Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Plant Foods Hum Nutr ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951376

ABSTRACT

Chronic diseases like cancer and diabetes are the major public health concerns of India and worldwide. Nowadays, plant-derived products are in great demand for the treatment of these diseases. Pumpkin seeds are traditionally implicated for their pharmacological properties, as exemplified by benign prostatic hyperplasia. Earlier, pumpkin seed proteins were extracted by the Osborne method, and their functional and nutritional qualities were evaluated. Here, the aim is to assess in vitro, the anticancer and antidiabetic properties of seed protein fractions. HepG2, MDA-MB-231, and MCF-7 cell lines were treated with water-soluble (WF) and alkali-soluble fractions (AF) to assess cytotoxicity, while pancreatic ß-cells and insulin resistance (IR) - HepG2 cell lines were treated with WF to evaluate the antidiabetic potential. WF and AF showed cytotoxic effects towards HepG2 and MDA-MB-231 cell lines, suggesting apoptosis-mediated anticancerous activity. WF potentiates glucose-stimulated insulin secretion in pancreatic ß-cells, in a dose-dependent manner. In IR-HepG2 cell line studies, control, metformin, and WF-treated groups showed uptake of glucose, when compared to the diabetic group, which is well-correlated with the upregulated expressions of GLUT2 and GLUT4 transporters in these groups. These results indicate that proteins from WF and AF may have anticancerous and antidiabetic properties and thus have the potential to utilize pumpkin proteins in the management of cancer and diabetes.

2.
Gels ; 10(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38920930

ABSTRACT

In contrast to rapeseed oil, pumpkin seed oil has yet to be well investigated in terms of oleogelation, and, to the best of our knowledge, no study related to the use of ethylcellulose (EC) in the structuring of this oil has been identified in the current scientific literature. Therefore, the present study evaluated several oleogels formulated with EC as the oleogelator in different concentrations of 7% (OG7) and 9% (OG9), based on cold-pressed pumpkin seed oil (PO) and refined rapeseed oil (RO), as well as on mixtures of the two oils in different combinations: PO:RO (3:1) (PRO) and PO:RO (1:1) (RPO). Physicochemical properties such as visual appearance, gel formation time (GFT), oil-binding capacity (OBC), oxidative and thermal stability, and textural characteristics were analyzed. Analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD) were used in the statistical analysis of the data, with a significance level of p < 0.05. EC proved to be an effective structuring agent of the mentioned edible oils; the type of oils and the concentration of oleogelator significantly influenced the characteristics of the obtained oleogels. The 9% EC oleogels exhibited a more rigid structure, with a higher OBC and a reduced GFT. Pumpkin seed oil led to more stable oleogels, while the mixture of pumpkin seed oil with rapeseed oil caused a significant reduction in their mechanical properties and decreased the OBC. After 14 days of storage, all oleogels demonstrated proper oxidative stability within the bounds set by international regulations for edible fats, regardless of the kind of oil and EC concentration. All of the oleogels showed a higher oxidative stability than the oils utilized in their formulation; however, those prepared with cold-pressed pumpkin seed oil indicated a lower level of lipid oxidation among all oleogels. The P-OG9 and PR-OG9 oleogels, which mainly included PO and contained 9% EC, demonstrated the optimum levels of quality in texture, GFT, OBC, and oxidative stability.

3.
Food Chem ; 455: 139808, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38897071

ABSTRACT

The study investigated the lipid oxidation of pumpkin seed kernels (PSK) under different storage conditions (room temperature, vacuum-room temperature, refrigeration, and vacuum-refrigeration) using HPLC-MS and GC-MS. Experimental results found the vacuum-refrigeration group showed the lowest PV (0.24 g/100 g), diene (8.68), hexanal (356.64 ± 16.06 ng/g), and nonanal (132.05 ± 8.38 ng/g) after a 9-month storage. A total of 586 lipids, including 6 classes and 27 subclasses, were detected, 46 of which showed significant differences. Refrigeration samples had the highest diacylglycerol content, while room temperature samples demonstrated the highest triacylglycerol and phosphatidylcholine content. Differential lipid metabolite analyses indicated that storage conditions mainly affected glycerolipid metabolism, glycerophospholipid metabolism, and sphingolipid metabolism pathways in PSK, while glycerolipid and glycerophospholipid metabolism were still dominant. It revealed that refrigeration was more effective than vacuum in inhibiting the oxidation of PSK. These findings could offer valuable references for the storage, transportation, preservation, and the development and utilization of PSK.


