Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.099
Filter
1.
Subcell Biochem ; 104: 295-381, 2024.
Article in English | MEDLINE | ID: mdl-38963492

ABSTRACT

The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.


Subject(s)
Mitochondria , Humans , Mitochondria/metabolism , Mitochondria/enzymology , Animals , Citric Acid Cycle/physiology , Ketoglutarate Dehydrogenase Complex/metabolism , Ketoglutarate Dehydrogenase Complex/chemistry
2.
Mol Genet Metab Rep ; 40: 101104, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38983107

ABSTRACT

Several disorders of energy metabolism have been treated with exogenous ketone bodies. The benefit of this treatment is best documented in multiple acyl-CoA dehydrogenase deficiency (MADD) (MIM#231680). One might also expect ketone bodies to help in other disorders with impaired ketogenesis or in conditions that profit from a ketogenic diet. Here, we report the use of a novel preparation of dextro-ß-hydroxybutyrate (D-ßHB) salts in two cases of MADD and one case of pyruvate dehydrogenase (PDH) deficiency (MIM#312170). The two patients with MADD had previously been on a racemic mixture of D- and L­sodium hydroxybutyrate. Patient #1 found D-ßHB more palatable, and the change in formulation corrected hypernatraemia in patient #2. The patient with PDH deficiency was on a ketogenic diet but had not previously been given hydroxybutyrate. In this case, the addition of D-ßHB improved ketosis. We conclude that NHS101 is a good candidate for further clinical studies in this group of diseases of inborn errors of metabolism.

3.
Biochim Biophys Acta Bioenerg ; : 149486, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986826

ABSTRACT

The persistent growth of cancer cells is underscored by complex metabolic reprogramming, with mitochondria playing a key role in the transition to aerobic glycolysis and representing new therapeutic targets. Mitochondrial uncoupling protein 2 (UCP2) has attracted interest because of its abundance in rapidly proliferating cells, including cancer cells, and its involvement in cellular metabolism. However, the specific contributions of UCP2 to cancer biology remain poorly defined. Our investigation of UCP2 expression in various human and mouse cancer cell lines aimed to elucidate its links to metabolic states, proliferation, and adaptation to environmental stresses such as hypoxia and nutrient deprivation. We observed significant variability in UCP2 expression across cancer types, with no direct correlation to their metabolic activity or proliferation rates. UCP2 abundance was also differentially affected by nutrient availability in different cancer cells, but UCP2 was generally downregulated under hypoxia. These findings challenge the notion that UCP2 is a marker of malignant potential and suggest its more complex involvement in the metabolic landscape of cancer.

4.
Chem Biol Interact ; : 111141, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992767

ABSTRACT

Mitochondrial Pyruvate Carrier 1 (MPC1) is localized on mitochondrial outer membrane to mediate the transport of pyruvate from cytosol to mitochondria. It is also well known to act as a tumor suppressor. Hexavalent chromium (Cr (VI)) contamination poses a global challenge due to its high toxicity and carcinogenesis. This research was intended to probe the potential mechanism of MPC1 in the effect of Cr (VI)-induced carcinogenesis. First, Cr (VI)-treatments decreased the expression of MPC1 in vitro and in vivo. Overexpression of MPC1 inhibited Cr (VI)-induced glycolysis and migration in A549 cells. Then, high mobility group A2 (HMGA2) protein strongly suppressed the transcription of MPC1 by binding to its promoter, and HMGA2/MPC1 axis played an important role in oxidative phosphorylation (OXPHOS), glycolysis and cell migration. Furthermore, endoplasmic reticulum (ER) stress made a great effect on the interaction between HMGA2 and MPC1. Finally, the mammalian target of the rapamycin (mTOR) was determined to mediate MPC1-regulated OXPHOS, aerobic glycolysis and cell migration. Collectively, our data revealed a novel HMGA2/MPC-1/mTOR signaling pathway to promote cell growth via facilitating the metabolism reprogramming from OXPHOS to aerobic glycolysis, which might be a potential therapy for cancers.

