Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
J Pharm Biomed Anal ; 246: 116164, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776585

ABSTRACT

Evaluating the quality of herbal medicine based on the content and activity of its main components is highly beneficial. Developing an eco-friendly determination method has significant application potential. In this study, we propose a new method to simultaneously predict the total flavonoid content (TFC), xanthine oxidase inhibitory (XO) activity, and antioxidant activity (AA) of Prunus mume using near-infrared spectroscopy (NIR). Using the sodium nitrite-aluminum nitrate-sodium hydroxide colorimetric method, uric acid colorimetric method, and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) free radical scavenging activity as reference methods, we analyzed TFC, XO, and AA in 90 P. mume samples collected from different locations in China. The solid samples were subjected to NIR. By employing spectral preprocessing and optimizing spectral bands, we established a rapid prediction model for TFC, XO, and AA using partial least squares regression (PLS). To improve the model's performance and eliminate irrelevant variables, competitive adaptive reweighted sampling (CARS) was used to calculate the pretreated full spectrum. Evaluation model indicators included the root mean square error of cross-validation (RMSECV) and determination coefficient (R2) values. The TFC, XO, and AA model, combining optimal spectral preprocessing and spectral bands, had RMSECV values of 0.139, 0.117, and 0.121, with RCV2 values exceeding 0.92. The root mean square error of prediction (RMSEP) for the TFC, XO, and AA model on the prediction set was 0.301, 0.213, and 0.149, with determination coefficient (RP2) values of 0.915, 0.933, and 0.926. The results showed a strong correlation between NIR with TFC, XO, and AA in P. mume. Therefore, the established model was effective, suitable for the rapid quantification of TFC, XO, and AA. The prediction method is simple and rapid, and can be extended to the study of medicinal plant content and activity.


Subject(s)
Antioxidants , Flavonoids , Prunus , Spectroscopy, Near-Infrared , Xanthine Oxidase , Spectroscopy, Near-Infrared/methods , Flavonoids/analysis , Prunus/chemistry , Xanthine Oxidase/antagonists & inhibitors , Antioxidants/analysis , Least-Squares Analysis , Enzyme Inhibitors/analysis , Enzyme Inhibitors/pharmacology , China
2.
Plants (Basel) ; 13(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674486

ABSTRACT

Flower color is an important trait that affects the economic value of Prunus mume, a famous ornamental plant in the Rosaceae family. P. mume with purple-red flowers is uniquely charming and highly favored in landscape applications. However, little is known about its flower coloring mechanism, which stands as a critical obstacle on the path to innovative breeding for P. mume flower color. In this study, transcriptomic and targeted metabolomic analyses of purple-red P. mume and white P. mume were performed to elucidate the mechanism of flower color formation. In addition, the expression patterns of key genes were analyzed using an RT-qPCR experiment. The results showed that the differential metabolites were significantly enriched in the flavonoid synthesis pathway. A total of 14 anthocyanins emerged as the pivotal metabolites responsible for the differences in flower color between the two P. mume cultivars, comprising seven cyanidin derivatives, five pelargonium derivatives, and two paeoniflorin derivatives. Moreover, the results clarified that the metabolic pathway determining flower color in purple-red P. mume encompasses two distinct branches: cyanidin and pelargonidin, excluding the delphinidin branch. Additionally, through the integrated analysis of transcriptomic and metabolomic data, we identified 18 key genes responsible for anthocyanin regulation, thereby constructing the gene regulatory network for P. mume anthocyanin synthesis. Among them, ten genes (PmCHI, PmGT2, PmGT5, PmGST3, PmMYB17, PmMYB22, PmMYB23, PmbHLH4, PmbHLH10, and PmbHLH20) related to anthocyanin synthesis were significantly positively correlated with anthocyanin contents, indicating that they may be the key contributors to anthocyanin accumulation. Our investigation contributes a novel perspective to understanding the mechanisms responsible for flower color formation in P. mume. The findings of this study introduce novel strategies for molecular design breeding aimed at manipulating flower color in P. mume.

