Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Bull Exp Biol Med ; 177(1): 47-50, 2024 May.
Article in English | MEDLINE | ID: mdl-38955852

ABSTRACT

Ectonucleotidases play an important role in regulating the level of extracellular nucleotides and nucleosides and are an important part of the regulation of the effects of adenosine and ATP on adenosine and P2 receptors, respectively. We have previously established the ambiguous effect of P2 receptor agonists on the contractile activity of smooth muscle tissue in rats with the valproate model of autism. In this work, HPLC was used to evaluate the activity of ectonucleotidases in the smooth muscle tissues of the internal organs of rats with a valproate model of autism. The activity of ectonucleotidases was significantly higher in the smooth muscle tissues of the duodenum, vas deferens, and bladder, but lower in the ileum and uterus. The results obtained make it possible to compare the activity of ectonucleotidases identified here with changes in P2 receptor-mediated contractility of smooth muscle tissues revealed in our previous experiments.


Subject(s)
Autistic Disorder , Muscle Contraction , Muscle, Smooth , Urinary Bladder , Valproic Acid , Vas Deferens , Animals , Rats , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Valproic Acid/pharmacology , Autistic Disorder/metabolism , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Male , Female , Vas Deferens/drug effects , Vas Deferens/metabolism , Urinary Bladder/drug effects , Urinary Bladder/metabolism , Urinary Bladder/enzymology , Muscle Contraction/drug effects , Uterus/drug effects , Uterus/metabolism , Ileum/drug effects , Ileum/metabolism , Ileum/enzymology , Disease Models, Animal , Rats, Wistar , Receptors, Purinergic P2/metabolism , Adenosine Triphosphatases/metabolism
2.
Purinergic Signal ; 20(2): 109-113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36941507

ABSTRACT

María Teresa Miras Portugal devoted most of her scientific life to the study of purinergic signalling. In an important part of her work, she used a model system: the chromaffin cells of the adrenal medulla. It was in these cells that she identified diadenosine polyphosphates, from which she proceeded to the study of adrenomedullary purinome: nucleotide synthesis and degradation, adenosine transport, nucleotide uptake into chromaffin granules, exocytotic release of nucleotides and autocrine regulation of chromaffin cell function via purinoceptors. This short review will focus on the current state of knowledge of the purinoceptors of adrenal chromaffin cells, a subject to which María Teresa made seminal contributions and which she continued to study until the end of her scientific life.


Subject(s)
Adrenal Medulla , Chromaffin Cells , Portugal , Adrenal Medulla/metabolism , Receptors, Purinergic/metabolism , Nucleotides/metabolism
3.
J Pain ; 25(4): 1024-1038, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37918469

ABSTRACT

Caffeine consumption inhibits acupuncture analgesic effects by blocking adenosine signaling. However, existing evidence remains controversial. Hence, this study aimed to examine the adenosine A1 receptor (A1R) role in moderate-dose caffeine-induced abolishing effect on acupuncture analgesia using A1R knockout mice (A1R-/-). We assessed the role of A1R in physiological sensory perception and its interaction with caffeine by measuring mechanical and thermal pain thresholds and administering A1R and adenosine 2A receptor antagonists in wild-type (WT) and A1R-/- mice. Formalin- and complete Freund's adjuvant (CFA)-induced inflammatory pain models were recruited to explore moderate-dose caffeine effect on pain perception and acupuncture analgesia in WT and A1R-/- mice. Moreover, a C-fiber reflex electromyogram in the biceps femoris was conducted to validate the role of A1R in the caffeine-induced blockade of acupuncture analgesia. We found that A1R was dispensable for physiological sensory perception and formalin- and CFA-induced hypersensitivity. However, genetic deletion of A1R impaired the antinociceptive effect of acupuncture in A1R-/- mice under physiological or inflammatory pain conditions. Acute moderate-dose caffeine administration induced mechanical and thermal hyperalgesia under physiological conditions but not in formalin- and CFA-induced inflammatory pain. Moreover, caffeine significantly inhibited electroacupuncture (EA) analgesia in physiological and inflammatory pain in WT mice, comparable to that of A1R antagonists. Conversely, A1R deletion impaired the EA analgesic effect and decreased the caffeine-induced inhibitory effect on EA analgesia in physiological conditions and inflammatory pain. Moderate-dose caffeine administration diminished the EA-induced antinociceptive effect by blocking A1R. Overall, our study suggested that caffeine consumption should be avoided during acupuncture treatment. PERSPECTIVE: Moderate-dose caffeine injection attenuated EA-induced antinociceptive effect in formalin- and CFA-induced inflammatory pain mice models by blocking A1R. This highlights the importance of monitoring caffeine intake during acupuncture treatment.


