural gas, power generation and carbon utilization given in the main research article. Three electrolysis technologies (namely Alkaline Electrolysis - AE, Proton Exchange Membrane Electrolysis - PEME and Solid Oxide Electrolysis - SOE) were modeled having in mind two methane applications: a combined cycle for power generation and the syngas generation. In addition, on each PtM system is carried out an economic evaluation by calculating fixed capital investment (FCI) and manufacturing costs (MC).

2.
Polymers (Basel) ; 15(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38231907

ABSTRACT

Most commercially available polymers are synthesized from compounds derived from petroleum, a finite resource. Because of this, there is a growing interest in the synthesis of new polymeric materials using renewable monomers. Following this concept, this work reports on the use of muconic acid as a renewable source for the development of new polyamides that can be used as proton-exchange membranes. Muconic acid was used as a comonomer in polycondensation reactions with 4,4'-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline, 2,5-diaminobencensulfonic acid, and 4,4'-diamino-2,2'-stilbenedisulfonic acid as comonomers in the synthesis of two new series of partially renewable aromatic-aliphatic polyamides, in which the degree of sulfonation was varied. Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F-NMR) techniques were used to confirm the chemical structures of the new polyamides. It was also observed that the degree of sulfonation was proportional to the molar ratio of the diamines in the feed. Subsequently, membranes were prepared by casting, and a complete characterization was conducted to determine their decomposition temperature (Td), glass transition temperature (Tg), density (ρ), and other physical properties. In addition, water uptake (Wu), ion-exchange capacity (IEC), and proton conductivity (σp) were determined for these membranes. Electrochemical impedance spectroscopy (EIS) was used to determine the conductivity of the membranes. MUFASA34 exhibited a σp value equal to 9.89 mS·cm-1, being the highest conductivity of all the membranes synthesized in this study.

3.
Membranes (Basel) ; 12(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36363611

ABSTRACT

This paper validates a sinusoidal approach for the proton-exchange membrane fuel cell (PEMFC) model as a supplement to experimental studies. An FC simulation or hardware emulation is necessary for prototype design, testing, and fault diagnosis to reduce the overall cost. For this objective, a sinusoidal model that is capable of accurately estimating the voltage behavior from the operating current value of the DC was developed. The model was tested using experimental data from the Ballard Nexa 1.2 kW fuel cell (FC). This methodology offers a promising approach for static and current-voltage, characteristic of the three regions of operation. A study was carried out to evaluate the effectiveness and superiority of the proposed FC Sinusoidal model compared with the Diffusive Global model and the Evolution Strategy.

4.
Membranes (Basel) ; 12(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36363613

ABSTRACT

An accurate model of a proton-exchange membrane fuel cell (PEMFC) is important for understanding this fuel cell's dynamic process and behavior. Among different large-scale energy storage systems, fuel cell technology does not have geographical requirements. To provide an effective operation estimation of PEMFC, this paper proposes a support vector machine (SVM) based model. The advantages of the SVM, such as the ability to model nonlinear systems and provide accurate estimations when nonlinearities and noise appear in the system, are the main motivations to use the SVM method. This model can capture the static and dynamic voltage-current characteristics of the PEMFC system in the three operating regions. The validity of the proposed SVM model has been verified by comparing the estimated voltage with the real measurements from the Ballard Nexa® 1.2 kW fuel cell (FC) power module. The obtained results have shown high accuracy between the proposed model and the experimental operation of the PEMFC. A statistical study is developed to evaluate the effectiveness and superiority of the proposed SVM model compared with the diffusive global (DG) model and the evolution strategy (ES)-based model.

5.
Membranes (Basel) ; 11(12)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34940454

ABSTRACT

This paper proposes a Gaussian approach for the proton-exchange membrane fuel cell (PEMFC) model that estimates its voltage behavior from the operating current value. A multi-parametric Gaussian model and an unconstrained optimization formulation based on a conventional non-linear least squares optimizer is mainly considered. The model is tested using experimental data from the Ballard Nexa 1.2 kW fuel cell (FC). This methodology offers a promising approach for static and current-voltage, characteristic of the three regions of operation. A statistical study is developed to evaluate the effectiveness and superiority of the proposed FC Gaussian model compared with the Diffusive Global model and the Evolution Strategy. In addition, an approximation to the exponential function for a Gaussian model simplification can be used in systems that require real-time emulators or complex long-time simulations.

