Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901814

ABSTRACT

Modified polysaccharides have been increasingly used as flocculants in wastewater treatment due to their non-toxicity, low price, biodegradability, etc. However, the pullulan derivatives are less used in wastewater purification processes. Therefore, this article presents some data regarding FeO and TiO2 particle removal from model suspensions by some pullulan derivatives with pendant quaternary ammonium salt groups, trimethylammonium propyl carbamate chloride (TMAPx-P). The influence of the polymer ionic content, dose, and initial solution concentration as well as of the dispersion pH and composition (metal oxide content, salts, and kaolin) on the separation efficacy were considered. UV-Vis spectroscopy measurements have shown a very good removal efficacy of TMAPx-P for the FeO particles (around 95% and more), irrespective of the polymer and suspension characteristics; a lower clarification of the TiO2 particles suspension (removal efficiency between 68% and 75%) was noticed. Both the zeta potential and the particle aggregates size measurements revealed the charge patch as the main mechanism which governs the metal oxide removal process. The surface morphology analysis/EDX data provided supplementary evidence regarding the separation process. A good removal efficiency (90%) of the pullulan derivatives/FeO flocs for the Bordeaux mixture particles from simulated wastewater was found.


Subject(s)
Kaolin , Wastewater , Flocculation , Polymers/chemistry , Cations/chemistry
2.
Drug Deliv ; 29(1): 3328-3339, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36369833

ABSTRACT

Drug distribution relies heavily on polymers, which also offer a variety of benefits like controlled release, targeted release, prolonged release, etc. Due to their low toxicity and great safety, biodegradable polymers are highly preferred. The exopolysaccharide known as pullulan is generated from a fungus known as Aureobasidium pullulan. It has many different qualities, including biodegradability, appropriate adhesion, antioxidant, film-forming capacity, blood compatibility, mucosal adhesion, etc. However, its application in the pharmaceutical industry is restricted by its insolubility in organic solvents, mechanical characteristics, and lack of macromolecule-carrying ability groups. This review provides an overview of the modifications made to pullulan, including periodate oxidation, etherification, esterification, sulfation, urethane derivatization, PEG incorporation, and cationization, to enhance its solubility in organic solvents, mechanical properties, pH sensitivity, drug delivery, anticoagulant, and antimicrobial properties. Pullulan has nine active hydroxyl groups in its structure that react chemically that can be used for physicochemical modification to produce pullulan derivatives. A key area of pullulan research has been pullulan modification, which has demonstrated enhanced solubility, pH-sensitive targeting, broadened horizons for delivery systems, anticoagulation, and antibacterial properties.


Subject(s)
Drug Delivery Systems , Glucans , Glucans/chemistry , Pharmaceutical Preparations/chemistry , Polymers , Solvents
3.
Carbohydr Polym ; 198: 495-508, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30093027

ABSTRACT

In this work, we report for the first time AuNPs reduced/stabilized/capped with modified para-aminobenzoic acid-quat188-pullulan (PABA-QP) as excellent nanocarriers for delivery of doxorubicin to enhance the activity and safety of these systems. Spherical AuNPs@PABA-QP obtained by facile and green synthesis under optimum conditions were characterized by UV-VIS, TEM, EDS, SAED, XRD, ATR-FTIR and zeta-potential analyses and showed a narrow size distribution of 13.7 ±â€¯1.9 nm. DOX was successfully loaded onto AuNPs@PABA-QP via intermolecular interactions with high drug loading. DOX-AuNPs@PABA-QP (IC50 = 0.39µM) showed a 2.1-fold higher cytotoxicity against Chago cells than DOX alone (IC50 = 0.82µM), while exhibiting less cytotoxicity against normal cells (Wi-38). Moreover, DOX-AuNPs@PABA-QP also demonstrated high intracellular uptake by endocytosis, arrested in S and G2-M phases of the cell cycle (total S/G2-M increased to approximately 18.0%), induced excellent cytotoxicity, and increased the fraction of late-apoptotic cells (18.6%). Consequently, it is suggested that the novel combination of DOX-AuNPs@PABA-QP has the potential to be developed for human cancer treatment.


Subject(s)
Antineoplastic Agents , Drug Carriers , Glucans , Gold , Metal Nanoparticles , 4-Aminobenzoic Acid/administration & dosage , 4-Aminobenzoic Acid/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Endocytosis , Glucans/administration & dosage , Glucans/chemistry , Gold/administration & dosage , Gold/chemistry , Green Chemistry Technology , Humans , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Quaternary Ammonium Compounds/administration & dosage , Quaternary Ammonium Compounds/chemistry
4.
J Environ Manage ; 218: 31-38, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29665484

ABSTRACT

Cationic pullulan derivatives have been synthesized and evaluated, for the first time, as flocculants for the separation of the commercial pesticides, Novadim Progress (organophosphoric type), Bordeax mixture and Karate Zeon (pyrethroid type) from synthetic wastewater. The investigated polymer samples contained either pendent tertiary amine or quaternary ammonium salts groups. The separation efficiency was followed by UV-Vis spectroscopy, while the information regarding the mechanism involved in the separation of pesticide particles have been obtained by zeta potential. UV-Vis spectroscopy data showed strong pesticide particles/polycation interactions in case of Novadim Progress and Bordeaux mixture (maximum pesticide removal between 90% and 98%). Good separation efficiency (around 80%) of Karate Zeon emulsion was also noticed. The zeta potential measurements indicated that the charge neutralization was the common flocculation mechanism for the removal of these pesticides. In addition, the hydrogen bondings and chelation of copper ions by amide and/or tertiary amino groups of the polycations had a noteworthy contribution to the pesticide removal.


Subject(s)
Copper , Glucans , Pesticides , Flocculation
5.
Article in Korean | WPRIM (Western Pacific) | ID: wpr-198329

ABSTRACT

OBJECTIVE: Pullulan derivatives (PD) can be used to make self-assembled hydrogel nanoparticles which are responsive to ionic strength. The aim of this study is to evaluate the potential of PD as a retaining carrier of radioisotope inside tumors. MATERIALS AND METHODS: Four types of PD were evaluated which included pullulan acetate (PA), succinylated PA (SPA), PA-DTPA and SPA-DTPA conjugates. They were radiolabeled with Tc-99m. Labelling efficiencies were determined at 30 min, 1, 2, 4 and 12 hours after radiolabeling. CT-26 colon cancer cells were subcutaneously injected into Balb/c mice. After 2 weeks of subcutaneous injection, Tc-99m-labelled PD (Tc-99m-PD) were injected into the tumors. Whole body images of mice were obtained at 30 min, 1, 2, and 12 hr after intratumoral injection. All twenty mice were grouped into four groups by largest diameter; control A (largest diameter = 5 mm, n = 5), control B (largest diameter = 10 mm, n = 5), pullulan A (largest diameter = 5 mm, n = 5), pllulan B (largest diameter = 10 mm, n = 5). Dynamic images were obtained for 1 hour after intratumoral injection. Static images were obtained at 1 hr, 2 hr, 3 hr and 4 hr after intratumoral injection with Tc-99m pertechnetate and Tc-99m-PA. Target-to-background ratios and retention rates were calculated. RESULTS: Labeling efficiencies of PA, SPA, PA-DTPA and SPA-DTPA were 94.5 +/- 5.9%, 97.8 +/- 3.5% 94.2 +/- 3.8%, and 92.5 +/- 6.2%, respectively (p> 0.05). Percent retention rates (%RR) of PA and PA-DTPA were significantly higher than those of control, however, those of SP-DTPA and SPA became similar to control at 4 and 12 hr, respectively. %RR of pullulan A and pullulan B at 1, 4 and 8 hr is significantly higher than that of control (p < 0.05). However, %RR between pullulan A and pullulan B were similar. CONCLUSION: The ionic strength dependent PD-nanoparticles are retained in the tumor. No difference of %RR according to tumor size was noted. Therapeutic application of PD labelled with beta- or alpha- emitting radionuclides can be expected.


Subject(s)
Animals , Mice , Body Image , Colonic Neoplasms , Hydrogels , Injections, Subcutaneous , Nanoparticles , Osmolar Concentration , Radioisotopes , Sodium Pertechnetate Tc 99m
SELECTION OF CITATIONS
SEARCH DETAIL
...