Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Mol Biol ; 112(3): 161-177, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37226022

ABSTRACT

Plants defend themselves against pathogens using a two-layered immune system. The first response, pattern-triggered immunity (PTI), is activated upon recognition of microbe-associated molecular patterns (MAMPs). Virulent bacteria such as Pseudomonas syringae pv. tomato (Pst), deliver effector proteins into the plant cell to promote susceptibility. However, some plants possess resistance (R) proteins that recognize specific effectors leading to the activation of the second response, effector-triggered immunity (ETI). Resistant tomatoes such as Río Grande-PtoR recognize two Pst effectors (AvrPto and AvrPtoB) through the host Pto/Prf complex and activate ETI. We previously showed that the transcription factors (TF) WRKY22 and WRKY25 are positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens in Nicotiana benthamiana. Here, the CRISPR-Cas9 technique was used to develop three knockout tomato lines for either one or both TFs. The single and double mutants were all compromised in Pto/Prf-mediated ETI and had a weaker PTI response. The stomata apertures in all of the mutant lines did not respond to darkness or challenge with Pst DC3000. The WRKY22 and WRKY25 proteins both localize in the nucleus, but we found no evidence of a physical interaction between them. The WRKY22 TF was found to be involved in the transcriptional regulation of WRKY25, supporting the idea that they are not functionally redundant. Together, our results indicate that both WRKY TFs play a role in modulating stomata and are positive regulators of plant immunity in tomato.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Pseudomonas syringae/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plant Proteins/metabolism , Mutation , Plant Immunity/genetics , Plant Diseases/microbiology
2.
J Exp Bot ; 74(9): 2891-2911, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36723875

ABSTRACT

Climate change has intensified the infection of tomato plants by pathogens such as Pseudomonas syringae pv. tomato (Pst). Rootstocks may increase plant tolerance to leaf phytopathogens. The aim of this study was to evaluate the effects of the tolerant Poncho Negro (R) tomato rootstock on physiological defence and the role of hydrogen sulfide (H2S) in susceptible Limachino (L) tomato plant responses to Pst attack. Ungrafted (L), self-grafted (L/L), and grafted (L/R) plants were infected with Pst. Rootstock increased the concentration of antioxidant compounds including ascorbate in the scion. Tolerant rootstock induced an increase of H2S in the scion, which correlated with enhanced expression of the SlAPX2 gene. A high accumulation of salicylic acid was observed in Pst-inoculated grafted L/L and L/R plants, but this was higher in L/R plants. The increase of H2S during Pst infection was associated with a reduction of ethylene in L/R plants. Our study indicates that the Poncho Negro rootstock reduced the symptoms of bacterial speck disease in the Limachino tomato plants, conferring tolerance to Pst infection. This study provides new knowledge about the impact of rootstock in the defence of tomato plants against leaf pathogens that could be used in sustainable management of tomato cultivation.


Subject(s)
Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/genetics , Plants , Plant Leaves/physiology , Plant Diseases/microbiology
3.
Plant Sci ; 326: 111494, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36240911

ABSTRACT

Plant natriuretic peptides (PNPs) are hormone peptides that participate in the regulation of ions and water homeostasis in plants. Xanthomonas citri subsp. citri (Xcc) the causal agent of citrus canker disease also possesses a PNP-like peptide (XacPNP). This peptide, similarly to AtPNP-A, the most studied PNP from Arabidopsis thaliana, causes stomatal aperture and enhances photosynthetic efficiency in plant leaves. Thus, the function that has been attributed to XacPNP is to contribute to maintain photosynthetic efficiency and water homeostasis in plant tissue during the infection process, to create favorable conditions for biotrophic pathogens survival. A PNP receptor (AtPNP-R1) for AtPNP-A has been identified and the AtPNP-A activity in regulation of water homeostasis has been observed to depend on the presence of AtPNP-R1. Here, we demonstrated that both AtPNP-A and XacPNP require the presence of AtPNP-R1 to induce plant stomatal aperture. Also, less necrotic tissue was found in infections with pathogens expressing XacPNP and this was dependent on the presence of AtPNP-R1, suggesting that XacPNP interacts with this receptor to exert its function. Finally, we confirmed that AtPNP-A and XacPNP interact with AtPNP-R1 in planta, which support the idea that XacPNP triggers similar plant responses to its plant counterpart.