3.
Caspian J Intern Med ; 15(1): 161-171, 2024.
Article in English | MEDLINE | ID: mdl-38463914

ABSTRACT

Background: The aim of this study was to find the difference between the liver function test (LFT) and hepatorenal index (HRI), before and after the administration of Prunus mume (PM) and choline i.e., to find the predictors of the non-alcoholic fatty liver disease (NAFLD) severity according its HRI, during the three-month follow-up period. Methods: LFT, glucose, and lipid tests were determined in 168 NAFLD patients, at baseline and after three-month drug treatment. HRI was calculated by Image J software analyzing the ultrasound images, and according its value, 3 groups of NAFLD were formed. Results: The HRI at baseline (1.3598±0.1744) and after 3 months therapy (1.3061±0.1923) differs significantly (p<0.0001). Plasma glucose (FPG) (p<0.0001), glycated hemoglobin (HbA1c) (P=0.002), alanine aminotransferase (ALT) (p<0.0001), aspartate aminotransferase (AST) (P=0.0006), gamma-glutamil transferase (γ-GT) (P=0.0053), high density lipoprotein cholesterol (HDL-Ch) (p<0.0001) and triglycerides (P=0.041) differ significantly, too. HRI is positively correlated with: HbA1c (P=0.035), ALT (P=0.002), AST (P=0.003), γ-GT (P=0.043), and triglycerides (P=0.002) and inversely correlated with HDL-Ch (P=0.011). In multiple regression results (standard coefficient and p-value), the independent predictors for HRI in NAFLD patients were: HbA1c (0.1443, 0.0004), ALT (0.001142, 0.0081), triglycerides (0.0431, 0.0235) and γ-GT (0.001376, 0.0329). Conclusion: Three-month administration of PM and choline have beneficial effects on the regulation of glucose and lipid metabolism (HDL-Ch), and on LFT. This plant extract significantly reduces the levels of FPG, HbA1c, ALT, AST, γ-GT, triglycerides and increases HDL-Ch. The triglycerides, ALT, γ-GT and HbA1c are positive independent predictors for the severity of NAFLD.

4.
Plants (Basel) ; 13(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38475550

ABSTRACT

The species Prunus mume consists of uniquely aromatic woody perennials with large amounts of free aromatic substances in the flower cells. Uridine diphosphate glycosyltransferase (UGT) modifies these free aromatic substances into water-soluble glycoside-bound volatiles (GBVs) which play an important role in regulating the use of volatiles by plants for information exchange, defense, and stress tolerance. To investigate the changes in the glycosidic state of aromatic substances during the flowering period of P. mume and discern the location and expression of glycoside synthesis genes, we extracted and enzymatically hydrolyzed GBVs of P. mume and then utilized gas chromatography-mass spectrometry (GC-MS) to characterize and analyze the types and contents of GBV glycosides. Further, we identified and classified the members of the UGT gene family of P. mume using the bioinformatic method and analyzed the correlation between the expression of the UGT family genes in P. mume and the changes in glycosidic content. The results showed that the benzenoids were the main aromatic substance that was glycosylated during flowering in P. mume and that glycosidic benzaldehyde was the most prevalent compound in different flower parts and at different flowering stages. The titer of glycoside benzaldehyde gradually increased during the bud stage and reached the highest level at the big bud stage (999.6 µg·g-1). Significantly, titers of glycoside benzaldehyde significantly decreased and stabilized after flowering while the level of free benzaldehyde, in contrast, significantly increased and then reached a plateau after the flowering process was completed. A total of 155 UGT family genes were identified in the P. mume genome, which were divided into 13 subfamilies (A-E, G-N); according to the classification of Arabidopsis thaliana UGT gene subfamilies, the L subfamily contains 17 genes. The transcriptome analysis showed that PmUGTL9 and PmUGTL13 were highly expressed in the bud stage and were strongly correlated with the content of the glycosidic form of benzaldehyde at all stages of flowering. This study provides a theoretical basis to elucidate the function of UGT family genes in P. mume during flower development, to explore the mechanism of the storage and transportation of aromatic compounds in flower tissues, and to exploit industrial applications of aromatic products from P. mume.