5.
Appl Microbiol Biotechnol ; 108(1): 403, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954014

ABSTRACT

2-Keto-3-deoxy-galactonate (KDGal) serves as a pivotal metabolic intermediate within both the fungal D-galacturonate pathway, which is integral to pectin catabolism, and the bacterial DeLey-Doudoroff pathway for D-galactose catabolism. The presence of KDGal enantiomers, L-KDGal and D-KDGal, varies across these pathways. Fungal pathways generate L-KDGal through the reduction and dehydration of D-galacturonate, whereas bacterial pathways produce D-KDGal through the oxidation and dehydration of D-galactose. Two distinct catabolic routes further metabolize KDGal: a nonphosphorolytic pathway that employs aldolase and a phosphorolytic pathway involving kinase and aldolase. Recent findings have revealed that L-KDGal, identified in the bacterial catabolism of 3,6-anhydro-L-galactose, a major component of red seaweeds, is also catabolized by Escherichia coli, which is traditionally known to be catabolized by specific fungal species, such as Trichoderma reesei. Furthermore, the potential industrial applications of KDGal and its derivatives, such as pyruvate and D- and L-glyceraldehyde, are underscored by their significant biological functions. This review comprehensively outlines the catabolism of L-KDGal and D-KDGal across different biological systems, highlights stereospecific methods for discriminating between enantiomers, and explores industrial application prospects for producing KDGal enantiomers. KEY POINTS: • KDGal is a metabolic intermediate in fungal and bacterial pathways • Stereospecific enzymes can be used to identify the enantiomeric nature of KDGal • KDGal can be used to induce pectin catabolism or produce functional materials.


Subject(s)
Metabolic Networks and Pathways , Sugar Acids , Sugar Acids/metabolism , Galactose/metabolism , Galactose/analogs & derivatives , Fungi/metabolism , Fungi/enzymology , Bacteria/metabolism , Bacteria/enzymology , Escherichia coli/metabolism , Escherichia coli/genetics , Stereoisomerism
6.
Discov Oncol ; 15(1): 254, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954227

ABSTRACT

OBJECTIVE: The study purpose was to explore the causal association between pyruvate metabolism and breast cancer (BC), as well as the molecular role of key metabolic genes, by using bioinformatics and Mendelian randomization (MR) analysis. METHODS: We retrieved and examined diverse datasets from the GEO database to ascertain differentially acting genes (DAGs) in BC via differential expression analysis. Following this, we performed functional and pathway enrichment analyses to ascertain noteworthy molecular functions and metabolic pathways in BC. Employing MR analysis, we established a causal association between pyruvate metabolism and the susceptibility to BC. Additionally, utilizing the DGIdb database, we identified potential targeted medications that act on genes implicated in the pyruvate metabolic pathway and formulated a competing endogenous RNA (ceRNA) regulatory network in BC. RESULTS: We collected the datasets GSE54002, GSE70947, and GSE22820, and identified a total of 1127 DEGs between the BC and NC groups. GO and KEGG enrichment analysis showed that the molecular functions of these DEGs mainly included mitotic nuclear division, extracellular matrix, signaling receptor activator activity, etc. Metabolic pathways were mainly concentrated in PI3K-Akt signaling pathway, Cytokine-cytokine receptor binding and Pyruvate, Tyrosine, Propanoate and Phenylalanine metabolism, etc. In addition, MR analysis demonstrated a causal relationship between pyruvate metabolism and BC risk. Finally, we constructed a regulatory network between pathway genes (ADH1B, ACSS2, ACACB, ADH1A, ALDH2, and ADH1C) and targeted drugs, as well as a ceRNA (lncRNA-miRNA-mRNA) regulatory network for BC, further revealing their interactions. CONCLUSIONS: Our research revealed a causal association between pyruvate metabolism and BC risk, found that ADH1B, ACSS2, ACACB, ADH1A, ALDH2, and ADH1C takes place an important part in the development of BC in the molecular mechanisms related to pyruvate metabolism, and identified some potential targeted small molecule drugs.