Subject(s)
Cucurbita , Food Storage , Lipidomics , Oxidation-Reduction , Seeds , Cucurbita/chemistry , Cucurbita/metabolism , Seeds/chemistry , Seeds/metabolism , Lipids/chemistry , Lipids/analysis , Gas Chromatography-Mass Spectrometry , Lipid Metabolism , Chromatography, High Pressure Liquid
4.
Curr Res Food Sci ; 8: 100739, 2024.
Article in English | MEDLINE | ID: mdl-38708103

ABSTRACT

Pumpkin seeds are rich in protein (24-36.5%). Some of them are consumed as nuts, while others are regarded as waste and used for feeding animals. Protein hydrolysates from pumpkin seeds possess some bioactive properties, such as anti-oxidant activity. In this work, various composite alginate hydrogels contain Aloe vera, CMC, and tragacanth have been employed to protect PSPH against degradation in simulated gastrointestinal digestion (SGI) and regulate its release rate. The encapsulation efficiency of PSPH in plain alginate and beads with Aloe vera, CMC, and tragacanth combinations was 71.63, 75.63, 85.07, and 80.4%, respectively. The release rate of the plain alginate beads was %30.23 in the SGF and %52.26 in the SIF, and decreased in the composite-based beads. The highest decreasing rate in the antioxidant activity during SGI was observed in free PSPH, and the decreasing rate slowed down in the alginate-based composites. The swelling rate in plain alginate was %-23.43 and %25.43 in the SGF and SIF, respectively, and increased in the composite-based beads. The FTIR spectra of hydrogels before and after loading with PSPH showed identical absorption patterns and were similar to each other. Based on the data for SEM, it was revealed that substituting other polymers in polymer combinations with alginates resulted in a porosity reduction of the beads and smoother and more uniform surfaces. Based on the results, the combination of polysacchared with alginate could protect and increase the applicability of PSPH as a functional component in the food industry.

5.
Food Chem ; 452: 139582, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38754170

ABSTRACT

Pumpkin seeds represent a valuable source of plant protein and can be utilized in the production of plant-based milks. This study aims to investigate the effects of different pretreatment techniques on the stability of Pumpkin Seed Milk (PSM) and explore potential mechanisms. Raw pumpkin seeds underwent pretreatment through roasting, microwaving, and steaming to prepare PSM. Physiochemical attributes such as composition, storage stability, and particle size of PSM were evaluated. Results indicate that stability significantly improved at roasting temperatures of 160 °C, with the smallest particle size (305 ± 40 nm) and highest stability coefficient (0.710 ± 0.002) observed. Nutrient content in PSM remained largely unaffected at 160 °C. Protein oxidation levels, infrared, and fluorescence spectra analysis revealed that higher temperatures exacerbated the oxidation of pumpkin seed emulsion. Overall, roasting raw pumpkin seeds at 160 °C is suggested to enhance PSM quality while preserving nutrient content.


Subject(s)
Cucurbita , Hot Temperature , Seeds , Cucurbita/chemistry , Seeds/chemistry , Particle Size , Plant Proteins/chemistry , Oxidation-Reduction , Cooking , Food Handling
6.
Heliyon ; 10(8): e29669, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681570