5.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 239-251, 2024 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-38258644

ABSTRACT

'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.


Subject(s)
Glutamine/analogs & derivatives , Plant Extracts , Porifera , Prunus , Animals , Anthocyanins , DNA Shuffling , Flowers/genetics , Prunus/genetics
6.
J Plant Res ; 137(1): 95-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37938365

ABSTRACT

Prunus mume is an important medicinal plant with ornamental and edible value. Its flowers contain phenylpropanoids, flavonoids and other active components, that have important medicinal and edible value, yet their molecular regulatory mechanisms in P. mume remain unclear. In this study, the content of total flavonoid and total phenylpropanoid of P. mume at different developmental periods was measured first, and the results showed that the content of total flavonoid and total phenylpropanoid gradually decreased in three developmental periods. Then, an integrated analysis of transcriptome and metabolome was conducted on three developmental periods of P. mume to investigate the law of synthetic accumulation for P. mume metabolites, and the key enzyme genes for the biosynthesis of phenylpropanoids and flavonoids were screened out according to the differentially expressed genes (DEGs). A total of 14,332 DEGs and 38 differentially accumulate metabolites (DAMs) were obtained by transcriptomics and metabolomics analysis. The key enzyme genes and metabolites in the bud (HL) were significantly different from those in the half-opening (BK) and full-opening (QK) periods. In the phenylpropanoid and flavonoid biosynthesis pathway, the ion abundance of chlorogenic acid, naringenin, kaempferol, isoquercitrin, rutin and other metabolites decreased with the development of flowers, while the ion abundance of cinnamic acid increased. Key enzyme genes such as HCT, CCR, COMT, CHS, F3H, and FLS positively regulate the downstream metabolites, while PAL, C4H, and 4CL negatively regulate the downstream metabolites. Moreover, the key genes FLS (CL4312-2, CL4312-3, CL4312-4, CL4312-5, CL4312-6) regulating the synthesis of flavonols are highly expressed in bud samples. The dynamic changes of these metabolites were validated by determining the content of 14 phenylpropanoids and flavonoids in P. mume at different developmental periods, and the transcription expression levels of these genes were validated by real-time PCR. Our study provides new insights into the molecular mechanism of phenylpropanoid and flavonoid accumulation in P. mume.


Subject(s)
Prunus , Transcriptome , Prunus/genetics , Gene Expression Profiling , Flavonoids/metabolism , Flowers/physiology , Gene Expression Regulation, Plant
7.
Isotopes Environ Health Stud ; 60(1): 1-12, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38129760

ABSTRACT

ABSTRACTThe objective of this study was to assess the impact of water deficit stress during fruit cultivation on the δ13C values of citric acid and malic acid in Japanese apricots at different ripeness stages and their resulting liqueurs. Our experiments show that water deficit stress increases the δ13C values of citric acid and malic acid in tree-ripened fruits, counteracting the typical decrease during ripening. However, water deficit treatment has a minimal effect on the δ13C values of organic acids in green fruits. Regardless of fruit ripeness or water status, the δ13C values of organic acids in fruits are directly reflected in the resulting liqueurs. Overall, water deficit stress during fruit cultivation has the potential to promote similarity in the δ13C values of organic acids across fruits at different ripeness levels, reducing variations among liqueurs derived from fruits of varying ripeness levels.


Subject(s)
Malates , Prunus armeniaca , Carbon Isotopes , Fruit , Citric Acid , Water
8.
Chinese Journal of Biotechnology ; (12): 239-251, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008092

ABSTRACT

'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.