7.
Adv Sci (Weinh) ; : e2307224, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946607

ABSTRACT

Targeting NLRP3 inflammasome has been recognized as a promising therapeutic strategy for the treatment of numerous common diseases. UK5099, a long-established inhibitor of mitochondrial pyruvate carrier (MPC), is previously found to inhibit macrophage inflammatory responses independent of MPC expression. However, the mechanisms by which UK5099 inhibit inflammatory responses remain unclear. Here, it is shown that UK5099 is a potent inhibitor of the NLRP3 inflammasome in both mouse and human primary macrophages. UK5099 selectively suppresses the activation of the NLRP3 but not the NLRC4 or AIM2 inflammasomes. Of note, UK5099 retains activities on NLRP3 in macrophages devoid of MPC expression, indicating this inhibitory effect is MPC-independent. Mechanistically, UK5099 abrogates mitochondria-NLRP3 interaction and in turn inhibits the assembly of the NLRP3 inflammasome. Further, a single dose of UK5099 persistently reduces IL-1ß production in an endotoxemia mouse model. Importantly, structure modification reveals that the inhibitory activities of UK5099 on NLRP3 are unrelated to the existence of the activated double bond within the UK5099 molecule. Thus, this study uncovers a previously unknown molecular target for UK5099, which not only offers a new candidate for the treatment of NLRP3-driven diseases but also confounds its use as an MPC inhibitor in immunometabolism studies.

8.
Cell Rep ; 43(7): 114406, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38963759

ABSTRACT

Cancer cellular heterogeneity and therapy resistance arise substantially from metabolic and transcriptional adaptations, but how these are interconnected is poorly understood. Here, we show that, in melanoma, the cancer stem cell marker aldehyde dehydrogenase 1A3 (ALDH1A3) forms an enzymatic partnership with acetyl-coenzyme A (CoA) synthetase 2 (ACSS2) in the nucleus to couple high glucose metabolic flux with acetyl-histone H3 modification of neural crest (NC) lineage and glucose metabolism genes. Importantly, we show that acetaldehyde is a metabolite source for acetyl-histone H3 modification in an ALDH1A3-dependent manner, providing a physiologic function for this highly volatile and toxic metabolite. In a zebrafish melanoma residual disease model, an ALDH1-high subpopulation emerges following BRAF inhibitor treatment, and targeting these with an ALDH1 suicide inhibitor, nifuroxazide, delays or prevents BRAF inhibitor drug-resistant relapse. Our work reveals that the ALDH1A3-ACSS2 couple directly coordinates nuclear acetaldehyde-acetyl-CoA metabolism with specific chromatin-based gene regulation and represents a potential therapeutic vulnerability in melanoma.

9.
Bioorg Med Chem Lett ; 110: 129865, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950758

ABSTRACT

Pyruvate kinase (PK) is an essential component of cellular metabolism, converting ADP and phosphoenolpyruvate (PEP) to pyruvate in the final step of glycolysis. Of the four unique isoforms of pyruvate kinase, R (PKR) is expressed exclusively in red blood cells and is a tetrameric enzyme that depends on fructose-1,6-bisphosphate (FBP) for activation. PKR deficiency leads to hemolysis of red blood cells resulting in anemia. Activation of PKR in both sickle cell disease and beta-thalassemia patients could lead to improved red blood cell fitness and survival. The discovery of a novel series of substituted urea PKR activators, via the serendipitous identification and diligent characterization of a minor impurity in an High Throughput Screening (HTS) hit will be discussed.

10.
Neurochem Int ; 178: 105800, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964718

ABSTRACT

Hepatic encephalopathy (HE) is a neurological complication arising from acute liver failure with poor prognosis and high mortality; the underlying cellular mechanisms are still wanting. We previously found that neuronal death caused by mitochondrial dysfunction in rostral ventrolateral medulla (RVLM), which leads to baroreflex dysregulation, is related to high fatality in an animal model of HE. Lipocalin-2 (Lcn2) is a secreted glycoprotein mainly released by astrocytes in the brain. We noted the presence of Lcn2 receptor (Lcn2R) in RVLM neurons and a parallel increase of Lcn2 gene in astrocytes purified from RVLM during experimental HE. Therefore, our guiding hypothesis is that Lcn2 secreted by reactive astrocytes in RVLM may underpin high fatality during HE by eliciting bioenergetic failure-induced neuronal death in this neural substrate. In this study, we first established the role of astrocyte-secreted Lcn2 in a liver toxin model of HE induced by azoxymethane (100 µg/g, ip) in C57BL/6 mice, followed by mechanistic studies in primary astrocyte and neuron cultures prepared from postnatal day 1 mouse pups. In animal study, immunoneutralization of Lcn2 reduced apoptotic cell death in RVLM, reversed defunct baroreflex-mediated vasomotor tone and prolonged survival during experimental HE. In our primary cell culture experiments, Lcn2 produced by cultured astrocytes and released into the astrocyte-conditioned medium significantly reduced cell viability of cultured neurons. Recombinant Lcn2 protein reduced cell viability, mitochondrial ATP (mitoATP) production, and pyruvate dehydrogenase (PDH) activity but enhanced the expression of pyruvate dehydrogenase kinase (PDK) 1, PDK3 and phospho-PDHA1 (inactive PDH) through MAPK/ERK pathway in cultured neurons, with all cellular actions reversed by Lcn2R knockdown. Our results suggest that astrocyte-secreted Lcn2 upregulates PDKs through MAPK/ERK pathway, which leads to reduced PDH activity and mitoATP production; the reinforced neuronal death in RVLM is causally related to baroreflex dysregulation that underlies high fatality associated with HE.