ABSTRACT

Because of their high protein content, easy access and low cost, pumpkin seeds are a valuable raw material for the preparation of antioxidant protein hydrolysates. Micro-coating is an effective method to protect bioactive compounds against destruction. In order to strengthen the alginate hydrogel network loaded with pumpkin seed protein hydrolysate (PSPH), CMC was added as part of its formulation in the first step, and chitosan coating was used in the second step. Then, swelling amount, release in the simulated gastrointestinal environment (SGI), antioxidant activity after SGI, Fourier transform infrared spectroscopy (FTIR), zeta potential, dynamic light scattering (DLS), polydispersity index (PDI) and scanning electron microscopy (SEM) of the samples were evaluated. The results showed that, the swelling amount of the chitosan-alginate hydrogel was lower than the chitosan-alginate-CMC sample, and with the increase in chitosan concentration, the swelling amount decreased. The release amount in the chitosan-alginate sample was higher than that in the chitosan-alginate-CMC sample, and with the increase in chitosan concentration, the release rate decreased. Also, the amount of release increased with the passage of time. The highest antioxidant activity belonged to the chitosan-alginate sample in SGI, and it increased with increasing the chitosan concentration. All findings demonstrated that the use of multi-component hybrid systems is a useful method for the protection of bioactive compounds against destruction, their antioxidant activities and their release behavior.

7.
Sci Rep ; 14(1): 6929, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38519514

ABSTRACT

Soil and water salinity is an important limiting factor affecting yield and production levels in arid and semi-arid areas. Salt tolerance during germination is an important parameter that also affects the other plant development stages. In this respect, this study was designed to determine the responses of pumpkin seed varieties (Develi, Ürgüp, Hybrid) to different NaCl salinities. The study was carried out in 2022 in the laboratory of Biosystems Engineering Department of Erciyes University in randomized plots design with 3 replications. Experiments were conducted with 5 different water salinity. Germination percentage (GP), germination index (GI), mean germination time (MGT), seedling vigor index (SVI), ion leakage (Il), radicula length (RL) and plumule length (PL), root and shoot fresh and dry weights and some mineral composition (Na, K, Ca) were examined. Proline, antioxidant capacity, total phenolic and DPPH content were significantly affected by salinity. In scatter plot correlation analysis SVI a positive correlation was observed between GP (r2 = 0.774), GI (r2 = 0.745), RL (r2 = 0.929), FRW (r2 = 0.837), FSW (r2 = 0.836), DRW (r2 = 0.894), AC (r2 = 0.747), TP (r2 = 0.640) and DPPH (r2 = 0.635). It was determined that there were negative correlations between SVI and MGT (r2 = - 0.902), II (r2 = - 0.588), DSW (r2 = - 0.682) and PR (r2 = - 0.344). Present findings revealed that investigated parameters were significantly affected by increasing salinity levels. While Hybrid cultivar was the most affected by salinity, Develi cultivar was found to be resistant to saline conditions.


Subject(s)
Cucurbita , Germination , Humans , Salinity , Seedlings , Seeds , Water/chemistry
8.
J Helminthol ; 98: e25, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509855

ABSTRACT

Schistosomiasis is a serious health issue in tropical regions, and natural compounds have gained popularity in medical science. This study investigated the potential effects of pumpkin seed oil (PSO) on Biomphalaria [B.] alexandrina snails (Ehrenberg, 1831), Schistosoma [S.] mansoni (Sambon, 1907) miracidium, and cercariae. The chemical composition of PSO was determined using gas chromatography/mass spectrometry. A bioassay was performed to evaluate the effects of PSO on snails, miracidia, and cercariae. The results showed no significant mortality of B. alexandrina snails after exposure to PSO, but it caused morphological changes in their hemocytes at 1.0 mg/ml for 24 hours. PSO exhibited larvicidal activity against miracidia after 2 hours of exposure at a LC50 of 618.4 ppm. A significant increase in the mortality rate of miracidia was observed in a dose- and time-dependent manner, reaching a 100% death rate after 10 minutes at LC90 and 15 minutes at LC50 concentration. PSO also showed effective cercaricidal activity after 2 hours of exposure at a LC50 of 290.5 ppm. Histological examination revealed multiple pathological changes in the digestive and hermaphrodite glands. The PSO had genotoxic effects on snails, which exhibited a significant increase [p≤0.05] in comet parameters compared to the control. The findings suggest that PSO has potential as a molluscicide, miracidicide, and cercaricide, making it a possible alternative to traditional molluscicides in controlling schistosomiasis.