Subject(s)
Animals , Anthocyanins , DNA Shuffling , Flowers/genetics , Porifera , Prunus/genetics , Glutamine/analogs & derivatives , Plant Extracts
9.
Plants (Basel) ; 12(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38140486

ABSTRACT

Callose is an important polysaccharide composed of beta-1,3-glucans and is widely implicated in plant development and defense responses. Callose synthesis is mainly catalyzed by a family of callose synthases, also known as glucan synthase-like (GSL) enzymes. Despite the fact that GSL family genes were studied in a few plant species, their functional roles have not been fully understood in woody perennials. In this study, we identified total of 84 GSL genes in seven plant species and classified them into six phylogenetic clades. An evolutionary analysis revealed different modes of duplication driving the expansion of GSL family genes in monocot and dicot species, with strong purifying selection constraining the protein evolution. We further examined the gene structure, protein sequences, and physiochemical properties of 11 GSL enzymes in Prunus mume and observed strong sequence conservation within the functional domain of PmGSL proteins. However, the exon-intron distribution and protein motif composition are less conservative among PmGSL genes. With a promoter analysis, we detected abundant hormonal responsive cis-acting elements and we inferred the putative transcription factors regulating PmGSLs. To further understand the function of GSL family genes, we analyzed their expression patterns across different tissues, and during the process of floral bud development, pathogen infection, and hormonal responses in Prunus species and identified multiple GSL gene members possibly implicated in the callose deposition associated with bud dormancy cycling, pathogen infection, and hormone signaling. In summary, our study provides a comprehensive understanding of GSL family genes in Prunus species and has laid the foundation for future functional research of callose synthase genes in perennial trees.

10.
Int J Mol Sci ; 24(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37762261

ABSTRACT

The CCD gene family plays a crucial role in the cleavage of carotenoids, converting them into apocarotenoids. This process not only impacts the physiology and development of plants but also enhances their tolerance toward different stresses. However, the character of the PmCCD gene family and its role in ornamental woody Prunus mume remain unclear. Here, ten non-redundant PmCCD genes were identified from the P. mume genome, and their physicochemical characteristics were predicted. According to the phylogenetic tree, PmCCD proteins were classified into six subfamilies: CCD1, CCD4, CCD7, CCD8, NCED and CCD-like. The same subfamily possessed similar gene structural patterns and numbers of conserved motifs. Ten PmCCD genes were concentrated on three chromosomes. PmCCD genes exhibited interspecific collinearity with P. armeniaca and P. persica. Additionally, PmCCD genes had obvious specificity in different tissues and varieties. Compared with white-flowered 'ZLE', PmCCD1 and PmCCD4 genes were low-expressed in 'HJH' with yellow petals, which suggested PmCCD1 and PmCCD4 might be related to the formation of yellow flowers in P. mume. Nine PmCCD genes could respond to NaCl or PEG treatments. These genes might play a crucial role in salt and drought resistance in P. mume. Moreover, PmVAR3 and PmSAT3/5 interacted with PmCCD4 protein in yeast and tobacco leaf cells. This study laid a foundation for exploring the role of the PmCCD gene family in flower coloration and stress response in P. mume.


Subject(s)
Prunus , Phylogeny , Prunus/metabolism , Genes, Plant , Flowers , Gene Expression Regulation, Plant
11.
Plants (Basel) ; 12(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37765497

ABSTRACT

Prunus mume is a famous ornamental woody tree with colorful flowers. P. mume with yellow flowers is one of the most precious varieties. Regretfully, metabolites and regulatory mechanisms of yellow flowers in P. mume are still unclear. This hinders innovation of flower color breeding in P. mume. To elucidate the metabolic components and molecular mechanisms of yellow flowers, we analyzed transcriptome and metabolome between 'HJH' with yellow flowers and 'ZLE' with white flowers. Comparing the metabolome of the two varieties, we determined that carotenoids made contributions to the yellow flowers rather than flavonoids. Lutein was the key differential metabolite to cause yellow coloration of 'HJH'. Transcriptome analysis revealed significant differences in the expression of carotenoid cleavage dioxygenase (CCD) between the two varieties. Specifically, the expression level of PmCCD4 was higher in 'ZLE' than that in 'HJH'. Moreover, we identified six major transcription factors that probably regulated PmCCD4 to affect lutein accumulation. We speculated that carotenoid cleavage genes might be closely related to the yellow flower phenotype in P. mume. Further, the coding sequence of PmCCD4 has been cloned from the 'HJH' petals, and bioinformatics analysis revealed that PmCCD4 possessed conserved histidine residues, ensuring its enzymatic activity. PmCCD4 was closely related to PpCCD4, with a homology of 98.16%. Instantaneous transformation analysis in petal protoplasts of P. mume revealed PmCCD4 localization in the plastid. The overexpression of PmCCD4 significantly reduced the carotenoid content in tobacco plants, especially the lutein content, indicating that lutein might be the primary substrate for PmCCD4. We speculated that PmCCD4 might be involved in the cleavage of lutein in plastids, thereby affecting the formation of yellow flowers in P. mume. This work could establish a material and molecular basis of molecular breeding in P. mume for improving the flower color.