Subject(s)
Acupuncture Analgesia , Caffeine , Animals , Mice , Adenosine , Analgesics/pharmacology , Analgesics/therapeutic use , Caffeine/adverse effects , Formaldehyde , Mice, Knockout , Pain/drug therapy , Pain/chemically induced , Receptor, Adenosine A1/metabolism , Adenosine A1 Receptor Antagonists
4.
Purinergic Signal ; 19(1): 255-263, 2023 03.
Article in English | MEDLINE | ID: mdl-35771310

ABSTRACT

P2 purinoceptors are composed of ligand-gated ion channel type (P2X receptor) and G protein-coupled metabolite type (P2Y receptor). Both these receptors have played important roles in the prostate cancer microenvironment in recent years. P2X and P2Y receptors can contribute to prostate cancer's growth and invasiveness. However, the comprehensive mechanisms have yet to be identified. By summarizing the relevant studies, we believe that P2X and P2Y receptors play a dual role in cancer cell growth depending on the prostate cancer microenvironment and different downstream signalling pathways. We also summarized how different signalling pathways contribute to tumor invasiveness and metastasis through P2X and P2Y receptors, focusing on understanding the specific mechanisms led by P2X4, P2X7, and P2Y2. Statins may reduce and prevent tumor progression through P2X7 so that P2X purinergic receptors may have clinical implications in the management of prostate cancer. Furthermore, P2X7 receptors can aid in the early detection of prostate cancer. We hope that this review will provide new insights for future mechanistic and clinical investigations into the role of P2 purinergic receptors in prostate cancer.


Subject(s)
Prostatic Neoplasms , Receptors, Purinergic P2 , Male , Humans , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2X , Adenosine Triphosphate , Tumor Microenvironment
5.
Chinese Pharmacological Bulletin ; (12): 1282-1288, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013769

ABSTRACT

Aim To investigate the differences in the role of different purinergic receptor subtypes at different sites in postoperative-hyperalgesic priming in mice. Methods A postoperative-hyperalgesic priming model was constructed by injecting PGE

8.
ACS Chem Neurosci ; 12(22): 4195-4208, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34723483

ABSTRACT

Bone cancer pain (BCP) is a distinct pain state showing characteristics of both neuropathic and inflammatory pain. On average, almost 46% of cancer patients exhibit BCP with numbers flaring up to as high as 76% for terminally ill patients. Patients suffering from BCP experience a compromised quality of life, and the unavailability of effective therapeutics makes this a more devastating condition. In every individual cancer patient, the pain is driven by different mechanisms at different sites. The mechanisms behind the manifestation of BCP are very complex and poorly understood, which creates a substantial barrier to drug development. Nevertheless, some of the key mechanisms involved have been identified and are being explored further to develop targeted molecules. Developing a multitarget approach might be beneficial in this case as the underlying mechanism is not fixed and usually a number of these pathways are simultaneously dysregulated. In this review, we have discussed the role of recently identified novel modulators and mechanisms involved in the development of BCP. They include ion channels and receptors involved in sensing alteration of temperature and acidic microenvironment, immune system activation, sodium channels, endothelins, protease-activated receptors, neurotrophins, motor proteins mediated trafficking of glutamate receptor, and some bone-specific mechanisms. Apart from this, we have also discussed some of the novel approaches under preclinical and clinical development for the treatment of bone cancer pain.


Subject(s)
Bone Neoplasms , Cancer Pain , Animals , Bone Neoplasms/complications , Bone Neoplasms/drug therapy , Cancer Pain/drug therapy , Disease Models, Animal , Humans , Pain/drug therapy , Pain/etiology , Quality of Life , Tumor Microenvironment
9.
Curr Opin Physiol ; 20: 105-111, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33542966

ABSTRACT

In the peripheral neurons and circuits for hearing, balance, touch and pain, GABA plays diverse and important roles. In some cases, GABA is an essential player in the maintenance of sensory receptors and afferent neurons. In other instances, GABA modulates the sensory signal before it reaches CNS neurons. And in yet other instances, tonic GABA-mediated signals set the resting tone and excitability of afferent neurons. GABAA receptors are present on gustatory afferent neurons that carry taste signals from taste buds to central circuits in the brainstem. Yet, the functional significance of these receptors is unexplored. Here, I outline some of the roles of GABA in other peripheral sensory systems. I then consider whether similar functions may be ascribed to GABA signaling in the taste periphery.