Subject(s)
Biomphalaria , Cucurbita , Molluscacides , Schistosomiasis , Animals , Schistosoma mansoni , Snails , Cercaria , Molluscacides/pharmacology , Plant Oils/pharmacology
9.
Antioxidants (Basel) ; 13(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397839

ABSTRACT

Aging and menopause are associated with oxidative stress and inflammation. Here, we evaluated the antioxidant properties of pumpkin (Cucurbita pepo L.) seed extract and assessed its ameliorative effects on aging- and menopause-related diseases using Saos-2 cells and ovariectomized rats. The seed extract had bioactive components that exhibited antioxidant activity. The extract increased the alkaline phosphatase (ALP) activity of Saos-2 cells. The oral administration of the extract to ovariectomized rats for 12 weeks decreased their body weight, fat weight, and cardiac risk indices. It also contributed to reductions in the levels of reactive oxygen species, oxidative stress, and inflammation, as assessed by measuring the serum levels of malondialdehyde and analyzing gene expression in rats. Furthermore, the administration of the extract also promoted an enhancement of the transcription of nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase-1 (Ho-1), and catalase (Cat), involved in antioxidant activity; endothelial nitric oxide synthase (eNos), involved in vasculoprotective activity; and PR/SET domain 16 (Prdm16) and peroxisome proliferator-activated receptor-gamma coactivator (Pgc1α), involved in brown adipogenesis and thermogenesis. Our results using ovariectomized rats show that pumpkin seed extract may have ameliorative effects on menopause-related diseases by increasing ALP activity, evaluating the antioxidant system, ameliorating oxidative stress and thermogenesis, and enhancing lipid profiles.

10.
Animals (Basel) ; 14(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396507

ABSTRACT

Milk contains more than 400 different fatty acids, some of which play a positive role in promoting human health. The profile of fatty acids in milk can be enhanced by providing animals with plant-based resources that possess feeding characteristics adequate for favorable changes in the fatty acid composition and increasing healthy fatty acids in milk. This review summarizes the available 41 research studies on the utilization of oilseed industry byproducts rich in linoleic acid (hemp, pumpkin, sunflower) and alpha-linolenic acid (camelina and linseed) in dairy cow, sheep, and goat nutrition; their impact on milk production characteristics; and potential to improve fatty acid composition of milk through the diet. This review illustrates that incorporating byproducts into the diet for dairy ruminants generally does not have any adverse effects on both milk production and composition. A similar trend of improvement in milk fatty acid profile was observed when ruminants were fed diets supplemented with camelina, linseed, and sunflower byproducts, while no significant changes were noted with pumpkin byproducts. Hempseed byproducts showed potential for use as an alternative ingredient in dairy ruminant diets. Nevertheless, more in-depth research investigating the inclusion of selected byproducts is required before valid conclusions can be drawn regarding their value.

11.
Proc (Bayl Univ Med Cent) ; 37(1): 111-117, 2024.
Article in English | MEDLINE | ID: mdl-38174012

ABSTRACT

Background: Androgenetic alopecia (AGA) is a dermatologic condition with no current cure. Treatments such as minoxidil have been proven to be effective; however, the side effects can be unpleasant. As a result, the utilization of natural remedies for treatment has increased over the years. There is limited scientific evidence that addresses the efficacy of these supplements in combating AGA. Methods: A review was conducted of the effectiveness of popular complementary and alternative medicines (CAMs) in adult patients experiencing AGA. A literature search was performed for the period of 1993 to 2023 using PubMed, Embase, Google Scholar, Web of Science, and Cochrane. Results: Natural ingredients like pumpkin seed oil, saw palmetto, melatonin extract, caffeine extract, and rosemary oil were effective in treating AGA either when compared to baseline or a definite AGA Western medication, such as minoxidil. These natural agents also presented minimal side effects. Conclusion: Certain CAMs can be promising for hair loss treatment. There is a need for more scientific research to better explore the efficacy of currently identified CAMs in treating AGA.