11.
Cell Metab ; 36(6): 1394-1410.e12, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838644

ABSTRACT

A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease in vivo. This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, in vivo brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain-it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.


Subject(s)
Brain , Glucose , Propionates , Pyruvate Dehydrogenase Complex Deficiency Disease , Animals , Pyruvate Dehydrogenase Complex Deficiency Disease/metabolism , Brain/metabolism , Brain/diagnostic imaging , Glucose/metabolism , Propionates/metabolism , Mice , Diet, Ketogenic , Mice, Inbred C57BL , Disease Models, Animal , Male , Glycolysis
12.
Protein Sci ; 33(7): e5075, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38895978

ABSTRACT

Rheostat positions, which can be substituted with various amino acids to tune protein function across a range of outcomes, are a developing area for advancing personalized medicine and bioengineering. Current methods cannot accurately predict which proteins contain rheostat positions or their substitution outcomes. To compare the prevalence of rheostat positions in homologs, we previously investigated their occurrence in two pyruvate kinase (PYK) isozymes. Human liver PYK contained numerous rheostat positions that tuned the apparent affinity for the substrate phosphoenolpyruvate (Kapp-PEP) across a wide range. In contrast, no functional rheostat positions were identified in Zymomonas mobilis PYK (ZmPYK). Further, the set of ZmPYK substitutions included an unusually large number that lacked measurable activity. We hypothesized that the inactive substitution variants had reduced protein stability, precluding detection of Kapp-PEP tuning. Using modified buffers, robust enzymatic activity was obtained for 19 previously-inactive ZmPYK substitution variants at three positions. Surprisingly, both previously-inactive and previously-active substitution variants all had Kapp-PEP values close to wild-type. Thus, none of the three positions were functional rheostat positions, and, unlike human liver PYK, ZmPYK's Kapp-PEP remained poorly tunable by single substitutions. To directly assess effects on stability, we performed thermal denaturation experiments for all ZmPYK substitution variants. Many diminished stability, two enhanced stability, and the three positions showed different thermal sensitivity to substitution, with one position acting as a "stability rheostat." The differences between the two PYK homologs raises interesting questions about the underlying mechanism(s) that permit functional tuning by single substitutions in some proteins but not in others.


Subject(s)
Pyruvate Kinase , Zymomonas , Humans , Zymomonas/enzymology , Zymomonas/genetics , Zymomonas/chemistry , Zymomonas/metabolism , Pyruvate Kinase/chemistry , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Amino Acid Substitution , Protein Stability , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Enzyme Stability , Liver/enzymology , Liver/metabolism , Liver/chemistry , Phosphoenolpyruvate/metabolism , Phosphoenolpyruvate/chemistry
13.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892032