10.
Biol Sex Differ ; 11(1): 52, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32928299

ABSTRACT

BACKGROUND: Premenopausal women have a lower risk of hypertension compared to age-matched men and postmenopausal women. P2Y2 and P2Y4 purinoceptor can be considered potential contributors to hypertension due to their emerging roles in regulating renal tubular Na+ transport. Activation of these receptors inhibits epithelial Na+ channel activity (ENaC) via a phospholipase C (PLC)-dependent pathway resulting in natriuresis. We recently reported that activation of P2Y2 and P2Y4 receptors in the renal medulla by UTP promotes natriuresis in male and ovariectomized (OVX) rats, but not in ovary-intact females. This led us to hypothesize that ovary-intact females have greater basal renal medullary activity of P2 (P2Y2 and P2Y4) receptors regulating Na+ excretion compared to male and OVX rats. METHODS: To test our hypothesis, we determined (i) the effect of inhibiting medullary P2 receptors by suramin (750 µg/kg/min) on urinary Na+ excretion in anesthetized male, ovary-intact female, and OVX Sprague Dawley rats, (ii) mRNA expression and protein abundance of P2Y2 and P2Y4 receptors, and (iii) mRNA expression of their downstream effectors (PLC-1δ and ENaCα) in renal inner medullary tissues obtained from these three groups. We also subjected cultured mouse inner medullary collecting duct cells (segment 3, mIMCD3) to different concentrations of 17ß-estradiol (E2, 0, 10, 100, and 1000 nM) to test whether E2 increases mRNA expression of P2Y2 and P2Y4 receptors. RESULTS: Acute P2 inhibition attenuated urinary Na+ excretion in ovary-intact females, but not in male or OVX rats. We found that P2Y2 and P2Y4 mRNA expression was higher in the inner medulla from females compared to males or OVX. Inner medullary lysates showed that ovary-intact females have higher P2Y2 receptor protein abundance, compared to males; however, OVX did not eliminate this sex difference. We also found that E2 dose-dependently upregulated P2Y2 and P2Y4 mRNA expression in mIMCD3. CONCLUSION: These data suggest that ovary-intact females have enhanced P2Y2 and P2Y4-dependent regulation of Na+ handling in the renal medulla, compared to male and OVX rats. We speculate that the P2 pathway contributes to facilitated renal Na+ handling in premenopausal females.


Subject(s)
Epithelial Sodium Channels/metabolism , Estradiol/metabolism , Natriuresis/physiology , Ovary/physiology , Receptors, Purinergic P2Y2/metabolism , Receptors, Purinergic P2/metabolism , Animals , Cell Line , Dose-Response Relationship, Drug , Epithelial Sodium Channels/genetics , Female , Gene Expression Regulation/drug effects , Kidney Medulla/physiology , Male , Ovariectomy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2Y2/genetics , Sex Factors , Suramin/pharmacology , Type C Phospholipases/genetics , Type C Phospholipases/metabolism
11.
Biochem Pharmacol ; 182: 114214, 2020 12.
Article in English | MEDLINE | ID: mdl-32905795

ABSTRACT

Obesity is a worldwide health problem which have reached pandemic proportions, now also including low and middle-income countries. Excessive or abnormal fat deposition in the abdomen especially in the visceral compartment is tightly associated with a high metabolic risk for arterial hypertension, type II diabetes, cardiovascular diseases, musculoskeletal disorders (especially articular degeneration) and some cancers. Contrariwise, accumulation of fat in the subcutaneous compartment has been associated with a neutral metabolic impact, favoring a lower risk of insulin resistance. Obesity results more often from an avoidable imbalance between food consumption and energy expenditure. There are several recommended strategies for dealing with obesity, including pharmacological therapies, but their success remains incomplete and may not compensate the associated adverse effects. Purinergic signaling operated by ATP and its metabolite, adenosine, has attracted increasing attention in obesity. The extracellular levels of purines often reflect the energy status of a given cell population. Adenine nucleotides and nucleosides fine tuning control adipogenesis and mature adipocytes function via the activation of P2 and P1 purinoceptors, respectively. These features make the purinergic signaling cascade a putative target for therapeutic intervention in obesity and related metabolic syndromes. There are, however, gaps in our knowledge regarding the role of purines in adipocyte precursors differentiation and mature adipocytes functions, as well as their impact among distinct adipose tissue deposits (e.g. white vs. brown, visceral vs. subcutaneous), which warrants further investigations before translation to clinical trials can be made.