12.
Mol Genet Genomics ; 298(6): 1365-1375, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37632570

ABSTRACT

The Japanese apricot (Prunus mume) is a popular fruit tree in Japan. However, the genetic factors associated with fruit trait variations are poorly understood. In this study, we investigated nine fruit-associated traits, including harvesting time, fruit diameter, fruit shape, fruit weight, stone (endocarp) weight, ratio of stone weight to fruit weight, and rate of fruit gumming, using 110 Japanese apricot accessions over four years. A genome-wide association study (GWAS) was performed for these traits and strong signals were detected on chromosome 6 for harvesting time and fruit diameters. These peaks were shown to undergo strong artificial selection during the differentiation of small-fruit cultivars. The genomic region defined by the GWAS and XP-nSL analyses harbored several candidate genes associated with plant hormone regulation. Furthermore, the alleles of small-fruit cultivars in this region were shown to have genetic proximity to some Chinese cultivars of P. mume. These results indicate that the small-fruit trait originated in China; after being introduced into Japan, it was preferred and selected by the Japanese people, resulting in the differentiation of small-fruit cultivars.


Subject(s)
Prunus armeniaca , Prunus , Humans , Prunus armeniaca/genetics , Prunus/genetics , Fruit/genetics , Genome-Wide Association Study , Genomics
14.
Front Genet ; 14: 1208488, 2023.
Article in English | MEDLINE | ID: mdl-37229203

ABSTRACT

[This corrects the article DOI: 10.3389/fgene.2022.1013822.].

15.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240174

ABSTRACT

Protein kinases of the MAPK cascade family (MAPKKK-MAPKK-MAPK) play an essential role in plant stress response and hormone signal transduction. However, their role in the cold hardiness of Prunus mume (Mei), a class of ornamental woody plant, remains unclear. In this study, we use bioinformatic approaches to assess and analyze two related protein kinase families, namely, MAP kinases (MPKs) and MAPK kinases (MKKs), in wild P. mume and its variety P. mume var. tortuosa. We identify 11 PmMPK and 7 PmMKK genes in the former species and 12 PmvMPK and 7 PmvMKK genes in the latter species, and we investigate whether and how these gene families contribute to cold stress responses. Members of the MPK and MKK gene families located on seven and four chromosomes of both species are free of tandem duplication. Four, three, and one segment duplication events are exhibited in PmMPK, PmvMPK, and PmMKK, respectively, suggesting that segment duplications play an essential role in the expansion and evolution of P. mume and its gene variety. Moreover, synteny analysis suggests that most MPK and MKK genes have similar origins and involved similar evolutionary processes in P. mume and its variety. A cis-acting regulatory element analysis shows that MPK and MKK genes may function in P. mume and its variety's development, modulating processes such as light response, anaerobic induction, and abscisic acid response as well as responses to a variety of stresses, such as low temperature and drought. Most PmMPKs and PmMKKs exhibited tissue-specifific expression patterns, as well as time-specific expression patterns that protect them through cold. In a low-temperature treatment experiment with the cold-tolerant cultivar P. mume 'Songchun' and the cold-sensitive cultivar 'Lve', we find that almost all PmMPK and PmMKK genes, especially PmMPK3/5/6/20 and PmMKK2/3/6, dramatically respond to cold stress as treatment duration increases. This study introduces the possibility that these family members contribute to P. mume's cold stress response. Further investigation is warranted to understand the mechanistic functions of MAPK and MAPKK proteins in P. mume development and response to cold stress.