Subject(s)
Arabidopsis , Citrus , Xanthomonas , Arabidopsis/physiology , Xanthomonas/physiology , Plants , Natriuretic Peptides/physiology , Water , Plant Diseases
4.
Plant Dis ; 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34931890

ABSTRACT

In Chile, tomato is one of the most widely cultivated vegetables, with around 5,000 ha for fresh market and 8,000 ha for processing industry. During recent years, symptoms of bacterial speck caused by Pseudomonas syringae pv. tomato, have been observed more frequently in tomato plants in different regions of Chile. This pathogen was first identified in Chile in 1987 (Latorre & Lolas, 1988) and the presence of an apparent new variant was reported in 2004 (Besoain et al. 2004). To characterize the pathogen that was affecting this crop, samples of diseased tomato plants were taken in three regions of Chile. The samples were collected in 2016 in Northern Chile in Lluta Valley from the Arica y Parinacota Region, and in Central Chile, in 2014 in Limache from Valparaíso Region and in 2015 in Pichidegua from O´Higgins Region. Affected tomato plants exhibited dark brown to black lesions surrounded by yellow halos in the leaves, and dark brown to black lesions in the stems, pedicels, and peduncles. Plants tissues were macerated, and the suspension was spread on King's B medium, resulting in fluorescent colonies visualized under 366 nm UV light. LOPAT tests results of three selected isolates from different Regions, were: levan production (+), oxidase reaction (-), potato soft rot (-), arginine dihydrolase production (-), and tobacco hypersensitivity (+) (Lelliot et al. 1966). Molecular identification was carried out by amplification and sequence analysis of housekeeping genes cts, encoding citrate synthase, gyrB, encoding DNA gyrase B, and rpoD, encoding sigma factor 70 (Hwang et al. 2005; Sarkar & Guttmann 2004) (GenBank Accessions No. OK001658-OK001666). BLAST analysis of cts and rpoD genes of the three isolates resulted in a match with a 100% identity (919 bp and 491 bp respectively) with Pseudomonas syringae pv. tomato strain B13-200 (GenBank: CP019871.1). BLAST analysis of gyrB gene of two isolates resulted in a match with a 100% identity (684 bp) and one isolate with 99.85% (683 bp) with Pseudomonas syringae pv. tomato strain B13-200. To identify the race 1, each strain was inoculated in five tomato plants cv. San Pedro, susceptible to both races of P. syringae pv. tomato, and cv. Rio Grande, resistant to race 0. The tomato plants were slightly wounded with a metal sponge and then sprayed with the bacterial suspension (108 CFU mL-1) of each isolate, including the reference strain DC3000 (race 0). Negative controls were sprayed with water. The plants inoculated with Chilean strains in both cv. San Pedro and cv. Rio Grande, showed symptoms of bacterial speck after 7 days. Plants inoculated with DC3000 strain showed symptoms only in cv. San Pedro, whereas control plants remained asymptomatic. Strains were re-isolated from symptomatic plants and identified by gene sequence analyses as Pseudomonas syryngae pv. tomato. This is the first report of Pseudomonas syryngae pv. tomato race 1 in Chile. Race 1 was previously reported in Canada (Lawton and MacNeill. 1986), in Italy (Buonaurio et al. 1996), in California (Arredondo and Davis 2000), in Portugal (Cruz et al. 2010), and in other states in the USA and countries in South America, Europe, Africa, and Australia, becoming the most commonly isolated race today (Cai et al 2011). These results will be the base for future studies of epidemiology, characterization, and virulence in order to explain the outbreak of this disease and the severity of symptoms observed.