Subject(s)
Adipogenesis/physiology , Obesity/metabolism , Purines/metabolism , Receptors, Purinergic P1/metabolism , Receptors, Purinergic/metabolism , Signal Transduction/physiology , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Humans , Obesity/pathology
12.
Adv Exp Med Biol ; 1202: 1-12, 2020.
Article in English | MEDLINE | ID: mdl-32034706

ABSTRACT

ATP is a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the brain. There is a widespread presence of both adenosine (P1) and P2 nucleotide receptors in the brain on both neurons and glial cells. Adenosine receptors play a major role in presynaptic neuromodulation, while P2X ionotropic receptors are involved in fast synaptic transmission and synaptic plasticity. P2Y G protein-coupled receptors are largely involved in presynaptic activities, as well as mediating long-term (trophic) signalling in cell proliferation, differentiation and death during development and regeneration. Both P1 and P2 receptors participate in neuron-glial interactions. Purinergic signalling is involved in control of cerebral vascular tone and remodelling and has been implicated in learning and memory, locomotor and feeding behaviour and sleep. There is increasing interest in the involvement of purinergic signalling in the pathophysiology of the CNS, including trauma, ischaemia, epilepsy, neurodegenerative diseases, neuropsychiatric and mood disorders, and cancer, including gliomas.


Subject(s)
Brain/metabolism , Receptors, Purinergic/metabolism , Signal Transduction , Synaptic Transmission , Adenosine Triphosphate/metabolism , Animals , Humans
14.
Purinergic Signal ; 15(1): 69-76, 2019 03.
Article in English | MEDLINE | ID: mdl-30637575

ABSTRACT

Increased levels of ATP have been found in the bronchoalveolar lavage of patients with asthma, and subjects with this disease, but not healthy subjects, develop bronchospasm after nebulization with ATP. Because the main mechanism for controlling the noxious effects of extracellular ATP is its enzymatic hydrolysis, we hypothesized that allergic sensitization is accompanied by a decreased functioning of such hydrolysis. In the present study, peripheral blood leukocytes from sensitized and non-sensitized guinea pigs were used for determining the extracellular metabolism (as assessed by inorganic phosphate production) of ATP, ADP, AMP, or adenosine, and for detecting possible changes in the expression (qPCR and Western blot) of major ectonucleotidases (NTPDase1, NTPDase3, and NPP1) and purinoceptors (P2X1, P2X7, P2Y4, and P2Y6). Contrary to our hypothesis, we found that leukocytes from allergic animals produced higher amounts of inorganic phosphate after stimulation with ATP and ADP, as compared with leukocytes from non-sensitized animals. Although at first glance, this result suggested that sensitization caused higher efficiency of ectonucleotidases, their mRNA and protein expressions were unaffected. On the other hand, after sensitization, we found a significant increase in the protein expression of P2X7 and P2Y4, two purinoceptors known to be responsible for ATP release after activation. We concluded that allergic sensitization increased the amount of ATP hydrolyzed by ectonucleotidases, the latter probably not due to the enhanced efficiency of its enzymatic breakdown, but rather due to an increased release of endogenous ATP or other nucleotides, partly mediated by enhanced expression or P2X7 and P2Y4 receptors.


Subject(s)
Adenosine Triphosphate/metabolism , Hypersensitivity/metabolism , Leukocytes/metabolism , Animals , Guinea Pigs , Hydrolysis , Male , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2X7/metabolism
15.
J Physiol Sci ; 69(1): 85-95, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29949063

ABSTRACT

There are both secretory and absorptive pathways working in tandem to support ionic movement driving fluid secretion across epithelia. The mechanisms exerting control of fluid secretion in the oviduct is yet to be fully determined. This study explored the role of apical or luminal extracellular ATP (ATPe)-stimulated ion transport in an oviduct epithelium model, using the Ussing chamber short-circuit current (Isc) technique. Basal Isc in oviduct epithelium in response to apical ATPe comprises both chloride secretion and sodium absorption and has distinct temporal phases. A rapid transient peak followed by a sustained small increase above baseline. Both phases of the apical ATPe Isc response are sensitive to anion (HCO3-, Cl-) and cation (Na+) replacement. Additionally, the role of apical chloride channels, basolateral potassium channels and intracellular calcium in supporting the peak Isc current was confirmed. The role of ATP breakdown to adenosine resulting in the activation of P2 receptors was supported by examining the effects of non-hydrolyzable forms of ATP. A P2YR2 potency profile of ATP = UTP > ADP was generated for the apical membrane, suggesting the involvement of the P2YR2 subtype of purinoceptor. A P2X potency profile of ATP = 2MeSATP > alpha,beta-meATP > BzATP was also generated for the apical membrane. In conclusion, these results provide strong evidence that purinergic activation of apical P2YR2 promotes chloride secretion and is thus an important factor in fluid formation by the oviduct.