ABSTRACT

Keloids, marked by abnormal cellular proliferation and excessive extracellular matrix (ECM) accumulation, pose significant therapeutic challenges. Ethyl pyruvate (EP), an inhibitor of the high-mobility group box 1 (HMGB1) and TGF-ß1 pathways, has emerged as a potential anti-fibrotic agent. Our research evaluated EP's effects on keloid fibroblast (KF) proliferation and ECM production, employing both in vitro cell cultures and ex vivo patient-derived keloid spheroids. We also analyzed the expression levels of ECM components in keloid tissue spheroids treated with EP through immunohistochemistry. Findings revealed that EP treatment impedes the nuclear translocation of HMGB1 and diminishes KF proliferation. Additionally, EP significantly lowered mRNA and protein levels of collagen I and III by attenuating TGF-ß1 and pSmad2/3 complex expression in both human dermal fibroblasts and KFs. Moreover, metalloproteinase I (MMP-1) and MMP-3 mRNA levels saw a notable increase following EP administration. In keloid spheroids, EP induced a dose-dependent reduction in ECM component expression. Immunohistochemical and western blot analyses confirmed significant declines in collagen I, collagen III, fibronectin, elastin, TGF-ß, AKT, and ERK 1/2 expression levels. These outcomes underscore EP's antifibrotic potential, suggesting its viability as a therapeutic approach for keloids.


Subject(s)
Fibroblasts , Keloid , Pyruvates , Spheroids, Cellular , Humans , Keloid/metabolism , Keloid/pathology , Fibroblasts/metabolism , Fibroblasts/drug effects , Pyruvates/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Transforming Growth Factor beta1/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Collagen/metabolism , Collagen/biosynthesis , Cell Proliferation/drug effects , Cells, Cultured , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Collagen Type I/metabolism , Collagen Type I/genetics , Smad2 Protein/metabolism , Smad2 Protein/genetics , Smad3 Protein/metabolism , Up-Regulation/drug effects , Male
14.
Mol Genet Metab Rep ; 40: 101096, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38872960

ABSTRACT

Citrin deficiency is a congenital secondary urea cycle disorder lacking useful disease models for effective treatment development. In this study, human induced pluripotent stem cells (iPSCs) were generated from two patients with citrin deficiency and differentiated into hepatocyte-like cells (HLCs). Citrin-deficient HLCs produced albumin and liver-specific markers but completely lacked citrin protein and expressed argininosuccinate synthase only weakly. In addition, ammonia concentrations in a medium cultured with citrin-deficient HLCs were higher than with control HLCs. Sodium pyruvate administration significantly reduced ammonia concentrations in the medium of citrin-deficient HLCs and slightly reduced ammonia in HLCs differentiated from control iPSCs, though this change was not significant. Our results suggest that sodium pyruvate may be an efficient treatment for patients with citrin deficiency. Citrin-deficient iPSCs are a pathological liver model for congenital urea cycle disorders to clarify pathogenesis and develop novel therapies.

15.
NMR Biomed ; : e5196, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853759

ABSTRACT

Hypoxic-ischemic encephalopathy (HIE) is a common neurological syndrome in newborns with high mortality and morbidity. Therapeutic hypothermia (TH), which is standard of care for HIE, mitigates brain injury by suppressing anaerobic metabolism. However, more than 40% of HIE neonates have a poor outcome, even after TH. This study aims to provide metabolic biomarkers for predicting the outcomes of hypoxia-ischemia (HI) after TH using hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy. Postnatal day 10 (P10) mice with HI underwent TH at 1 h and were scanned at 6-8 h (P10), 24 h (P11), 7 days (P17), and 21 days (P31) post-HI on a 14.1-T NMR spectrometer. The metabolic images were collected, and the conversion rate from pyruvate to lactate and the ratio of lactate to pyruvate in the injured left hemisphere (kPL(L) and Lac/Pyr(L), respectively) were calculated at each timepoint. The outcomes of TH were determined by the assessments of brain injury on T2-weighted images and behavioral tests at later timepoint. kPL(L) and Lac/Pyr(L) over time between the good-outcome and poor-outcome groups and across timepoints within groups were analyzed. We found significant differences in temporal trends of kPL(L) and Lac/Pyr(L) between groups. In the good-outcome group, kPL(L) increased until P31 with a significantly higher value at P31 compared with that at P10, while the level of Lac/Pyr(L) at P31 was notably higher than those at all other timepoints. In the poor-outcome group, kPL(L) and Lac/Pyr(L) increased within 24 h. The kPL(L) value at P11 was considerably higher compared with P10. Discrete temporal changes of kPL(L) and Lac/Pyr(L) after TH between the good-outcome and poor-outcome groups were seen as early as 24 h after HI, reflecting various TH effects on brain anaerobic metabolism, which may provide insights for early screening for response to TH.