5.
Plant Mol Biol ; 105(1-2): 65-82, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32909182

ABSTRACT

KEY MESSAGE: NbWRKY22 and NbWRKY25 are required for full activation of bacteria-associated pattern- and effector-triggered immunity as well as for the response to other non-bacterial defense elicitors. Plants defend themselves against pathogens using a two-layered immune system. Pattern-triggered immunity (PTI) can be activated upon recognition of epitopes from flagellin including flg22. Pseudomonas syringae pv. tomato (Pst) delivers effector proteins into the plant cell to promote host susceptibility. However, some plants express resistance (R) proteins that recognize specific effectors leading to the activation of effector-triggered immunity (ETI). Resistant tomato lines such as Rio Grande-PtoR (RG-PtoR) recognize two Pst effectors, AvrPto and AvrPtoB, and activate ETI through the Pto/Prf protein complex. Using RNA-seq, we identified two tomato WRKY transcription factor genes, SlWRKY22 and SlWRKY25, whose expression is increased during Pst-induced ETI. Silencing of the WRKY25/22 orthologous genes in Nicotiana benthamiana led to a delay in programmed cell death normally associated with AvrPto recognition or several non-bacterial effector/R protein pairs. An increase in disease symptoms was observed in silenced plants infiltrated with Pseudomonas syringae pv. tabaci expressing AvrPto or HopQ1-1. Expression of both tomato WRKY genes is also induced upon treatment with flg22 and callose deposition and cell death suppression assays in WRKY25/22-silenced N. benthamiana plants supported their involvement in PTI. Our results reveal an important role for two WRKYs as positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens.


Subject(s)
Nicotiana/genetics , Nicotiana/metabolism , Plant Immunity/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Apoptosis , Arabidopsis/genetics , Arabidopsis Proteins , Cell Death , Disease Resistance/genetics , Gene Expression Regulation, Plant , Gene Silencing , Genes, Plant/genetics , Solanum lycopersicum/genetics , Phylogeny , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Proteins/classification , Pseudomonas syringae/pathogenicity , Transcription Factors/classification
6.
Plant Sci ; 291: 110361, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31928670

ABSTRACT

Light modulates almost every aspect of plant physiology, including plant-pathogen interactions. Among these, the hypersensitive response (HR) of plants to pathogens is characterized by a rapid and localized programmed cell death (PCD), which is critical to restrict the spread of pathogens from the infection site. The aim of this work was to study the role of light in the interaction between Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and non-host tobacco plants. To this end, we examined the HR under different light treatments (white and red light) by using a range of well-established markers of PCD. The alterations found at the cellular level included: i) loss of membrane integrity and nuclei, ii) RuBisCo and DNA degradation, and iii) changes in nuclease profiles and accumulation of cysteine proteinases. Our results suggest that red light plays a role during the HR of tobacco plants to Pto DC3000 infection, delaying the PCD process.


Subject(s)
Apoptosis/radiation effects , Host-Pathogen Interactions/radiation effects , Light , Nicotiana/physiology , Pseudomonas syringae/physiology , Plant Diseases/microbiology , Nicotiana/microbiology , Nicotiana/radiation effects
7.
Molecules ; 23(8)2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30115841

ABSTRACT

Tomato crops can be affected by several infectious diseases produced by bacteria, fungi, and oomycetes. Four phytopathogens are of special concern because of the major economic losses they generate worldwide in tomato production; Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato, causative agents behind two highly destructive diseases, bacterial canker and bacterial speck, respectively; fungus Fusarium oxysporum f. sp. lycopersici that causes Fusarium Wilt, which strongly affects tomato crops; and finally, Phytophthora spp., which affect both potato and tomato crops. Polygodial (1), drimenol (2), isonordrimenone (3), and nordrimenone (4) were studied against these four phytopathogenic microorganisms. Among them, compound 1, obtained from Drimys winteri Forst, and synthetic compound 4 are shown here to have potent activity. Most promisingly, the results showed that compounds 1 and 4 affect Clavibacter michiganensis growth at minimal inhibitory concentrations (MIC) values of 16 and 32 µg/mL, respectively, and high antimycotic activity against Fusarium oxysporum and Phytophthora spp. with MIC of 64 µg/mL. The results of the present study suggest novel treatment alternatives with drimane compounds against bacterial and fungal plant pathogens.