Subject(s)
Mitogen-Activated Protein Kinase Kinases , Prunus , Mitogen-Activated Protein Kinase Kinases/metabolism , Cold-Shock Response/genetics , Prunus/genetics , Prunus/metabolism , Genome, Plant , Amino Acid Sequence , Sequence Alignment , Plants/metabolism , Phylogeny , Gene Expression Regulation, Plant
16.
Foods ; 12(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36981073

ABSTRACT

Prunus mume (Maesil) is used in health foods and alternative medicine in Korea. In the present study, the anti-inflammatory and antioxidant effects of phenolics from P. mume seed extracts were examined. First, the biological activities of various P. mume extracts were evaluated, and the profiles of their chemical compounds were investigated by Global Natural Products Social (GNPS)-molecular networking. Among these extracts, fermented Maesil seed extract (FMSE) showed potent anti-inflammatory and antioxidant activity, and demonstrated the presence of phenolic clusters in GNPS-based studies. Thus, the chemical constituents of this extract were further investigated. Subsequently, the chemical composition of the active CH2Cl2 fraction of FMSE was explored using an advanced GNPS analysis tool, MolNetEnhancer. In addition, the molecular structure of compound 1 from the CH2Cl2 fraction was similarly predicted with Network Annotation Propagation (NAP). Finally, the anti-inflammatory and antioxidant effects of compound 1 were confirmed by lipopolysaccharide (LPS)-induced nitric oxide production and DPPH assay. Western blot analysis revealed that compound 1 downregulated the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins. The molecular docking simulation additionally confirmed significant interactions of 1 with iNOS and COX-2 proteins. Our findings suggested that an integrated GNPS-based approach could prioritize samples in the early fractionation process and improve the accuracy of target compound prediction.

17.
Bioengineering (Basel) ; 10(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36671646

ABSTRACT

Prunus mume Siebold et Zuccarini is mainly consumed as processed fruits in beverages, vinegar, alcohol, or fruit syrup; studies have reported various functional effects. Many pharmacological and functional studies exist on fruit extracts or processed foods using fruits, however, efficacy studies on various parts of P. mume, including the bark, branches, flowers, and leaves, have not been sufficiently conducted. A previous study revealed that a 70% ethanol extract of P. mume branches induced vascular endothelium-dependent vasorelaxant effects in rat thoracic aortic rings. Therefore, we hypothesized that various parts (the fruits, flowers, leaves, and bark) might have vasorelaxant effects. We evaluated the effects of P. mume extracts on the vascular relaxation of isolated rat thoracic aorta and hypotensive effects in spontaneous hypertensive rats (SHR). A 70% ethanol extract of P. mume bark (PBaE) was the most effective, thus, we investigated its vasorelaxant mechanisms and hypotensive effects. PBaE lowered the blood pressure in SHR and induced the vascular endothelium-dependent relaxation of isolated rat aortic rings via the NO/sGC/cGMP and the PGI2 pathways in the vascular smooth muscle. Potassium channels, such as KCa, KATP, KV, and Kir, were partially associated with a PBaE-induced vasorelaxation. Therefore, PBaE might help prevent and treat hypertension.

18.
Plants (Basel) ; 12(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36679020

ABSTRACT

Prunus mume is a traditional Chinese plant with high ornamental and application values due to its very early blooming and unique fragrance. Long-term breeding and cultivation have resulted in a variety of P. mume blossoms and have made their exploitation more possible. Existing studies on the volatile metabolome and aroma of P. mume blossoms are limited. In this study, six extensively planted cultivars of P. mume blossoms, including Gulihong (GLH), Yudie (YD), LvE (LE), Dongfang Zhusha (DFZS), Jiangmei (JM), and Gongfen (GF), were investigated for their differences in terms of volatile metabolome, as well as their aroma characteristics based on the strategies and methods of metabolomics. The volatile metabolites were analyzed using HS-SPME-GC-MS technique. A total of eighty-nine compounds were detected and sixty-five of them were tentatively identified, including thirty-seven phenylpropanoids/benzenes, seventeen fatty acid derivatives, ten terpenoids, and one other compound. YD contains the most volatile metabolites in terms of number and amounts, which impart more abundant aromas to this cultivar. Fifteen differential compounds were screened through the untargeted metabolic analysis of twenty-nine samples by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), while nine compounds were screened based on the odor activity value (OAV) analysis of the sixty-five identified compounds. GLH and GF, JM and LE were found to be more similar to each other based on chemometrics analysis of both volatile contents and OAVs, while YD and DFZS were markedly different from other cultivars. Six main metabolites, including benzaldehyde, methyl benzoate, benzyl acetate, eugenol, (E)-cinnamic alcohol, and 4-allylphenol, together with 2-nonenal, 3,4-dimethoxytoluene, and trans-ß-Ionone were screened as differential compounds, owing to their higher contents and/or lower olfactory threshold, which endow an almond, cherry, phenolic, wintergreen, cananga odorata, floral, jasmine, hyacinth, cinnamon, clove, woody, medicinal, and violet fragrance to each variety, and greatly contribute to the aroma differences of six cultivars of P. mume blossom.

