Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 765
Filter
1.
Int J Gen Med ; 17: 2465-2474, 2024.
Article in English | MEDLINE | ID: mdl-38826507

ABSTRACT

Background: Pulmonary infections are significant global health burdens, and conventional diagnostic methods (culture and polymerase chain reaction), are often limited by slow results and low sensitivity. Metagenomic next-generation sequencing (mNGS) offers a rapid, comprehensive alternative for identifying diverse pathogens, including rare and mixed infections. Thus, we assessed the diagnostic performance of mNGS in pulmonary infections, compared the findings with those of traditional pathogen detection methods, and explored its potential to enhance clinical diagnostics and patient care. Methods: We collected samples from 125 immunocompromised patients diagnosed with pulmonary infection at the Department of Respiratory Medicine of Shenzhen Longgang Central Hospital from March 2020 to July 2022. We compared the rate of pathogen positivity and pathogen distribution between conventional pathogen detection methods and mNGS using samples including sputum, blood, and bronchoalveolar lavage fluid. Results: Among the 125 cases of unexplained pulmonary infection, 82 (65.6%) and 40 (32.0%) tested positive for pathogens using mNGS and routine culture, respectively (P < 0.05). Both methods of pathogen detection were positive in 28 (22.4%) cases (complete match, 9; complete mismatch, 13; partial match, 6). However, 43.2% of cases only tested positive using mNGS, 9.4% only tested positive using routine tests, and 24.8% tested negative using both methods. A viral infection was present in 55.2% of cases. The detection rate of mycobacteria using mNGS (12.8%) was higher than that using conventional pathogen detection methods (5.6%). Conclusion: mNGS technology enhances pathogen detection in unexplained pulmonary infections, enabling targeted antimicrobial therapy and consequently helping to reduce broad-spectrum antibiotic use, aligning treatments more closely with the causative pathogens. Thus, mNGS offers significant clinical value by improving treatment efficacy and potentially reducing antibiotic resistance in pulmonary infection cases.

2.
Front Med (Lausanne) ; 11: 1357714, 2024.
Article in English | MEDLINE | ID: mdl-38698785

ABSTRACT

Background: Aeromonas dhakensis is a gram-negative bacterium. In recent years, Aeromonas dhakensis has gradually attracted increasing attention due to its strong virulence and poor prognosis. Clinical reports of pulmonary infection caused by Aeromonas dhakensis are rare. Case presentation: A patient with acute T lymphoblastic leukemia experienced myelosuppression after chemotherapy, developed a secondary pulmonary infection with Aeromonas dhakensis and was hospitalized due to fever. The patient underwent testing for inflammatory markers, chest imaging, blood culture, bronchoalveolar lavage, pleural drainage, and metagenomic next-generation sequencing of alveolar lavage fluid and pleural fluid to obtain evidence of Aeromonas dhakensis infection, and was treated with four generations of cephalosporin combined with fluoroquinolone antibiotics. The patient's condition significantly improved. Discussion: Among pulmonary infectious pathogens, Aeromonas dhakensis is relatively rare. Once an Aeromonas strain is cultured in the clinical work, pathogenic sequencing should be performed on the detected samples for early accurate diagnosis and effective anti-infection treatment.

3.
Clin Chest Med ; 45(2): 373-382, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816094

ABSTRACT

Pneumonia is a significant cause of morbidity and mortality in the community and hospital settings. Bacterial, viral, mycobacterial, and fungal pathogens are all potential causative agents of pulmonary infection. Chest radiographs and computed tomography are frequently utilized in the assessment of pneumonia. Learning the imaging patterns of different potential organisms allows the radiologist to formulate an appropriate differential diagnosis. An organism-based approach is used to discuss the imaging findings of different etiologies of pulmonary infection.


Subject(s)
Tomography, X-Ray Computed , Humans , Pneumonia/diagnosis , Pneumonia/diagnostic imaging , Pneumonia/microbiology , Diagnosis, Differential , Radiography, Thoracic
4.
Cureus ; 16(4): e59207, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38807831

ABSTRACT

Mycobacterium malmoense is a rare species of non-tuberculosis mycobacteria detected in Japan that causes pulmonary infection and cervical lymphadenitis. Here, we report a case of pulmonary infection caused by M. malmoense, which was difficult to distinguish from Mycobacterium tuberculosis (Mtb) infection. A 64-year-old Japanese woman with a history of pulmonary tuberculosis had bloody phlegm, a cough, and discomfort in her chest. Chest computed tomography revealed a cavity, infiltration, and a nodule. A smear test for acid-fast bacilli was positive, a Mycobacterium avium complex transcription reverse-transcription concerted (TRC) test was negative, and an Mtb TRC test was withheld because the internal control was negative. After diluting the specimens, the internal control tested positive, and the sample tested negative. We diagnosed pulmonary M. malmoense infection based on a culture test. In conclusion, attention should be paid to the concentration of bacteria in Mtb TRC test samples, ensuring that the internal control provides expected results.