16.
Biophys Chem ; 311: 107270, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833963

ABSTRACT

We propose a detailed computational beta cell model that emphasizes the role of anaplerotic metabolism under glucose and glucose-glutamine stimulation. This model goes beyond the traditional focus on mitochondrial oxidative phosphorylation and ATP-sensitive K+ channels, highlighting the predominant generation of ATP from phosphoenolpyruvate in the vicinity of KATP channels. It also underlines the modulatory role of H2O2 as a signaling molecule in the first phase of glucose-stimulated insulin secretion. In the second phase, the model emphasizes the critical role of anaplerotic pathways, activated by glucose stimulation via pyruvate carboxylase and by glutamine via glutamate dehydrogenase. It particularly focuses on the production of NADPH and glutamate as key enhancers of insulin secretion. The predictions of the model are consistent with empirical data, highlighting the complex interplay of metabolic pathways and emphasizing the primary role of glucose and the facilitating role of glutamine in insulin secretion. By delineating these crucial metabolic pathways, the model provides valuable insights into potential therapeutic targets for diabetes.


Subject(s)
Glucose , Glutamine , Insulin Secretion , Insulin , Models, Biological , Glutamine/metabolism , Glucose/metabolism , Insulin/metabolism , Humans , Insulin-Secreting Cells/metabolism , Animals , Pyruvate Carboxylase/metabolism , Hydrogen Peroxide/metabolism , Adenosine Triphosphate/metabolism
17.
Neuro Oncol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869884

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a highly aggressive tumor with unmet therapeutic needs, which can be explained by extensive intra-tumoral heterogeneity and plasticity. In this study, we aimed to investigate the specific metabolic features of Glioblastoma stem cells (GSC), a rare tumor subpopulation involved in tumor growth and therapy resistance. METHODS: We conducted comprehensive analyses of primary patient-derived GBM cultures and GSC-enriched cultures of human GBM cell lines using state-of-the-art molecular, metabolic and phenotypic studies. RESULTS: We showed that GSC-enriched cultures display distinct glycolytic profiles compared with differentiated tumor cells. Further analysis revealed that GSC relies on pyruvate carboxylase activity for survival and self-renewal capacity. Interestingly, inhibition of pyruvate carboxylase led to GSC death, particularly when the glutamine pool was low, and increased differentiation. Finally, while GSC displayed resistance to the chemotherapy drug etoposide, genetic or pharmacological inhibition of pyruvate carboxylase restored etoposide sensitivity in GSC, both in vitro and in orthotopic murine models. CONCLUSION: Our findings demonstrate the critical role of pyruvate carboxylase in GSC metabolism, survival and escape to etoposide. They also highlight pyruvate carboxylase as a therapeutic target to overcome therapy resistance in GBM.

18.
Vascul Pharmacol ; 156: 107399, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901807

ABSTRACT

Increased proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs) is recognised as a universal hallmark of pulmonary arterial hypertension (PAH), in part related to the association with reduced pyruvate dehydrogenase (PDH) activity, resulting in decreased oxidative phosphorylation of glucose and increased aerobic glycolysis (Warburg effect). Perhexiline is a well-recognised carnitine palmitoyltransferase-1 (CPT1) inhibitor used in cardiac diseases, which reciprocally increases PDH activity, but is associated with variable pharmacokinetics related to polymorphic variation of the cytochrome P450-2D6 (CYP2D6) enzyme, resulting in the risk of neuro and hepatotoxicity in 'slow metabolisers' unless blood levels are monitored and dose adjusted. We have previously reported that a novel perhexiline fluorinated derivative (FPER-1) has the same therapeutic profile as perhexiline but is not metabolised by CYP2D6, resulting in more predictable pharmacokinetics than the parent drug. We sought to investigate the effects of perhexiline and FPER-1 on PDH flux in PASMCs from patients with PAH. We first confirmed that PAH PASMCs exhibited increased cell proliferation, enhanced phosphorylation of AKTSer473, ERK 1/2Thr202/Tyr204 and PDH-E1αSer293, indicating a Warburg effect when compared to healthy PASMCs. Pre-treatment with perhexiline or FPER-1 significantly attenuated PAH PASMC proliferation in a concentration-dependent manner and suppressed the activation of the AKTSer473 but had no effect on the ERK pathway. Perhexiline and FPER-1 markedly activated PDH (seen as dephosphorylation of PDH-E1αSer293), reduced glycolysis, and upregulated mitochondrial respiration in these PAH PASMCs as detected by Seahorse analysis. However, both perhexiline and FPER-1 did not induce apoptosis as measured by caspase 3/7 activity. We show for the first time that both perhexiline and FPER-1 may represent therapeutic agents for reducing cell proliferation in human PAH PASMCs, by reversing Warburg physiology.