Subject(s)
Anti-Bacterial Agents/chemistry , Biological Control Agents/chemistry , Fungicides, Industrial/chemistry , Sesquiterpenes/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Biological Control Agents/isolation & purification , Fungicides, Industrial/isolation & purification , Fungicides, Industrial/pharmacology , Fusarium/drug effects , Solanum lycopersicum/microbiology , Phytophthora/drug effects , Plant Bark/chemistry , Plant Diseases/microbiology , Plant Diseases/therapy , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Sesquiterpenes/isolation & purification , Tracheophyta/chemistry
8.
Mol Plant Pathol ; 19(4): 801-811, 2018 04.
Article in English | MEDLINE | ID: mdl-28401640

ABSTRACT

Plant natriuretic peptides (PNPs) have been implicated in the regulation of ions and water homeostasis, and their participation in the plant immune response has also been proposed. Xanthomonas citri ssp. citri contains a gene encoding a PNP-like protein (XacPNP) which has no homologues in other bacteria. XacPNP mimics its Arabidopsis thaliana homologue AtPNP-A by modifying host responses to create favourable conditions for pathogen survival. However, the ability of XacPNP to induce plant defence responses has not been investigated. In order to study further the role of XacPNP in vivo, A. thaliana lines over-expressing XacPNP, lines over-expressing AtPNP-A and AtPNP-A-deficient plants were generated. Plants over-expressing XacPNP or AtPNP-A showed larger stomatal aperture and were more resistant to saline or oxidative stress than were PNP-deficient lines. In order to study further the role of PNP in biotic stress responses, A. thaliana leaves were infiltrated with pure recombinant XacPNP, and showed enhanced expression of genes related to the defence response and a higher resistance to pathogen infections. Moreover, AtPNP-A expression increased in A. thaliana on Pseudomonas syringae pv. tomato (Pst) infection. This evidence led us to analyse the responses of the transgenic plants to pathogens. Plants over-expressing XacPNP or AtPNP-A were more resistant to Pst infection than control plants, whereas PNP-deficient plants were more susceptible and showed a stronger hypersensitive response when challenged with non-host bacteria. Therefore, XacPNP, acquired by horizontal gene transfer, is able to mimic PNP functions, even with an increase in plant defence responses.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/microbiology , Natriuretic Peptides/metabolism , Plant Proteins/metabolism , Xanthomonas/pathogenicity , Arabidopsis/genetics , Natriuretic Peptides/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology , Pseudomonas syringae/pathogenicity
9.
Plant J ; 76(2): 322-31, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23865633

ABSTRACT

In Arabidopsis thaliana, light signals modulate the defences against bacteria. Here we show that light perceived by the LOV domain-regulated two-component system (Pst-Lov) of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) modulates virulence against A. thaliana. Bioinformatic analysis and the existence of an episomal circular intermediate indicate that the locus encoding Pst-Lov is present in an active genomic island acquired by horizontal transfer. Strains mutated at Pst-Lov showed enhanced growth on minimal medium and in leaves of A. thaliana exposed to light, but not in leaves incubated in darkness or buried in the soil. Pst-Lov repressed the expression of principal and alternative sigma factor genes and their downstream targets linked to bacterial growth, virulence and quorum sensing, in a strictly light-dependent manner. We propose that the function of Pst-Lov is to distinguish between soil (dark) and leaf (light) environments, attenuating the damage caused to host tissues while releasing growth out of the host. Therefore, in addition to its direct actions via photosynthesis and plant sensory receptors, light may affect plants indirectly via the sensory receptors of bacterial pathogens.


Subject(s)
Genomic Islands , Light , Photoreceptors, Microbial/genetics , Plant Leaves/microbiology , Pseudomonas syringae/pathogenicity , Virulence , Arabidopsis/microbiology , Arabidopsis/radiation effects , Gene Expression Regulation, Bacterial , Gene Transfer, Horizontal , Open Reading Frames , Operon , Photoreceptors, Microbial/radiation effects , Plant Diseases/microbiology , Plant Leaves/radiation effects , Pseudomonas syringae/genetics , Quorum Sensing , Sigma Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL