Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Plant Dis ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238248

ABSTRACT

Pythium species are one of the most important groups of seedling pathogens affecting soybean yield. In July 2023, eight soybean plants (cv. Daewon, V3 to V4 stage) that were wilted with browning at their lower stems were discovered in a field located in Suwon, Korea. The disease incidence was 0.1% in an area of 0.1 ha, and severity was 100%. The eight plants exhibited brown root rot when removed from the soil. Their main roots were almost completely rotten, with only a few rootlets remaining. Symptomatic stem tissues (approximately 0.5 × 1 to 1.5 cm2) were sampled from the crown of each plant, disinfected with 75% ethanol for 30 sec and 1% NaOCl for 1 min, rinsed with sterile distilled water, and incubated on sterile filter paper for 3 days at 25°C. White hyphae emerging from the tissues were isolated and cultured on potato dextrose agar (PDA) plates, resulting in eight isolates. To further investigate their morphological features, the isolates were subcultured on PDA media at 25°C in the dark for 7 days. The colonies formed dense, white, fluffy aerial mycelia. The oogonia were globose with a smooth surface, typically appearing terminal, and had an average diameter of 31 µm (28 to 36 µm). The oospores were aplerotic, with an average diameter of 29 µm (26 to 31 µm). These morphological characteristics closely matched those of Pythium myriotylum as described in Van der Plaats-Niterink (1981) and Tomioka et al. (2013). The internal transcribed spacer (ITS) region and cytochrome c oxidase subunit I (COX1) were amplified using the primer pairs ITS1/ITS4 and OomCoxI-Levlo/OomCoxI-Levup (Robideau et al. 2011; White et al. 1990). Sequences from the eight isolates (SW2-4, SW-DF2, SW-DF3, SW-DF7, SW-DF9, SW-DF13, SW-DF14, and SW-DF16) were deposited in GenBank under following accession numbers: ITS (PP145893; PP913926 to PP913932) and COX1 (PP853484; PP977183 to PP977189). These sequences showed 100% homology with those of P. myriotylum strain CBS25470 (GenBank accession no. HQ643701, HQ708745). One isolate SW2-4 was selected to assess its pathogenicity using soil infestation method. The isolate SW2-4 was cultured on 20 ml of V8 juice agar medium per petri dish (9 cm in diameter) in the dark at 26°C for 10 days. Cultures collected from 4 petri dishes were homogenized with 40 ml of sterile distilled water, and then mixed with 1.1 liter of commercial potting soil that had been pre-soaked in 1 liter of sterile distilled water. Next, 450 ml of this Pythium-infested soil mixture was placed into pots (12 cm in diameter). Ten seeds of soybean (cv. Daewon) were then sown on top of the infested soil and covered with 2 cm of uninfested soil. Another ten seeds (cv. Daewon) were sown in the uninfested soil as controls. The pots were placed in a growth chamber (26°C, light: dark cycle of 12:12h). The experiments were repeated six times. The inoculated plants grew slowly, and dark-brown lesions appeared at the stem base 5 days after inoculation. Affected plants began to wilt 10 days after inoculation, whereas the control plants showed no symptoms and remained healthy throughout the experiments. An oomycete pathogen was re-isolated from the symptomatic stem tissue to fulfill Koch's postulates, while none was isolated from the control plants. The pathogen's morphological characteristics and DNA sequences (ITS and COX1) were confirmed to be identical to those of the inoculated isolate. To the best of our knowledge, this is the first report of P. myriotylum causing root rot and wilting in soybean in the Republic of Korea.