6.
Membranes (Basel) ; 11(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34677504

ABSTRACT

Microbial fuel cells (MFCs) are electrochemical devices focused on bioenergy generation and organic matter removal carried out by microorganisms under anoxic environments. In these types of systems, the anodic oxidation reaction is catalyzed by anaerobic microorganisms, while the cathodic reduction reaction can be carried out biotically or abiotically. Membranes as separators in MFCs are the primary requirements for optimal electrochemical and microbiological performance. MFC configuration and operation are similar to those of proton-exchange membrane fuel cells (PEMFCs)-both having at least one anode and one cathode split by a membrane or separator. The Nafion® 117 (NF-117) membrane, made from perfluorosulfonic acid, is a membrane used as a separator in PEMFCs. By analogy of the operation between electrochemical systems and MFCs, NF-117 membranes have been widely used as separators in MFCs. The main disadvantage of this type of membrane is its high cost; membranes in MFCs can represent up to 60% of the MFC's total cost. This is one of the challenges in scaling up MFCs: finding alternative membranes or separators with low cost and good electrochemical characteristics. The aim of this work is to critically review state-of-the-art membranes and separators used in MFCs. The scope of this review includes: (i) membrane functions in MFCs, (ii) most-used membranes, (iii) membrane cost and efficiency, and (iv) membrane-less MFCs. Currently, there are at least 20 different membranes or separators proposed and evaluated for MFCs, from basic salt bridges to advanced synthetic polymer-based membranes, including ceramic and unconventional separator materials. Studies focusing on either low cost or the use of natural polymers for proton-exchange membranes (PEM) are still scarce. Alternatively, in some works, MFCs have been operated without membranes; however, significant decrements in Coulombic efficiency were found. As the type of membrane affects the performance and total cost of MFCs, it is recommended that research efforts are increased in order to develop new, more economic membranes that exhibit favorable properties and allow for satisfactory cell performance at the same time. The current state of the art of membranes for MFCs addressed in this review will undoubtedly serve as a key insight for future research related to this topic.

7.
Polymers (Basel) ; 13(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34577965

ABSTRACT

The study of the electrochemical catalyst conversion of renewable electricity and carbon oxides into chemical fuels attracts a great deal of attention by different researchers. The main role of this process is in mitigating the worldwide energy crisis through a closed technological carbon cycle, where chemical fuels, such as hydrogen, are stored and reconverted to electricity via electrochemical reaction processes in fuel cells. The scientific community focuses its efforts on the development of high-performance polymeric membranes together with nanomaterials with high catalytic activity and stability in order to reduce the platinum group metal applied as a cathode to build stacks of proton exchange membrane fuel cells (PEMFCs) to work at low and moderate temperatures. The design of new conductive membranes and nanoparticles (NPs) whose morphology directly affects their catalytic properties is of utmost importance. Nanoparticle morphologies, like cubes, octahedrons, icosahedrons, bipyramids, plates, and polyhedrons, among others, are widely studied for catalysis applications. The recent progress around the high catalytic activity has focused on the stabilizing agents and their potential impact on nanomaterial synthesis to induce changes in the morphology of NPs.

8.
Heliyon ; 7(3): e06506, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33817374

ABSTRACT

The study presents a complete one-dimensional model to evaluate the parameters that describe the operation of a Proton Exchange Membrane (PEM) electrolyzer and PEM fuel cell. The mathematical modeling is implemented in Matlab/Simulink® software to evaluate the influence of parameters such as temperature, pressure, and overpotentials on the overall performance. The models are further merged into an integrated electrolyzer-fuel cell system for electrical power generation. The operational description of the integrated system focuses on estimating the overall efficiency as a novel indicator. Additionally, the study presents an economic assessment to evaluate the cost-effectiveness based on different economic metrics such as capital cost, electricity cost, and payback period. The parametric analysis showed that as the temperature rises from 30 to 70 °C in both devices, the efficiency is improved between 5-20%. In contrast, pressure differences feature less relevance on the overall performance. Ohmic and activation overpotentials are highlighted for the highest impact on the generated and required voltage. Overall, the current density exhibited an inverse relation with the efficiency of both devices. The economic evaluation revealed that the integrated system can operate at variable load conditions while maintaining an electricity cost between 0.3-0.45 $/kWh. Also, the capital cost can be reduced up to 25% while operating at a low current density and maximum temperature. The payback period varies between 6-10 years for an operational temperature of 70 °C, which reinforces the viability of the system. Overall, hydrogen-powered systems stand as a promising technology to overcome energy transition as they provide robust operation from both energetic and economic viewpoints.

9.
Polymers (Basel) ; 13(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396908

ABSTRACT

The future availability of synthetic polymers is compromised due to the continuous depletion of fossil reserves; thus, the quest for sustainable and eco-friendly specialty polymers is of the utmost importance to ensure our lifestyle. In this regard, this study reports on the use of oleic acid as a renewable source to develop new ionomers intended for proton exchange membranes. Firstly, the cross-metathesis of oleic acid was conducted to yield a renewable and unsaturated long-chain aliphatic dicarboxylic acid, which was further subjected to polycondensation reactions with two aromatic diamines, 4,4'-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline and 4,4'-diamino-2,2'-stilbenedisulfonic acid, as comonomers for the synthesis of a series of partially renewable aromatic-aliphatic polyamides with an increasing degree of sulfonation (DS). The polymer chemical structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F NMR) spectroscopy, which revealed that the DS was effectively tailored by adjusting the feed molar ratio of the diamines. Next, we performed a study involving the ion exchange capacity, the water uptake, and the proton conductivity in membranes prepared from these partially renewable long-chain polyamides, along with a thorough characterization of the thermomechanical and physical properties. The highest value of the proton conductivity determined by electrochemical impedance spectroscopy (EIS) was found to be 1.55 mS cm-1 at 30 °C after activation of the polymer membrane.

SELECTION OF CITATIONS
SEARCH DETAIL