19.
Toxicon ; 247: 107822, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908528

ABSTRACT

To date there are only pirfenidone (PFD) and nintedanib to be given conditional recommendation in idiopathic pulmonary fibrosis (IPF) therapies with slowing disease progression, but neither has prospectively shown a reduced mortality. It is one of the urgent topics to find effective drugs for pulmonary fibrosis in medicine. Previous studies have demonstrated that microcystin-RR (MC-RR) effectively alleviates bleomycin-induced pulmonary fibrosis, but the mechanism has not been fully elucidated yet. We further conducted a comparison of therapeutic effect on the model animals of pulmonary fibrosis between MC-RR and PFD with histopathology and the expression of the molecular markers involved in differentiation, proliferation and metabolism of myofibroblasts, a major effector cell of tissue fibrosis. The levels of the enzyme molecules for maintaining the stability of interstitial structure were also evaluated. Our results showed that MC-RR and PFD effectively alleviated pulmonary fibrosis in model mice with a decreased signaling and marker molecules associated with myofibroblast differentiation and lung fibrotic lesion. In the meantime, both MC-RR and PFD treatment are beneficial to restore molecular dynamics of interstitial tissue and maintain the stability of interstitial architecture. Unexpectedly, MC-RR, rather than PFD, showed a significant effect on inhibiting PKM2-HIF-1α signaling and reducing the level of p-STAT3. Additionally, MC-RR showed a better inhibition effect on FGFR1 expression. Given that PKM2-HIF-1α and activated STAT3 molecular present a critical role in promoting the proliferation of myofibroblasts, MC-RR as a new strategy for IPF treatment has potential advantage over PFD.

20.
Life Sci ; 351: 122837, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38879156

ABSTRACT

AIM: Chronic sympathetic stimulation has been identified as a primary factor in the pathogenesis of cardiac hypertrophy (CH). However, there is no appropriate treatment available for the management of CH. Recently, it has been revealed that pyruvate kinase M2 (PKM2) plays a significant role in cardiac remodeling, fibrosis, and hypertrophy. However, the therapeutic potential of selective PKM2 inhibitor has not yet been explored in cardiac hypertrophy. Thus, in the current study, we have studied the cardioprotective potential of Compound 3K, a selective PKM2 inhibitor in isoproterenol-induced CH model. METHODS: To induce cardiac hypertrophy, male Wistar rats were subcutaneously administered isoproterenol (ISO, 5 mg/kg/day) for 14 days. Compound 3K at dosages of 2 and 4 mg/kg orally was administered to ISO-treated rats for 14 days to explore its effects on various parameters like ECG, ventricular functions, hypertrophic markers, histology, inflammation, and protein expression were performed. RESULTS: Fourteen days administration of ISO resulted in the induction of CH, which was evidenced by alterations in ECG, ventricular dysfunctions, increase in hypertrophy markers, and fibrosis. The immunoblotting of hypertrophy heart revealed the significant rise in PKM2 and reduction in PKM1 protein expression. Treatment with Compound 3K led to downregulation of PKM2 and upregulation of PKM1 protein expression. Compound 3K showed cardioprotective effects by improving ECG, cardiac functions, hypertrophy markers, inflammation, and fibrosis. Further, it also reduced cardiac expression of PKM2-associated splicing protein, HIF-1α, and caspase-3. CONCLUSION: Our findings suggest that Compound 3K has a potential cardioprotective effect via PKM2 inhibition in isoproterenol-induced CH.


Subject(s)
Cardiomegaly , Isoproterenol , Pyruvate Kinase , Animals , Male , Rats , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/prevention & control , Cardiomegaly/metabolism , Cardiotonic Agents/pharmacology , Fibrosis , Isoproterenol/toxicity , Pyruvate Kinase/metabolism , Pyruvate Kinase/antagonists & inhibitors , Rats, Wistar , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...