2.
Plant Dis ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38173269

ABSTRACT

Peanut (Arachis hypogaea L.) has long been cultivated worldwide as an important crop for oil and protein production. Among the various diseases in peanut plants, wilt diseases caused by soil-borne pathogens such as Ralstonia solanacearum and Verticillium dahliae are especially destructive and substantially diminish both quantity and quality in peanut production (Kokalis-Burelle et al., 1997; Thiessen et al., 2012). In July 2022, wilt symptoms were observed in 1 to 3% of the area of peanut fields in Yeoju-si, Korea (37°23´04.0˝N; 127°33´43.0˝E). The xylem in the stems of the wilted plants was dark brown at the soil-surface, which is a representative symptom of vascular wilt pathogens (Yadeta et al. 2013). To isolate the causative pathogens, the stems exhibiting dark lesions were disinfected with 1% NaOCl for 1 min, rinsed with sterile distilled water, and placed on potato dextrose agar medium. The plates were incubated at 25℃ for 2 days, and white hyphae that grew out from the tissues were subcultured twice on V8 juice agar (V8A) medium. Among the 3 isolates, morphological characteristics of the representative strain YJ1-2 were observed under a microscope. The sporangia were terminal intercalary, filamentous, inflated lobulate, and ranging from 37.4 to 73.6 µm in diameter. The antheridia were diclinous, with clavate, elongate, and crook-necked shapes. The oogonia were mostly globose, with an average of 27.1 µm (range from 20.2 to 35.2 µm, n = 50) in diameter, and mated with one to several antheridia. Both plerotic or aplerotic oospores were observed. Overall, the morphological characteristics of the sporangia, antheridia, oogonia, and oospores indicated that YJ1-2 belongs to the genus Pythium. To genetically characterize YJ1-2, genomic DNA was extracted using cetyltrimethylammonium bromide buffer, and the internal transcribed spacer (ITS) region and cytochrome c oxidase subunit I (cox1) gene were amplified by PCR using primer sets ITS4/ITS5 and OomCoxI-Levlo/ OomCoxI-Levup, respectively (White et al., 1990; Robideau et al. 2011), sequenced, and identified using BLASTN (NCBI, National Center for Biotechnology Information). The ITS sequence (NCBI Acc. No. OR125595) of YJ1-2 has 99% similarity with that of P. myriotylum isolate PY39 (NCBI Acc. No. KX671096). A neighbor-joining phylogenetic tree was constructed from aligned cox1 sequence (NCBI Acc. No. OR224334) of the 10 Pythium species strains including YJ1-2 by CLUSTALW method was used as an outgroup. The YJ1-2 was most closely related to P. myriotylum isolate PM30 (NCBI Acc. No. MT823167). To substantiate the pathogenicity of YJ1-2, the crown roots of peanut plants grown in pots for 4 weeks were wounded using a sterile tweezer, and the mycelial plugs of YJ1-2 cultured for 5 days on V8A were inoculated on the wounds. The inoculated plants were cultivated in a growth chamber at 30℃ and 70% relative humidity with a 12-h photoperiod. The infected peanut plants exhibited wilt symptoms 11 days after inoculation, consistent with the initial observation, while uninoculated plants remained healthy. To satisfy Koch's postulates, white mycelia were re-isolated from the stems of inoculated plants and axenically cultured in V8A. The morphologies and ITS sequences of the re-isolates were consistent with those of YJ1-2. P. myriotylum has been reported as a causal pathogen of peanut pod rot in the United States and China. However, to the best of our knowledge, this is the first report of wilt disease in peanut plants caused by P. myriotylum in Korea. To prevent the incidence of wilt disease, we will continue our investigations to develop control strategies, including the selection of appropriate agrochemicals.

3.
Plant Sci ; 340: 111972, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176527

ABSTRACT

Little is known about the molecular basis of host defense in resistant wild species Zingiber zerumbet (L.) Smith against the soil-borne, necrotrophic oomycete pathogen Pythium myriotylum Drechsler, which causes the devastating soft rot disease in the spice crop ginger (Zingiber officinale Roscoe). We investigated the pattern of host defense between Z. zerumbet and ginger in response to P. myriotylum inoculation. Analysis of gene expression microarray data revealed enrichment of phenylpropanoid biosynthetic genes, particularly lignin biosynthesis genes, in pathogen-inoculated Z. zerumbet compared to ginger. RT-qPCR analysis showed the robust activation of phenylpropanoid biosynthesis genes in Z. zerumbet, including the core genes PAL, C4H, 4CL, and the monolignol biosynthesis and polymerization genes such as CCR, CAD, C3H, CCoAOMT, F5H, COMT, and LAC. Additionally, Z. zerumbet exhibited the accumulation of the phenolic acids including p-coumaric acid, sinapic acid, and ferulic acid that are characteristic of the cell walls of commelinoid monocots like Zingiberaceae and are involved in cell wall strengthening by cross linking with lignin. Z. zerumbet also had higher total lignin and total phenolics content compared to pathogen-inoculated ginger. Phloroglucinol staining revealed the enhanced fortification of cell walls in Z. zerumbet, specifically in xylem vessels and surrounding cells. The trypan blue staining indicated inhibition of pathogen growth in Z. zerumbet at the first leaf whorl, while ginger showed complete colonization of the pith within 36 h post inoculation (hpi). Accumulation of salicylic acid (SA) and induction of SA regulator NPR1 and the signaling marker PR1 were observed in Z. zerumbet. Silencing of PAL in Z. zerumbet through VIGS suppressed downstream genes, leading to reduced phenylpropanoid accumulation and SA level, resulting in the susceptibility of plants to P. myriotylum. These findings highlight the essential role of PAL-dependent mechanisms in resistance against P. myriotylum in Z. zerumbet. Moreover, our results suggest an unconventional role for SA in mediating host resistance against a necrotroph. Targeting the phenylpropanoid pathway could be a promising strategy for the effective management of P. myriotylum in ginger.


Subject(s)
Pythium , Zingiber officinale , Zingiberaceae , Pythium/genetics , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/pharmacology , Lignin , Salicylic Acid/pharmacology , Zingiberaceae/genetics
4.
Microbiol Spectr ; 11(4): e0151023, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37534988

ABSTRACT

The oomycete Pythium oligandrum is a potential biocontrol agent to control a wide range of fungal and oomycete-caused diseases, such as Pythium myriotylum-caused rhizome rot in ginger, leading to reduced yields and compromised quality. Previously, P. oligandrum has been studied for its plant growth-promoting potential by auxin production and induction of disease resistance by elicitors such as oligandrin. Volatile organic compounds (VOCs) play beneficial roles in sustainable agriculture by enhancing plant growth and resistance. We investigated the contribution of P. oligandrum-produced VOCs on plant growth and disease suppression by initially using Nicotiana benthamiana plants for screening. P. oligandrum VOCs significantly enhanced tobacco seedling and plant biomass contents. Screening of the individual VOCs showed that 3-octanone and hexadecane promoted the growth of tobacco seedlings. The total VOCs from P. oligandrum also enhanced the shoot and root growth of ginger plants. Transcriptomic analysis showed a higher expression of genes related to plant growth hormones and stress responses in the leaves of ginger plants exposed to P. oligandrum VOCs. The concentrations of plant growth hormones such as auxin, zeatin, and gibberellic acid were higher in the leaves of ginger plants exposed to P. oligandrum VOCs. In a ginger disease biocontrol assay, the VOC-exposed ginger plants infected with P. myriotylum had lower levels of disease severity. We conclude that this study contributes to understanding the growth-promoting mechanisms of P. oligandrum on ginger and tobacco, priming of ginger plants against various stresses, and the mechanisms of action of P. oligandrum as a biocontrol agent. IMPORTANCE Plant growth promotion plays a vital role in enhancing production of agricultural crops, and Pythium oligandrum is known for its plant growth-promoting potential through production of auxins and induction of resistance by elicitors. This study highlights the significance of P. oligandrum-produced VOCs in plant growth promotion and disease resistance. Transcriptomic analyses of leaves of ginger plants exposed to P. oligandrum VOCs revealed the upregulation of genes involved in plant growth hormone signaling and stress responses. Moreover, the concentration of growth hormones significantly increased in P. oligandrum VOC-exposed ginger plants. Additionally, the disease severity was reduced in P. myriotylum-infected ginger plants exposed to P. oligandrum VOCs. In ginger, P. myriotylum-caused rhizome rot disease results in severe losses, and biocontrol has a role as part of an integrated pest management strategy for rhizome rot disease. Overall, growth enhancement and disease reduction in plants exposed to P. oligandrum-produced VOCs contribute to its role as a biocontrol agent.