19.
J Exp Bot ; 74(6): 2173-2187, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36655907

ABSTRACT

Low temperature is one of the most important abiotic factors limiting the growth, development and geographical distribution of plants. Prunus mume is an attractive woody ornamental plant that blooms in early spring in Beijing. However, the molecular mechanisms underlying cold hardening to enhance freezing tolerance in Prunus genus remains elusive. This study examined the dynamic physiological responses induced by cold hardening, and identified freezing-tolerance genes by RNA-seq and ATAC-seq analyses. Cold hardening elevated the content of soluble substances and enhanced freezing resistance in P. mume. Transcriptome analysis indicated that the candidate differentially expressed genes (DEGs) were those enriched in Ca2+ signalling, mitogen-activated protein kinase (MAPK) cascade, abscisic acid signalling, and inducer of CBF expression 1 (ICE)-C-repeat binding factor (CBF) signalling pathways. The openness of gene chromatin positively correlated with the expression level of these genes. Thirteen motifs were identified in the open chromatin regions in the treatment group subjected to freezing after cold hardening. The chromatin opening of transcription start site at the proximal -177 region of cold-shock protein CS120-like (PmCSL) was markedly increased, while the expression level of PmCSL was significantly up-regulated. Overexpression of PmCSL in Arabidopsis significantly improved the freezing tolerance of transgenic plants. These findings provide new insights into the regulatory mechanism of freezing tolerance to improve breeding of cold-hardy P. mume plants.


Subject(s)
Arabidopsis , Prunus , Freezing , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/genetics , Prunus/genetics , Prunus/metabolism , Plant Breeding , Cold Temperature , Arabidopsis/metabolism , Gene Expression , Gene Expression Regulation, Plant
20.
Crit Rev Food Sci Nutr ; 63(24): 7091-7107, 2023.
Article in English | MEDLINE | ID: mdl-35199615

ABSTRACT

Prunus mume Sieb. Et Zucc (P. mume) is an acidic fruit native to China (named Chinese Mei or greengage plum). It is currently cultivated in several Asian countries, including Japan ("Ume"), Korea (Maesil), and Vietnam (Mai or Mo). Due to its myriad nutritional and functional properties, it is accepted in different countries, and its characteristics account for its commercialization. In this review, we summarize the information on the bioactive compounds from the fruit of P. mume and their structure-activity relationships (SAR); the pulp has the highest enrichment of bioactive chemicals. The nutritional properties of P. mume and the numerous uses of its by-products make it a potential functional food. P. mume extracts exhibit antioxidant, anticancer, antimicrobial, and anti-hyperuricaemic properties, cardiovascular protective effects, and hormone regulatory properties in various in vitro and in vivo assays. SAR shows that the water solubility, molecular weight, and chemical conformation of P. mume extracts are closely related to their biological activity. However, further studies are needed to evaluate the fruit's potential nutritional and functional therapeutic mechanisms. The industrial process of large-scale production of P. mume and its extracts as functional foods or nutraceuticals needs to be further optimized.


Subject(s)
Prunus , Prunus/chemistry , Fruit/chemistry , Plant Extracts/pharmacology , Plant Extracts/analysis , Structure-Activity Relationship , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL
...