5.
Children (Basel) ; 11(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38790587

ABSTRACT

Ventilator-associated pneumonia (VAP) is common in Pediatric Intensive Care Units. Although early detection is crucial, current diagnostic methods are not definitive. This study aimed to identify lung ultrasound (LUS) findings and procalcitonin (PCT) values in pediatric patients with VAP to create a new early diagnosis score combined with the Clinical Pulmonary Infection Score (CPIS), the CPIS-PLUS score. Prospective longitudinal and interventional study. Pediatric patients with suspected VAP were included and classified into VAP or non-VAP groups, based on Centers of Disease Control (CDC) criteria for the final diagnosis. A chest-X-ray (CXR), LUS, and blood test were performed within the first 12 h of admission. CPIS score was calculated. A total of 108 patients with VAP suspicion were included, and VAP was finally diagnosed in 51 (47%) patients. CPIS-PLUS showed high accuracy in VAP diagnosis with a sensitivity (Sn) of 80% (95% CI 65-89%) and specificity (Sp) of 73% (95% CI 54-86%). The area under the curve (AUC) resulted in 0.86 for CPIS-PLUS vs. 0.61 for CPIS. In conclusion, this pilot study showed that CPIS-PLUS could be a potential and reliable tool for VAP early diagnosis in pediatric patients. Internal and external validations are needed to confirm the potential value of this score to facilitate VAP diagnosis in pediatric patients.

6.
Front Immunol ; 15: 1360412, 2024.
Article in English | MEDLINE | ID: mdl-38745652

ABSTRACT

A robust immune response is required for resistance to pulmonary tuberculosis (TB), the primary disease caused by Mycobacterium tuberculosis (Mtb). However, pharmaceutical inhibition of T cell immune checkpoint molecules can result in the rapid development of active disease in latently infected individuals, indicating the importance of T cell immune regulation. In this study, we investigated the potential role of CD200R during Mtb infection, a key immune checkpoint for myeloid cells. Expression of CD200R was consistently downregulated on CD14+ monocytes in the blood of subjects with active TB compared to healthy controls, suggesting potential modulation of this important anti-inflammatory pathway. In homogenized TB-diseased lung tissue, CD200R expression was highly variable on monocytes and CD11b+HLA-DR+ macrophages but tended to be lowest in the most diseased lung tissue sections. This observation was confirmed by fluorescent microscopy, which showed the expression of CD200R on CD68+ macrophages surrounding TB lung granuloma and found expression levels tended to be lower in macrophages closest to the granuloma core and inversely correlated with lesion size. Antibody blockade of CD200R in a biomimetic 3D granuloma-like tissue culture system led to significantly increased Mtb growth. In addition, Mtb infection in this system reduced gene expression of CD200R. These findings indicate that regulation of myeloid cells via CD200R is likely to play an important part in the immune response to TB and may represent a potential target for novel therapeutic intervention.


Subject(s)
Mycobacterium tuberculosis , Myeloid Cells , Tuberculosis, Pulmonary , Humans , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Orexin Receptors/metabolism , Macrophages/immunology , Macrophages/metabolism , Adult , Female , Male , Antigens, CD/metabolism , Antigens, CD/genetics , Middle Aged , Lung/immunology , Lung/microbiology , Lung/pathology , Lung/metabolism , Biomimetics , Monocytes/immunology , Monocytes/metabolism
7.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731927

ABSTRACT

Bordetella hinzii (B. hinzii), a Gram-negative bacillus commonly associated with respiratory infections in animals, has garnered attention for its sporadic cases in humans, particularly in immunocompromised individuals. Despite its opportunistic nature, there remains limited understanding regarding its pathogenicity, diagnostic challenges, and optimal treatment strategies, especially in the context of immunosuppression. Herein, we present the first documented case of acute bronchitis caused by B. hinzii in an immunocompromised patient following double-lung transplantation. The patient, a former smoker with sarcoidosis stage IV, underwent transplant surgery and subsequently developed a febrile episode, leading to the identification of B. hinzii in broncho-alveolar lavage samples. Antimicrobial susceptibility testing revealed resistance to multiple antibiotics, necessitating tailored treatment adjustments. Our case underscores the importance of heightened awareness among clinicians regarding B. hinzii infections and the imperative for further research to elucidate its epidemiology and optimal management strategies, particularly in immunocompromised populations.


Subject(s)
Bordetella Infections , Bordetella , Immunocompromised Host , Lung Transplantation , Lung Transplantation/adverse effects , Humans , Bordetella/isolation & purification , Bordetella Infections/microbiology , Bordetella Infections/diagnosis , Male , Middle Aged , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Transplant Recipients
8.
Front Cell Infect Microbiol ; 14: 1395239, 2024.
Article in English | MEDLINE | ID: mdl-38774626

ABSTRACT

Background: Traditional microbiological detection methods used to detect pulmonary infections in people living with HIV (PLHIV) are usually time-consuming and have low sensitivity, leading to delayed treatment. We aimed to evaluate the diagnostic value of metagenomics next-generation sequencing (mNGS) for microbial diagnosis of suspected pulmonary infections in PLHIV. Methods: We retrospectively analyzed PLHIV who were hospitalized due to suspected pulmonary infections at the sixth people hospital of Zhengzhou from November 1, 2021 to June 30, 2022. Bronchoalveolar lavage fluid (BALF) samples of PLHIV were collected and subjected to routine microbiological examination and mNGS detection. The diagnostic performance of the two methods was compared to evaluate the diagnostic value of mNGS for unknown pathogens. Results: This study included a total of 36 PLHIV with suspected pulmonary infections, of which 31 were male. The reporting period of mNGS is significantly shorter than that of CMTs. The mNGS positive rate of BALF samples in PLHIV was 83.33%, which was significantly higher than that of smear and culture (44.4%, P<0.001). In addition, 11 patients showed consistent results between the two methods. Futhermore, mNGS showed excellent performance in identifying multi-infections in PLHIV, and 27 pathogens were detected in the BALF of 30 PLHIV by mNGS, among which 15 PLHIV were found to have multiple microbial infections (at least 3 pathogens). Pneumocystis jirovecii, human herpesvirus type 5, and human herpesvirus type 4 were the most common pathogen types. Conclusions: For PLHIV with suspected pulmonary infections, mNGS is capable of rapidly and accurately identifying the pathogen causing the pulmonary infection, which contributes to implement timely and accurate anti-infective treatment.


Subject(s)
Bronchoalveolar Lavage Fluid , HIV Infections , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Male , Female , HIV Infections/complications , HIV Infections/virology , Retrospective Studies , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/virology , Adult , Middle Aged , China , Coinfection/diagnosis , Coinfection/microbiology , Coinfection/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Respiratory Tract Infections/microbiology
9.
J Atheroscler Thromb ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38763733

ABSTRACT

AIM: In patients with ST-segment elevation myocardial infarction (STEMI) undergoing percutaneous coronary intervention (PCI), a low serum albumin-to-creatinine ratio (sACR) is associated with elevated risk of poor short- and long-term outcomes. However, the relationship between sACR and pulmonary infection during hospitalization in patients with STEMI undergoing PCI remains unclear. METHODS: A total of 4,507 patients with STEMI undergoing PCI were enrolled and divided into three groups according to sACR tertile. The primary outcome was pulmonary infection during hospitalization, and the secondary outcome was in-hospital major adverse cardiovascular events (MACE) including stroke, in-hospital mortality, target vessel revascularization, recurrent myocardial infarction, and all-cause mortality during follow-up. RESULTS: Overall, 522 (11.6%) patients developed pulmonary infections, and 223 (4.9%) patients developed in-hospital MACE. Cubic spline models indicated a non-linear, L-shaped relationship between sACR and pulmonary infection (P=0.039). Receiver operating characteristic curve analysis indicated that sACR had good predictive value for both pulmonary infection (area under the ROC curve [AUC]=0.73, 95% CI=0.70-0.75, P<0.001) and in-hospital MACE (AUC=0.72, 95% CI=0.69-0.76, P<0.001). Kaplan-Meier survival analysis indicated that higher sACR tertiles were associated with a greater cumulative survival rate (P<0.001). Cox regression analysis identified lower sACR as an independent predictor of long-term all-cause mortality (hazard ratio [HR]=0.96, 95% CI=0.95-0.98, P<0.001). CONCLUSIONS: A low sACR was significantly associated with elevated risk of pulmonary infection and MACE during hospitalization, as well as all-cause mortality during follow-up among patients with STEMI undergoing PCI. These findings highlighted sACR as an important prognostic marker in this patient population.

10.
Infect Immun ; : e0001624, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771050

ABSTRACT

Polymyxin resistance in carbapenem-resistant Klebsiella pneumoniae bacteria is associated with high morbidity and mortality in vulnerable populations throughout the world. Ineffective antimicrobial activity by these last resort therapeutics can occur by transfer of mcr-1, a plasmid-mediated resistance gene, causing modification of the lipid A portion of lipopolysaccharide (LPS) and disruption of the interactions between polymyxins and lipid A. Whether this modification alters the innate host immune response or carries a high fitness cost in the bacteria is not well established. To investigate this, we studied infection with K. pneumoniae (KP) ATCC 13883 harboring either the mcr-1 plasmid (pmcr-1) or the vector control (pBCSK) ATCC 13883. Bacterial fitness characteristics of mcr-1 acquisition were evaluated. Differentiated human monocytes (THP-1s) were stimulated with KP bacterial strains or purified LPS from both parent isolates and isolates harboring mcr-1. Cell culture supernatants were analyzed for cytokine production. A bacterial pneumonia model in WT C57/BL6J mice was used to monitor immune cell recruitment, cytokine induction, and bacterial clearance in the bronchoalveolar lavage fluid (BALF). Isolates harboring mcr-1 had increased colistin MIC compared to the parent isolates but did not alter bacterial fitness. Few differences in cytokines were observed with purified LPS from mcr-1 expressing bacteria in vitro. However, in a mouse pneumonia model, no bacterial clearance defect was observed between pmcr-1-harboring KP and parent isolates. Consistently, no differences in cytokine production or immune cell recruitment in the BALF were observed, suggesting that other mechanisms outweigh the effect of these lipid A mutations in LPS.

11.
APMIS ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38798084

ABSTRACT

The clinical data from 118 CTD patients with bronchiectasis were collected and categorized into two groups: pulmonary infection present (n = 67) and absent (n = 51), for comparative analysis of characteristics and risk factors. Then, we analyzed and compared their demographics, disease characteristics, and risk factors for infection. Among the whole cohort (n = 118), the incidence of pulmonary infections was 56.78%. The occurrence of rheumatoid arthritis, systemic lupus erythematosus, and vasculitis was found to be associated with an increased risk of pulmonary infection. Sputum culture identified Pseudomonas aeruginosa and Klebsiella pneumoniae as the predominant pathogens in the infected group. Notably, symptoms such as joint pains (p = 0.018) and morning stiffness (p = 0.017) were significantly more common in the infected group compared to the noninfected group. Moreover, our findings revealed that elevated levels of C-reactive protein and complement C3, along with bronchial expansion observed on high-resolution computed tomography (HRCT), were significant independent factors in the infection group. Conversely, pulmonary interstitial changes identified through HRCT (OR: 0.135, 95% CI: 0.030-0.612, p = 0.009) were significantly associated with the non-infection group. Overall, this study provides valuable insights into managing CTD patients with bronchiectasis, emphasizing early detection and tailored approaches to prevent and treat pulmonary infections for better outcomes.

12.
Infect Drug Resist ; 17: 1333-1343, 2024.
Article in English | MEDLINE | ID: mdl-38596535

ABSTRACT

Background: Talaromyces marneffei (TM) is the third most prevalent opportunistic infection in HIV-positive patients after tuberculosis and cryptococcosis. However, such infection of non-HIV individuals has rarely been reported. Case Presentation: We describe a very rare case of a 52-year-old male who presented with a single space-occupying lesion on the right lung and was eventually diagnosed with pulmonary TM infection. The patient was HIV-negative and had liver cirrhosis with portal vein thrombosis. Lung tissue next-generation sequencing (NGS) revealed TM infection. We successfully treated the patient with voriconazole for 8 weeks and observed lesion absorption via subsequent CT. The patient consumed wild bamboo rats two months before admission. Mutations related to congenital immune deficiency were not detected by whole-exome sequencing. Conclusion: Early and timely diagnosis is critical for improving patient prognosis. NGS plays a vital role in the diagnosis of pulmonary TM infection in patients. To our knowledge, this is the first published case of pulmonary TM infection in an HIV-negative patient with liver cirrhosis.

13.
World J Clin Cases ; 12(10): 1772-1777, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38660073

ABSTRACT

BACKGROUND: Purpureocillium lilacinum (P. lilacinum) is a saprophytic fungus widespread in soil and vegetation. As a causative agent, it is very rarely detected in humans, most commonly in the skin. CASE SUMMARY: In this article, we reported the case of a 72-year-old patient with chronic lymphocytic leukemia who was admitted with cough and fever. Computed tomography revealed an infection in the right lower lobe. Bronchoalveolar lavage fluid culture and metagenomic next-generation sequencing were ultimately confirmed to have a pulmonary infection with P. lilacinum. She was eventually discharged with good outcomes after treatment with isavuconazole. CONCLUSION: Pulmonary infection with P. lilacinum was exceedingly rare. While currently there are no definitive therapeutic agents, there are reports of high resistance to amphotericin B and fluconazole and good sensitivity to second-generation triazoles. The present report is the first known use of isavuconazole for pulmonary P. lilacinum infection. It provides new evidence for the characterization and treatment of clinical P. lilacinum lung infections.

14.
Article in English | MEDLINE | ID: mdl-38635412

ABSTRACT

Respiratory illnesses and its repercussions are becoming more prevalent worldwide. It is necessary to research both innovative treatment and preventative techniques. Millions of confirmed cases and fatalities from the COVID-19 epidemic occurred over the previous two years. According to the review research, cannabinoids are a class of medicines that should be considered for the treatment of respiratory conditions. Cannabinoids and inhibitors of endocannabinoid degradation have illustrated advantageous anti-inflammatory, asthma, pulmonary fibrosis, and pulmonary artery hypotension in numerous studies (in vitro and in vivo). It has been also noted that CB2 receptors on macrophages and T-helper cells may be particularly triggered to lower inflammation in COVID-19 patients. Since the majority of lung tissue contains cannabinoid receptors, cannabis can be an effective medical tool for treating COVID-19 as well as pulmonary infections. Notably, CB2 and CB1 receptors play a major role in immune system modulation and anti-inflammatory activities. In this review, we put forth the idea that cannabis might be helpful in treating pulmonary contagion brought on by viral integration, such as that caused by SARS-CoV-2, haemophilus influenza type b, Streptococcus pneumoniae, influenza virus, and respiratory syncytial virus. Also, a detailed overview of CB receptors, intricate mechanisms, is highlighted connecting link with COVID-19 viral structural modifications along with molecular basis of CB receptors in diminishing viral load in pulmonary disorders supported through evident literature studies. Further, futuristic evaluations on cannabis potency through novel formulation development focusing on in vivo/in vitro systems can produce promising results.

15.
Pharmaceutics ; 16(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38675098

ABSTRACT

Polyelectrolyte-drug complexes are interesting alternatives to improve unfavorable drug properties. Vancomycin (VAN) is an antimicrobial used in the treatment of methicillin-resistant Staphylococcus aureus pulmonary infections in patients with cystic fibrosis. It is generally administered intravenously with a high incidence of adverse side effects, which could be reduced by intrapulmonary administration. Currently, there are no commercially available inhalable formulations containing VAN. Thus, the present work focuses on the preparation and characterization of an ionic complex between hyaluronic acid (HA) and VAN with potential use in inhalable formulations. A particulate-solid HA-VAN25 complex was obtained by spray drying from an aqueous dispersion. FTIR spectroscopy and thermal analysis confirmed the ionic interaction between HA and VAN, while an amorphous diffraction pattern was observed by X-ray. The powder density, geometric size and morphology showed the suitable aerosolization and aerodynamic performance of the powder, indicating its capability of reaching the deep lung. An in vitro extended-release profile of VAN from the complex was obtained, exceeding 24 h. Microbiological assays against methicillin-resistant and -sensitive reference strains of Staphylococcus aureus showed that VAN preserves its antibacterial efficacy. In conclusion, HA-VAN25 exhibited interesting properties for the development of inhalable formulations with potential efficacy and safety advantages over conventional treatment.

16.
Article in English | MEDLINE | ID: mdl-38677352

ABSTRACT

BACKGROUND: Inconsistent data exists regarding the risk factors for bronchoalveolar lavage (BAL) positivity in lung donors, the incidence of donor-derived infections (DDI), and the effect of BAL positivity on lung transplant (LuTx) recipients' outcome. METHODS: A retrospective analysis was conducted on consecutive LuTx at a single center from January 2016 to December 2022. Donors' data, including characteristics, graft function and BAL samples were collected pre-procurement. Recipients underwent BAL before LuTx and about the 3rd, 7th and 14th day after LuTx. A DDI was defined as BAL positivity (bacterial growth ≥104 colony forming units) for identical bacterial species between donor and recipient. Recipients' pre-operative characteristics, intra-operative management, and post-operative outcomes were assessed. Two recipient cohorts were identified based on lung colonization status before undergoing LuTx. RESULTS: Out of 188 LuTx procedures performed, 169 were analyzed. Thirty-six percent of donors' BAL tested positive. Donors' characteristics and graft function at procurement were not associated with BAL positivity. Fourteen DDI were detected accounting for 23% of recipients receiving a graft with a positive BAL. Only among uncolonized recipients, receiving a graft with positive BAL is associated with higher likelihood of requiring invasive ventilation at 72 hours after LuTx on higher positive end-expiratory pressure levels having lower PaO2/FiO2, prolonged duration of mechanical ventilation and longer ICU stay. No difference in hospital length of stay was observed. CONCLUSIONS: Receiving a graft with a positive BAL, which is poorly predicted by donors' characteristics, carries the risk of developing a DDI and is associated to a worse early graft function among uncolonized recipients.

17.
Diagn Microbiol Infect Dis ; 109(3): 116262, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604074

ABSTRACT

In this study, we investigated the diagnostic value of opsonic activity against Acinetobacter baumannii in Ventilator-Associated Pneumonia (VAP) among 50 patients, compared to 102 negative and positive controls. Out of the 50 patients, only 33 (66 %) were diagnosed with VAP using the Clinical Pulmonary Infection Score (CPIS). The opsonic activity assay demonstrated three key findings: (i) 95 % sensitivity and 91.7 % specificity, with a Receiver Operating Characteristic (ROC) area of 0.976 for distinguishing A. baumannii culture positives from negatives; (ii) 95 % sensitivity and 78.7 % specificity, with a 0.915 ROC area, in differentiating VAP/blood culture positive patients from colonized/negative groups; (iii) An ROC area of 0.553 for VAP and colonization, as identified by CPIS alone, indicating an indeterminate threshold. These results highlight that CPIS, microbiological, and clinical evaluations were not correlated, suggesting that opsonic activity against A. baumannii could be a potential VAP diagnostic tool, with the need for large-scale validations.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Pneumonia, Ventilator-Associated , Sensitivity and Specificity , Humans , Pneumonia, Ventilator-Associated/diagnosis , Pneumonia, Ventilator-Associated/microbiology , Acinetobacter baumannii/isolation & purification , Acinetobacter Infections/diagnosis , Acinetobacter Infections/microbiology , Male , Female , Middle Aged , Aged , ROC Curve , Adult , Aged, 80 and over
18.
Microbiol Spectr ; 12(6): e0002624, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687074