Subject(s)
Pythium , Volatile Organic Compounds , Zingiber officinale , Pythium/genetics , Volatile Organic Compounds/pharmacology , Zingiber officinale/microbiology , Disease Resistance , Nicotiana , Plant Diseases/prevention & control , Plant Diseases/microbiology
5.
Plant Dis ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37026626

ABSTRACT

Sesame (Sesamum indicum L.) is a very important oilseed crop and cultivated on 11.7 million hectares, producing 6.02 million tons of seeds with an average seed yield of 512 kg ha-1 in the world (Yadav et al. 2022). In June of 2021, diseased roots were observed on sesame in the villages of Mada and Hanba, Xiangcheng city (114.88°N, 33.13°E), Henan province, China. The diseased plants appeared stunted and wilted at the seedling stage. Approximately 7.1% to 17.7% of plants were affected in two fields, 0.6 ha in total, and disease severity in each affected plant ranged from 50% to 80%. Twenty-four disease plants were collected to confirm the pathogen. The diseased roots were cut into small fragments (2 to 5 mm long), surface sterilized with 75% ethanol (for 1 min), and 10% sodium hypochlorite (for 1 min) and then rinsed in sterilized water three times (1 min each rinse). The fragments were blotted dry and transferred to a potato dextrose agar (PDA) medium (potato 200 g/L, glucose 20 g/L, agar 18 g/L) amended with streptomycin (50 µg/mL). After incubation at 28°C for 24 h, white mycelium grew out from plant fragments. Then, a total of seven morphologically similar strains were transferred onto fresh V8 agar by hyphal tip transfer (Rollins 2003). By light microscope observations, the sporangia were filamentous or digitated, and undifferentiated or inflated lobulate. The oospores were mostly aplerotic, globose or subglobose in shape, and 20.4 to 42.6 µm in diameter (n = 90, n: Total number of oospores measured). Furthermore, antheridia were bulbous-like or clavate-like and were observed attached to the surface of the oospores. The zoospores were abundant and ranged from 8.5 to 14.2 µm in diameter. The morphology characteristics of all strains were consistent with those of Pythium myriotylum (Watanabe et al. 2007). Genomic DNA was extracted from the representative strain 20210628 using the CTAB method (Wangsomboondee et al. 2002). The complete internal transcribed spacer (ITS) and cytochrome oxidase subunit I gene (COI, COX1) can be valid and useful barcodes for accurate identification of many oomycetes (Robideau et al. 2011). The ITS and COI were amplified with the primers ITS1/ITS4 (Riit et al. 2016) and primers OomCox-Levup/OomCox-Levlo (Robideau et al. 2011), respectively. The nucleotide sequences obtained were deposited in the GenBank database under the accession numbers OM230138.2 (ITS) and ON500503.1 (COI). GenBank BLAST search identified the sequences as P. myriotylum ITS and COI sequences (e.g., HQ237488.1 and MK510848.1, respectively) with 100% coverage and 100% identity. To evaluate the pathogenicity, sesame seeds (cultivar: Jinzhi No.3) were planted in 12-cm-diameter plastic pots containing a mixture of sterilized soil, vermiculite and peat mossat a ratio of 3:1:1. Oospores were collected following the procedure of Raftoyannis et al. (2006) with minor modifications. Three-leaf stage sesame roots were soaked with 5 mL of oospore suspension at 1 × 106/mL of the 20210628 strain, and the control plants were inoculated with sterilized water. All plants were maintained in a greenhouse (28±2°C, > 80% R. H.). The experiment was repeated twice with three replications. The plants inoculated with P. myriotylum showed the water soak symptom on the stem base 7 days after inoculation, while control plants were symptomless. Three weeks after inoculation, the plants showed root tissue necrosis, root rot, and dwarfing symptoms that were similar to those observed on sesame plants in the field, while control plants remained healthy. P. myriotylum was re-isolated from the inoculated plants and the morphology was the same as the original strain 20210628. These results suggest that P. myriotylum is the causal agent of sesame root rot. Previous studies have revealed that P. myriotylum can cause root rot in peanuts (Yu et al. 2019), chili pepper (Hyder et al. 2018), green bean (Serrano et al. 2008) and aerial blight of tomato (Roberts et al. 1999). To the best of our knowledge, this is the first report of P. myriotylum causing root rot on sesame. This pathogen can infect plant roots and develop rapidly if no effective control measures are implemented. Once the disease breaks out in a large area, the yield of sesame will be seriously threatened. The results provide important implications for the prevention and management of this disease.

6.
Microbiol Spectr ; 10(4): e0226821, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35946960

ABSTRACT

The Pythium (Peronosporales, Oomycota) genus includes devastating plant pathogens that cause widespread diseases and severe crop losses. Here, we have uncovered a far greater arsenal of virulence factor-related genes in the necrotrophic Pythium myriotylum than in other Pythium plant pathogens. The genome of a plant-virulent P. myriotylum strain (~70 Mb and 19,878 genes) isolated from a diseased rhizome of ginger (Zingiber officinale) encodes the largest repertoire of putative effectors, proteases, and plant cell wall-degrading enzymes (PCWDEs) among the studied species. P. myriotylum has twice as many predicted secreted proteins than any other Pythium plant pathogen. Arrays of tandem duplications appear to be a key factor of the enrichment of the virulence factor-related genes in P. myriotylum. The transcriptomic analysis performed on two P. myriotylum isolates infecting ginger leaves showed that proteases were a major part of the upregulated genes along with PCWDEs, Nep1-like proteins (NLPs), and elicitin-like proteins. A subset of P. myriotylum NLPs were analyzed and found to have necrosis-inducing ability from agroinfiltration of tobacco (Nicotiana benthamiana) leaves. One of the heterologously produced infection-upregulated putative cutinases found in a tandem array showed esterase activity with preferences for longer-chain-length substrates and neutral to alkaline pH levels. Our results allow the development of science-based targets for the management of P. myriotylum-caused disease, as insights from the genome and transcriptome show that gene expansion of virulence factor-related genes play a bigger role in the plant parasitism of Pythium spp. than previously thought. IMPORTANCE Pythium species are oomycetes, an evolutionarily distinct group of filamentous fungus-like stramenopiles. The Pythium genus includes several pathogens of important crop species, e.g., the spice ginger. Analysis of our genome from the plant pathogen Pythium myriotylum uncovered a far larger arsenal of virulence factor-related genes than found in other Pythium plant pathogens, and these genes contribute to the infection of the plant host. The increase in the number of virulence factor-related genes appears to have occurred through the mechanism of tandem gene duplication events. Genes from particular virulence factor-related categories that were increased in number and switched on during infection of ginger leaves had their activities tested. These genes have toxic activities toward plant cells or activities to hydrolyze polymeric components of the plant. The research suggests targets to better manage diseases caused by P. myriotylum and prompts renewed attention to the genomics of Pythium plant pathogens.


Subject(s)
Pythium , Zingiber officinale , Peptide Hydrolases , Plant Diseases , Plants , Pythium/genetics , Virulence/genetics , Virulence Factors/genetics
8.
Plant Dis ; 106(2): 510-517, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34340560

ABSTRACT

Pythium soft rot is a major soilborne disease of crops such as ginger (Zingiber officinale). Our objective was to identify which Pythium species were associated with Pythium soft rot of ginger in China, where approximately 20% of global ginger production is located. Oomycetes infecting ginger rhizomes from seven provinces were investigated using two molecular markers, the internal transcribed spacer, and cytochrome c oxidase subunit II (CoxII). In total, 81 isolates were recovered; approximately 95% of the isolates were identified as Pythium myriotylum, and the other isolates were identified as either P. aphanidermatum or P. graminicola. Notably, the P. myriotylum isolates from China did not contain the single nucleotide polymorphism in the CoxII sequence found previously in the P. myriotylum isolates infecting ginger in Australia. A subset of 36 isolates was analyzed repeatedly by temperature-dependent growth, severity of disease on ginger plants, and aggressiveness of colonization on ginger rhizome sticks. In the pathogenicity assays, 32 of 36 isolates were able to significantly infect and cause severe disease symptoms on the ginger plants. A range of temperature-dependent growth, disease severity, and aggressiveness in colonization was found, with a significant moderate positive correlation between growth and aggressiveness of colonization of the ginger sticks. This study identified P. myriotylum as the major oomycete pathogen in China from infected ginger rhizomes and suggested that P. myriotylum should be a key target to control soft rot of ginger disease.


Subject(s)
Pythium , Zingiber officinale , China , Crops, Agricultural , Plant Extracts
9.
Front Microbiol ; 12: 765872, 2021.
Article in English | MEDLINE | ID: mdl-34867897

ABSTRACT

Biological control is a promising approach to suppress diseases caused by Pythium spp. such as Pythium soft rot of ginger caused by P. myriotylum. Unusually for a single genus, it also includes species that can antagonize Pythium plant pathogens, such as Pythium oligandrum. We investigated if a new isolate of P. oligandrum could antagonize P. myriotylum, what changes occurred in gene expression when P. oligandrum (antagonist) and P. myriotylum (host) interacted, and whether P. oligandrum could control soft-rot of ginger caused by P. myriotylum. An isolate of P. oligandrum, GAQ1, recovered from soil could antagonize P. myriotylum in a plate-based confrontation assay whereby P. myriotylum became non-viable. The loss of viability of P. myriotylum coupled with how P. oligandrum hyphae could coil around and penetrate the hyphae of P. myriotylum, indicated a predatory interaction. We investigated the transcriptional responses of P. myriotylum and P. oligandrum using dual-RNAseq at a stage in the confrontation where similar levels of total transcripts were measured from each species. As part of the transcriptional response of P. myriotylum to the presence of P. oligandrum, genes including a subset of putative Kazal-type protease inhibitors were strongly upregulated along with cellulases, elicitin-like proteins and genes involved in the repair of DNA double-strand breaks. In P. oligandrum, proteases, cellulases, and peroxidases featured prominently in the upregulated genes. The upregulation along with constitutive expression of P. oligandrum proteases appeared to be responded to by the upregulation of putative protease inhibitors from P. myriotylum, suggesting a P. myriotylum defensive strategy. Notwithstanding this P. myriotylum defensive strategy, P. oligandrum had a strong disease control effect on soft-rot of ginger caused by P. myriotylum. The newly isolated strain of P. oligandrum is a promising biocontrol agent for suppressing the soft-rot of ginger. The dual-RNAseq approach highlights responses of P. myriotylum that suggests features of a defensive strategy, and are perhaps another factor that may contribute to the variable success and durability of biological attempts to control diseases caused by Pythium spp.

10.
Front Microbiol ; 12: 587431, 2021.
Article in English | MEDLINE | ID: mdl-34054741

ABSTRACT

Pythium myriotylum is a notorious soil-borne oomycete that causes post-emergence damping-off in chili pepper. Of various disease management strategies, utilization of plant growth promoting rhizobacteria (PGPR) in disease suppression and plant growth promotion is an interesting strategy. The present study was performed to isolate and characterize PGPR indigenous to the chili rhizosphere in Pakistan, and to test the potential to suppress the damping-off and plant growth promotion in chili. Out of a total of 28 antagonists, eight bacterial isolates (4a2, JHL-8, JHL-12, 1C2, RH-24, 1D, 5C, and RH-87) significantly suppressed the colony growth of P. myriotylum in a dual culture experiment. All the tested bacterial isolates were characterized for biochemical attributes, and 16S rRNA sequence based phylogenetic analysis identified these isolates as Flavobacterium spp., Bacillus megaterium, Pseudomonas putida, Bacillus cereus, and Pseudomonas libanensis. All the tested bacterial isolates showed positive test results for ammonia production, starch hydrolase (except 4a2), and hydrogen cyanide production (except 4a2 and 1D). All the tested antagonists produced indole-3-acetic acid (13.4-39.0 µg mL-1), solubilized inorganic phosphate (75-103 µg mL-1), and produced siderophores (17.1-23.7%) in vitro. All the tested bacterial isolates showed varying levels of susceptibility and resistance response against different antibiotics and all these bacterial isolates were found to be non-pathogenic to chili seeds and notably enhanced percentage seed germination, plumule, redical length, and vigor index over un-inoculated control. Additionally, under pathogen pressure, bacterization increased the defense related enzymes such as Peroxidase (PO), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) activates. Moreover, the treatment of chili seeds with these bacterial isolates significantly suppressed the damping-off caused by P. myriotylum and improved PGP traits compared to the control. In addition, a positive correlation was noticed between shoot, root length, and dry shoot and root weight, and there was a negative correlation between dry shoot, root weight, and seedling percentage mortality. These results showed that native PGPR possesses multiple traits beneficial to the chili plants and can be used to develop eco-friendly and effective seed treatment formulation as an alternative to synthetic chemical fungicides.

11.
Microorganisms ; 8(7)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32698413

ABSTRACT

Pseudomonas cyclic lipopeptides (CLPs) are encoded non-ribosomally by biosynthetic gene clusters (BGCs) and possess diverse biological activities. In this study, we conducted chemical structure and BGC analyses with antimicrobial activity assays for two CLPs produced by Pseudomonas strains isolated from the cocoyam rhizosphere in Cameroon and Nigeria. LC-MS and NMR analyses showed that the Pseudomonas sp. COR52 and A2W4.9 produce pseudodesmin and viscosinamide, respectively. These CLPs belong to the Viscosin group characterized by a nonapeptidic moiety with a 7-membered macrocycle. Similar to other Viscosin-group CLPs, the initiatory non-ribosomal peptide synthetase (NRPS) gene of the viscosinamide BGC is situated remotely from the other two NRPS genes. In contrast, the pseudodesmin genes are all clustered in a single genomic locus. Nano- to micromolar levels of pseudodesmin and viscosinamide led to the hyphal distortion and/or disintegration of Rhizoctonia solani AG2-2 and Pythium myriotylum CMR1, whereas similar levels of White Line-Inducing Principle (WLIP), another member of the Viscosin group, resulted in complete lysis of both soil-borne phytopathogens. In addition to the identification of the biosynthetic genes of these two CLPs and the demonstration of their interaction with soil-borne pathogens, this study provides further insights regarding evolutionary divergence within the Viscosin group.

12.
World J Microbiol Biotechnol ; 36(5): 77, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32399738

ABSTRACT

Protease mediated proteolysis has been widely implicated in virulence of necrotrophic fungal pathogens. This is counteracted in plants by evolving new and effective antimicrobial peptides (AMP) that constitute important components of innate immune system. Peptide extraction from rhizome of Zingiber zerumbet was optimized using ammonium sulphate (50-80% w/v) and acetone (60 and 100% v/v) with maximal protein recovery of 1.2 ± 0.4 mg/g obtained using 100% acetone. Evaluation of inhibitory potential of Z. zerumbet rhizome protein extract to prominent hydrolases of necrotrophic Pythium myriotylum revealed maximal inhibition of proteases (75.8%) compared to other hydrolytic enzymes. Protein was purified by Sephacryl S200HR resin resulting in twofold purification and protease inhibition of 84.4%. Non-reducing polyacrylamide gel electrophoresis (PAGE) of the fractions yielded two bands of 75 kDa and 25 kDa molecular size. Peptide mass fingerprint of the protein bands using matrix assisted laser desorption/ionization (MALDI)-time of flight (TOF) mass spectroscopy (MS) and subsequent MASCOT searches revealed peptide match to methylesterase from Arabidopsis thaliana (15%) and to hypothetical protein from Oryza sativa (98%) respectively. Further centrifugal filter purification using Amicon Ultra (10,000 MW cut-off) filter, yielded a prominent band of 25 kDa size. Concentration dependent inhibition of zoospore viability by Z. zerumbet AMP designated as ZzAMP was observed with maximal inhibition of 89.5% at 4 µg protein and an IC50 value of 0.59 µg. Studies are of particular relevance in the context of identifying the molecules involved in imparting below ground defense in Z. zerumbet as well in development of AMPs as potential candidate molecules for control of necrotrophic pathogens of agricultural relevance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Peptide Hydrolases/drug effects , Plant Extracts/pharmacology , Pythium/drug effects , Rhizome/microbiology , Zingiberaceae/microbiology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Arabidopsis , Enzyme Inhibitors , Fungi/drug effects , Oryza , Peptides/pharmacology , Plant Extracts/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Zingiberaceae/growth & development
13.
Int Microbiol ; 23(2): 179-188, 2020 May.
Article in English | MEDLINE | ID: mdl-31267375