12.
Animals (Basel) ; 14(2)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38254364

ABSTRACT

A 10-week feeding experiment was performed to determine the impacts of partial substitution of soybean meal (SB) with pumpkin seed cake (PSC) in Oreochromis niloticus diets on water quality, growth rate, antioxidant capacity, immunity, and carcass composition. One hundred and fifty tilapia fish (average weight, 11.93 ± 0.17 g) were randomly allocated to five diets. The first diet (the basal diet) contained 420 g of SB per kg of feed. The remaining four diets, namely, D1, D2, D3, and D4, had SB partially replaced by PSC at 10%, 20%, 30%, and 40%, respectively. The results revealed that D4 and D1 significantly improved dissolved oxygen levels, while water temperature, pH, total ammonia, and nitrate levels were not significantly affected. Replacing SB with PSC significantly improved specific growth performance indicators and feed conversion compared to the control, with the D4 group showing the best values. Increasing PSC levels decreased serum glucose, aspartate aminotransferase, alanine aminotransferase, cholesterol, and triglyceride levels. In contrast, the D4 group had higher globulin, albumin, total protein, and lysozyme serum levels. Moreover, fish-fed PSC had significantly increased superoxide dismutase, glutathione peroxidase, and catalase activities and significantly decreased malondialdehyde levels. Increasing PSC substitution levels in fish diets increased the ash and crude lipid contents in the bodies of the fish, while crude protein and moisture decreased. In conclusion, replacing SB with PSC in fish diets significantly enhances growth performance, feed conversion, and fish health. Moreover, the findings suggest that PSC can be a promising alternative protein source for sustainable aquaculture practices.

13.
Heliyon ; 10(2): e24443, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38288012

ABSTRACT

To develop high quality cookies, even seemingly smallest changes depended on factors that can affect taste, texture, and nutritional value. In this light, this study aimed to investigate the upshot of refined wheat flour and pumpkin seed flour on properties of cookies such as antioxidant activity, thermal and oxidative stability. In view of the foregoing, the roasted pumpkin seeds of particle size below 500 µm were blended with wheat flour at different ratios (BR) to bake at selected pre-determined temperatures (T) and time durations (TD). The synergetic effect of aforesaid parameters on cookie development, BR, T, and TD was studied by varying the parameters between the range 6-15 %, 180-200 °C and from 8 to 12 min, respectively, for the baking process of cookies. Further, the process was modelled and scrutinized using numerical optimization to achieve a highly acceptable product. On that account, it was deduced that the optimal condition for BR, T, and TD were 12.87 %, 186 °C and 9.5 min, respectively, that could pave to beget the excellent quality cookies with overall acceptance score of 8, protein content 14.28 %, fat 17.85 %, ash 2.23 %, moisture 2.46 %, fiber 2.38 % and total color difference 12.01. The optimized cookies (OCs) were found to have higher protein (11.49-14.28 %), fiber (0.93-2.41 %), ash (2.19-1.77 %), total antioxidant activity (38.7158-43.1860 %), oxidative stability (28.61-51.24 h), Zn (1.42-2.63 mg/100g), and Fe (2.12-3.20 mg/100g) content as compared to the control. Laconically, the study results provided the optimized processing condition for developing high quality cookies with respect to improved nutritional value and comparable overall acceptability.

14.
Dose Response ; 22(1): 15593258241226913, 2024.
Article in English | MEDLINE | ID: mdl-38234695

ABSTRACT

Background of the Study: The increase in the therapeutic use of tramadol in the management of moderate to severe pains in some disease conditions and its unregulated access has led to its associated toxicity and there is little or no information on the protection against its associated toxicity. Aim of the Study: Considering the medicinal value of pumpkin seed oil, its availability, and neglected use, it becomes necessary to evaluate the possible potential of the seed oil in tramadol-induced oxidative stress in Wister Albino rats. Methods of the Study: This study used fifty-six (56) albino rats to determine the impact of Cucurbita pepo seed oil (CPSO) on tramadol-induced oxidative stress. The rats were grouped into 7. After a week of acclimatization, rats in group 1 (normal control) had access to water and food, while rats in group 2 received 5 mL/Kg (b.w) of normal saline. 100 mg/kg of tramadol (TM) was delivered to groups 3-6 to induce toxicity. The third group (TM control) received no treatment, whilst the other 3 groups (TM-CPSO treatment groups) received 5, 2.5, and 1.5 mL/Kg of CPSO, respectively. Group 7 received only 5 mL/kg CPSO (CPSO group). Similarly, groups 2 through 7 had unrestricted access to food and water for 42 days and received treatments via oral intubation once per day. Indicators of oxidative stress were discovered in the brain homogenate. Results: TM toxicity was demonstrated by a considerable increase (P < .05) in the brain MDA level and a significant drop (P < .05) in the brain GSH level, as well as a significant reduction (P < .05) in GPx, catalase, SOD, GST, and quinone reductase activities. Conclusion: The dose-dependent delivery of CPSO was able to restore not only the activity but also the concentrations of the altered markers.