Subject(s)
Adenosine Triphosphate/pharmacology , Chlorides/metabolism , Epithelium/metabolism , Oviducts/metabolism , Adenosine/pharmacology , Animals , Calcium/metabolism , Cattle , Chloride Channels/metabolism , Colforsin/pharmacology , Epithelium/drug effects , Female , Ion Transport/drug effects , Oviducts/drug effects
16.
J Neuroimmunol ; 326: 62-74, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30502599

ABSTRACT

Microglial activation is a distinguished attribute in many neurodegenerative diseases of aging. Compelling evidence suggests that neuroinflammation stimulated by microglia, the resident macrophage-like immune cells in the brain, play a contributing role in the pathogenesis of Alzheimer's disease (AD). Postmortem brain tissue of individuals with AD has credibly demonstrated that neuroinflammation is likely to be a key driver of the disease. Recently, It has been found that manipulating ß-amyloid directly is an impracticable approach for therapeutic intervention due to the failure of ß-amyloid-lowering drugs in clinical trials. Further, Current treatments relieve only symptoms and modestly improve disease condition but do not reverse or prevent disease. Therefore, Inhibition of microglia activation is effective strategies against the multifactorial and complex AD. More recently there has been a center of attention on converting microglia from this classic state to an alternate state in which the noxious effects are reduced and their phagocytic action toward Aß improved. The nuclear factor-kappa B (NF- kB) and NLRP3 inflammasome activation by P2X7/NLRP3/caspase 1 pathways are closely linked to Alzheimer's disease (AD) via neuroinflammation, therefore it could be a rational strategy to target these proteins to counteract the AD pathology. These strategies could work effectively if therapeutic intervention started at an early stage. This review highlights the potentials of drugs acting on the P2X7 receptor and its downstream protein targets for inhibition of neuroinflammation. Thus it might act as a futuristic strategy to treat Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Anti-Inflammatory Agents/pharmacology , Inflammasomes/metabolism , Inflammation/metabolism , Microglia/metabolism , Alzheimer Disease/physiopathology , Animals , Caspase 1/metabolism , Humans , Inflammasomes/drug effects , Inflammation/physiopathology , Microglia/drug effects , NF-kappa B/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Receptors, Purinergic P2X7/metabolism
17.
Elife ; 72018 01 16.
Article in English | MEDLINE | ID: mdl-29336303

ABSTRACT

The first point of our body's contact with tactile stimuli (innocuous and noxious) is the epidermis, the outermost layer of skin that is largely composed of keratinocytes. Here, we sought to define the role that keratinocytes play in touch sensation in vivo and ex vivo. We show that optogenetic inhibition of keratinocytes decreases behavioral and cellular mechanosensitivity. These processes are inherently mediated by ATP signaling, as demonstrated by complementary cutaneous ATP release and degradation experiments. Specific deletion of P2X4 receptors in sensory neurons markedly decreases behavioral and primary afferent mechanical sensitivity, thus positioning keratinocyte-released ATP to sensory neuron P2X4 signaling as a critical component of baseline mammalian tactile sensation. These experiments lay a vital foundation for subsequent studies into the dysfunctional signaling that occurs in cutaneous pain and itch disorders, and ultimately, the development of novel topical therapeutics for these conditions.


Subject(s)
Adenosine Triphosphate/metabolism , Keratinocytes/physiology , Receptors, Purinergic P2X4/metabolism , Signal Transduction , Touch , Animals , Cells, Cultured , Humans , Mice, Inbred C57BL , Mice, Knockout , Optogenetics
18.
BMC Complement Altern Med ; 17(1): 480, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29017492