ABSTRACT

The rapid and effective identification of pathogens in patients with pulmonary infections has posed a persistent challenge in medicine, with conventional microbiological tests (CMTs) proving time-consuming and less sensitive, hindering early diagnosis of respiratory infections. While there has been some research on the clinical performance of targeted sequencing technologies, limited focus has been directed toward bronchoalveolar lavage fluid (BALF). This study primarily evaluates the pathogen detection capabilities of nanopore-targeted sequencing (NTS) in BALF, providing a comprehensive analysis. The retrospective study, spanning from January 2022 to November 2023, includes 223 patients exclusively sourced from a single center. We conducted a detailed comparative analysis among NTS, targeted next-generation sequencing (tNGS), and CMTs. Initially, we compared the detection capabilities of NTS and tNGS and found no significant differences in their sensitivity and specificity. Specifically, we observed that the sensitivity of NTS was significantly higher than that of CMTs (74.83% vs 33.11%, P < 0.001). Furthermore, NTS exhibited a higher positivity rate in common pulmonary infections (62.88% vs. 23.48%) and in clinically suspected tuberculosis patients compared to CMTs (87.18% vs. 48.72%). Additionally, NTS showed less susceptibility to antibiotic interference, indicating a more sensitive detection capability, especially in detecting fastidious organisms. It complements GeneXpert in tuberculosis diagnosis and offers excellent advantages in identifying pathogens challenging for CMTs, such as non-tuberculous mycobacteria and viruses. Moreover, NTS significantly shortens the reporting time and is only a quarter of the cost of metagenomic next-generation sequencing. Clearly, NTS can facilitate faster and more cost-effective early diagnosis of respiratory infections.IMPORTANCEThis study holds paramount significance in advancing the field of respiratory infection diagnostics. By assessing the pathogen detection capabilities in bronchoalveolar lavage fluid (BALF) of patients with pulmonary infections, we illuminate the promising potential of nanopore-targeted sequencing (NTS). The findings underscore NTS as a comparable yet distinct alternative to traditional methods like comprehensive conventional microbiological tests (CMTs). Notably, NTS demonstrates a pivotal edge, expanding the spectrum of identified pathogens, particularly excelling in the detection of challenging entities like non-tuberculous mycobacteria and viruses. The study also highlights the complementary role of NTS alongside GeneXpert in the identification of tuberculosis, providing a comprehensive overview of the diagnostic landscape for respiratory infections. This insight carries significant implications for clinicians seeking rapid, cost-effective, and accurate diagnostic tools in the realm of pulmonary infections.


Subject(s)
Bronchoalveolar Lavage Fluid , High-Throughput Nucleotide Sequencing , Respiratory Tract Infections , Humans , Bronchoalveolar Lavage Fluid/microbiology , Male , Female , High-Throughput Nucleotide Sequencing/methods , Middle Aged , Retrospective Studies , Aged , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Nanopore Sequencing/methods , Adult , Nanopores , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Sensitivity and Specificity , Aged, 80 and over
19.
Nutr Neurosci ; : 1-11, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662341

ABSTRACT

Malnutrition is a highly prevalent complication in patients with traumatic brain injury (TBI), and it is closely related to the prognosis of patients. Accurate identification of patients at high risk of malnutrition is essential. Therefore, we analyzed the risk factors of malnutrition in patients with TBI and developed a model to predict the risk of malnutrition. A retrospective collection of 345 patients with TBI, and they were divided into malnutrition and comparison groups according to the occurrence of malnutrition. Univariate correlation and multifactor logistic regression analyses were performed to determine patients' malnutrition risk factors. We used univariate and logistic regression (forward stepwise method) analyses to identify significant predictors associated with malnutrition in patients with TBI and developed a predictive model for malnutrition prediction. The model's discrimination, calibration, and clinical utility were evaluated using the receiver operating characteristic (ROC) curve, calibration plots, and decision curve analysis (DCA). A total of 216 patients (62.6%) developed malnutrition. Multifactorial logistic regression analysis showed that pulmonary infection, urinary tract infection, dysphagia, application of NGT, GCS score ≤ 8, and low ADL score were independent risk factors for malnutrition in patients with TBI (P < 0.05). The area under the curve of the model was 0.947. Calibration plots showed good discrimination of model calibration. DCA showed that the column line plot models were all clinically meaningful when nutritional interventions were performed over a considerable range of threshold probabilities (0-0.98). Malnutrition is widespread in patients with TBI, and the nomogram is a good predictor of whether patients develop malnutrition.

20.
Respir Med Case Rep ; 48: 102007, 2024.
Article in English | MEDLINE | ID: mdl-38550310

ABSTRACT

A 52-year-old female patient receiving olaparib maintenance treatment was admitted to hospital with a low fever and chest tightness. A CT scan of the patient's chest showed diffuse ground glass shadow or miliary nodular shadow in the bilateral lungs. Her inflammatory biomarkers were almost normal, except the slightly elevated C-reactive protein. Moreover, lymphocytes count obviously decreased. Empirical treatment did not relieve her symptoms, while traditional testing developed negative results. The results of metagenomic next-generation sequencing (mNGS) revealed the presence of a potential pathogen, Actinomyces odontolyticus (A. odontolyticus), in bronchoalveolar lavage fluid (BLAF). Once large-dosed penicillin G was administered, the fever returned to normal and chest tightness disappeared. Reexamination of chest CT revealed that the pulmonary lesions was almost absorbed. Our case demonstrated that mNGS is a novel approach to identify pathogens sensitively and accurately, especially for uncommon and atypical infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...