15.
J Sci Food Agric ; 104(2): 572-582, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37650308

ABSTRACT

Pumpkin seed oil (PSO), a rich source of nutrients, is extracted from the seeds of different pumpkin varieties for food and medicines. This article aims to provide an evidence-based review of the literature and to explore the extraction technologies, nutritional properties, and biological activity of PSO. From previous literature, PSO contains a large proportion of unsaturated fatty acids, with linoleic acid as the main component, and an amount of tocopherol, phytosterol, and phenolic acids. Some differences in the yield, composition, and physicochemical properties of PSO can be associated with the pumpkin's cultivars and the extraction methods. Some novel technologies involved in supercritical fluid extraction, enzyme-assisted aqueous extraction, and ultrasound-assisted extraction have been replacing the conventional technologies gradually as promising methods for the safe, non-polluting, and effective recovery of PSO. This healthy vegetable oil was reported by several in vitro and in vivo studies to have potential protective roles in oxidative stress, inflammation, cancer, and cardiovascular diseases. © 2023 Society of Chemical Industry.


Subject(s)
Cucurbita , Cucurbita/chemistry , Fatty Acids/chemistry , Tocopherols/analysis , Antioxidants/chemistry , Seeds/chemistry , Plant Oils/chemistry
16.
Int J Biol Macromol ; 253(Pt 7): 127386, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37838112

ABSTRACT

In this study, zein/pectin/pumpkin seed oil (PSO) Pickering emulsions (ZPPEs) were fabricated loading with myricetin (MYT), and the quality control methods of oxidation stability were innovatively investigated. The microstructure and particle properties of zein-pectin particles were determined. The zein to pectin ratio of 5:3 and oil phase fraction (φ = 50 %) turned out as the most optimal conditions for the stabilization of myricetin-loaded ZPPEs. The expected oil-in-water emulsion-type structure was confirmed by confocal laser scanning microscopy (CLSM). The internal 3D structure of Pickering emulsions (Lugol's solution improved the water-phase contrast) was imaged by micro-computed tomography (Micro-CT) for the first time. Results showed a sponge like structure of water phase in emulsion with 42 µm as mean droplet size. Light-induced oxidation was evaluated with the PetroOxy method and malondialdehyde (MDA) assays. Encapsuling ZPPEs with MYT could prevent the light induced oxidation, especially, loading of MYT at the core of the emulsion. The analysis of Electronic nose (E-nose) was used to analyze the odor before and after UV-induced oxidation, and showed a good discrimination. This study provided a new approach to prepare ZPPEs with high oxidation stability. Micro-CT, PetroOxy and E-nose could be new methods for characterization and quality assessment of Pickering emulsions.


Subject(s)
Cucurbita , Nanoparticles , Zein , Emulsions/chemistry , Zein/chemistry , Pectins/chemistry , X-Ray Microtomography , Plant Oils , Water/chemistry , Particle Size , Nanoparticles/chemistry
17.
Foods ; 12(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37761059

ABSTRACT

This study investigated the effects of three extraction methods, including cold pressing (CP), microwave pretreatment pressing (MP), and supercritical fluid extraction (SFE), on the yield, physicochemical properties, bioactive compounds content, and antioxidant properties of pumpkin seed oil (PSO). Furthermore, the correlation between bioactive compounds and the antioxidant properties of PSO was determined. The results revealed that the yield of PSO extracted using the three methods was in the order of SFE > MP > CP. Additionally, the PSO generated by SFE showed the highest unsaturated fatty acid content, followed by MP and CP. Additionally, MP-PSO exhibited the highest acid value and saponification value, while SFE-PSO displayed the highest moisture content, peroxide value, and iodine value. Moreover, the PSO generated by MP demonstrated superior antioxidant properties compared to that of PSOs from CP and SFE in the oxidation induction, DPPH, FRAP, and ABTS tests. Finally, the correlation analysis revealed that specific types of bioactive compounds, such as ß-sitosterol and γ-tocopherol, were highly correlated with the antioxidant properties of PSOs. Consequently, this study provides comprehensive knowledge regarding PSO extraction, physicochemical properties, bioactive compound extraction, and the correlated antioxidant properties.