ABSTRACT

BACKGROUND: During ischemic stroke (IS), adenosine 5'-triphosphate (ATP) is released from damaged nerve cells of the infract core region to the extracellular space, invoking peri-infarct glial cellular P2 purinoceptors singling, and causing pro-inflammatory cytokine secretion, which is likely to initiate or aggravate motor and cognitive impairment. It has been proved that electroacupuncture (EA) is an effective and safe strategy used in anti-inflammation. However, EA for the role of purine receptors in the central nervous system has not yet been reported. METHODS: Ischemia-reperfusion injured rat model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). EA treatment at the DU 20 and DU 24 acupoints treatment were conducted to rats from the 12 h after MCAO/R injury for consecutive 7 days. The neurological outcomes, infarction volumes and the level of astroglial and microglial/macrophage hyperplasia, inflammatory cytokine and P2X7R and P2Y1R expression in the peri-infarct hippocampal CA1and sensorimotor cortex were investigated after IS to evaluate the MCAO/R model and therapeutic mechanism of EA treatment. RESULTS: EA effectively reduced the level of pro-inflammatory cytokine interleukin-1ß (IL-1ß) as evidenced by reduction in astroglial and microglial/macrophage hyperplasia and the levels of P2X7R and ED1, P2X7R and GFAP, P2Y1R and ED1, P2Y1R and GFAP co-expression in peri-infarct hippocampal CA1 and sensorimotor cortex compared with that of MCAO/R model and Non-EA treatment, accompanied by the improved neurological deficit and the motor and memory impairment outcomes. Therefore, our data support the hypothesis that EA could exert its anti-inflammatory effect via inhibiting the astroglial and microglial/macrophage P2 purinoceptors (P2X7R and P2Y1R)-mediated neuroinflammation after MCAO/R injury. CONCLUSION: Astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia in peri-infarct hippocampal CA1 and sensorimotor cortex were attenuated by EA treatment after ischemic stroke accompanied by the improved motor and memory behavior performance.


Subject(s)
Electroacupuncture , Hyperplasia/metabolism , Infarction, Middle Cerebral Artery/therapy , Inflammation/metabolism , Receptors, Purinergic P2/metabolism , Acupuncture Points , Animals , Brain/diagnostic imaging , Brain/pathology , CA1 Region, Hippocampal/metabolism , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Interleukin-1beta/metabolism , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley , Reperfusion Injury
19.
Adv Pharmacol ; 75: 91-137, 2016.
Article in English | MEDLINE | ID: mdl-26920010

ABSTRACT

There is a brief introductory summary of purinergic signaling involving ATP storage, release, and ectoenzymatic breakdown, and the current classification of receptor subtypes for purines and pyrimidines. The review then describes purinergic mechanosensory transduction involved in visceral, cutaneous, and musculoskeletal nociception and on the roles played by receptor subtypes in neuropathic and inflammatory pain. Multiple purinoceptor subtypes are involved in pain pathways both as an initiator and modulator. Activation of homomeric P2X3 receptors contributes to acute nociception and activation of heteromeric P2X2/3 receptors appears to modulate longer-lasting nociceptive sensitivity associated with nerve injury or chronic inflammation. In neuropathic pain activation of P2X4, P2X7, and P2Y12 receptors on microglia may serve to maintain nociceptive sensitivity through complex neural-glial cell interactions and antagonists to these receptors reduce neuropathic pain. Potential therapeutic approaches involving purinergic mechanisms will be discussed.


Subject(s)
Pain/metabolism , Receptors, Purinergic/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Humans , Mechanotransduction, Cellular , Migraine Disorders/metabolism , Pain/drug therapy , Purinergic Antagonists/pharmacology , Purinergic Antagonists/therapeutic use
20.
Neuropharmacology ; 104: 62-75, 2016 05.
Article in English | MEDLINE | ID: mdl-26256423

ABSTRACT

Neuroglia, represented by astrocytes, oligodendrocytes, NG glia and microglia are homeostatic, myelinating and defensive cells of the brain. Neuroglial cells express various combinations of purinoceptors, which contribute to multiple intercellular signalling pathways in the healthy and diseased nervous system. Neurological diseases are invariably associated with profound neuroglial remodelling, which is manifest by reactive gliosis, pathological remodelling and functional atrophy of various types of glial cells. Gliopathology is disease and region specific and produces multiple glial phenotypes that may be neuroprotective or neurotoxic. In this review we summarise recent knowledge on the role of glial purinergic signalling in cognitive-related neurological diseases. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.


Subject(s)
Brain/metabolism , Cognition Disorders/metabolism , Neurodegenerative Diseases/metabolism , Neuroglia/metabolism , Neurons/metabolism , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2Y/metabolism , Adenosine Triphosphate/metabolism , Animals , Humans , Neurodegenerative Diseases/psychology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...