18.
Pediatr Allergy Immunol Pulmonol ; 36(3): 122-124, 2023 09.
Article in English | MEDLINE | ID: mdl-37552845

ABSTRACT

Background: Seeds are widely consumed as a traditional snack and have rich contents beneficial to health. With an increase in consumption rates, allergic reactions occur more frequently. We focus on multiple seed consumption related to recurrent anaphylaxis in this case. Case Presentation: We evaluated an 11-year-old boy with recurrent anaphylaxis. According to his medical records, he had been hospitalized several times, diagnosed with anaphylaxis, and treated. The family noticed direct (eating) or indirect contact with pumpkin seeds. In addition, the family mentioned another anaphylactic episode after watermelon seed and poppy seed bread consumption. We conducted skin prick-to-prick tests, examined total immunoglobulin E levels, and prescribed the treatment with an adrenalin autoinjector and preventive dietary recommendations. Conclusion: Anaphylaxis, particularly recurrent ones, should be evaluated with detailed anamnesis and supported with laboratory tests. Although seeds are beneficial and highly nutritious, it is necessary to consider them a source of allergens.


Subject(s)
Anaphylaxis , Citrullus , Cucurbita , Food Hypersensitivity , Male , Humans , Child , Anaphylaxis/diagnosis , Food Hypersensitivity/diagnosis , Seeds/adverse effects
19.
Food Res Int ; 168: 112750, 2023 06.
Article in English | MEDLINE | ID: mdl-37120203

ABSTRACT

Edible microbeads are hotly sought after for emerging cell-based meat culture but there are no major breakthroughs so far. Herein we report a functional edible microbead with alginate as core coated with pumpkin proteins as shell. Proteins from 11 plant-seeds were extracted and tested their cytoaffinity as gelatin replacer by grafting them on alginate microbeads and pumpkin seed protein coated microbeads shown the best performance in stimulating proliferation of C2C12 cells (by 17 folds in a week), 3T3-L1 adipocytes, chicken muscle satellite cells and primary porcine myoblast. The cytoaffinity of pumpkin seed protein coated microbeads comparable with that of animal gelatin microbeads. Protein sequencing analysis on pumpkin seed proteins found that it is rich in RGD tripeptide moiety, which are known to be enhance cytoaffinity. Our work advances our search for edible microbeads as ECM materials for cell-based meat culture.


Subject(s)
Cucurbita , Animals , Alginates , Gelatin , Meat , Microspheres , Seeds , Swine , Proteins
20.
Foods ; 12(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36900573

ABSTRACT

During the production of plant-based milk, thermal treatment of raw materials is an important processing method to improve the physicochemical and nutritional quality of the final products. The objective of this study was to examine the impact of thermal processing on the physiochemical properties and stability of pumpkin seed (Cucurbita pepo L.) milk. Raw pumpkin seeds were roasted at different temperatures (120 °C, 160 °C, and 200 °C), and then processed into milk using a high-pressure homogenizer. The study analyzed the microstructure, viscosity, particle size, physical stability, centrifugal stability, salt concentration, heat treatment, freeze-thaw cycle, and environment stress stability of the resulting pumpkin seed milk (PSM120, PSM160, PSM200). Our results showed that the microstructure of pumpkin seeds was loose and porous, forming a network structure because of roasting. As the roasting temperature increased, the particle size of pumpkin seed milk decreased, with PSM200 showing the smallest at 210.99 nm, while the viscosity and physical stability improved. No stratification was observed for PSM200 within 30 days. The centrifugal precipitation rate decreased, with PSM200 showing the lowest rate at 2.29%. At the same time, roasting enhanced the stability of the pumpkin seed milk in the changes in ion concentration, freeze-thaw, and heating treatment. The results of this study suggested that thermal processing was an important factor in improving the quality of pumpkin seed milk.

SELECTION OF CITATIONS
SEARCH DETAIL
...