ABSTRACT

This investigation was aimed to evaluate the antimicrobial activities and involvement of extracellular lytic enzymes produced by four strains of Trichoderma in the inhibition of Pythium myriotylum. Antagonistic effects were tested by dual culture. Activities of lytic enzymes were evaluated from the filtrate of each strain after cultivation in selected media. Organic extracts were obtained from liquid media subsequent to the cultivation of Trichoderma in potato dextrose broth (PDB). Non-volatile organic compounds such as polyphenols and flavonoids were evaluated spectrophotometrically while volatile organic compounds (VOCs) were analyzed by gas chromatography coupled with mass spectrometry (GC-MS). The antimicrobial activity of the organic extracts was determined using the poisoning method. Results have shown that all the strains were antagonists against P. myriotylum. T. erinaceum (IT-58), T. gamsii (IT-62), T. afroharzianum (P8), and T. harzianum (P11) that were found to produce cellulase, protease, and xylanase. Over 20 compounds were identified in each extract, including esters, lactones, and organic acids. The organic extracts also contained high amounts of polyphenolic compounds and flavonoids and significantly inhibited the mycelial growth of P. myriotylum. The minimal inhibition concentrations were 80 µg/µL, 40 µg/µL, 20 µg/µL, and 10 µg/µL, for extracts obtained from T. erinaceum (IT-58), T. gamsii (IT-62), T. afroharzianum (P8), and T. harzianum (P11), respectively. There was significant correlation between the production of total polyphenol and flavonoid content and the antagonistic effects of the tested strains.


Subject(s)
Plant Diseases/microbiology , Pythium/microbiology , Trichoderma , Xanthosoma/microbiology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Biological Control Agents , Cellulase/metabolism , Complex Mixtures/chemistry , Complex Mixtures/pharmacology , Endo-1,4-beta Xylanases/metabolism , Enzymes/metabolism , Microbial Sensitivity Tests , Peptide Hydrolases/metabolism , Plant Diseases/prevention & control , Secondary Metabolism , Trichoderma/chemistry , Trichoderma/metabolism , Xanthosoma/growth & development
14.
Microbiol Res ; 173: 34-43, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25801969

ABSTRACT

In this study, 100 PGPR strains isolated from different varieties of ginger (Zingiber officinale Rosc.) were first characterized for their morphological, biochemical, and nutrient mobilization traits in vitro. The PGPR were also screened in vitro for inhibition of Pythium myriotylum causing soft rot in ginger. Results revealed that only five PGPR showed >70% suppression of P. myriotylum. These 5 PGPR viz., GRB (Ginger rhizobacteria) 25--Burkholderia cepacia, GRB35--Bacillus amyloliquefaciens; GRB58--Serratia marcescens; GRB68--S. marcescens; GRB91--Pseudomonas aeruginosa were used for further growth promotion and biocontrol studies in the green house and field. The green house study revealed that GRB35 (B. amyloliquefaciens) and GRB68 (S. marcescens) registered markedly higher sprouting (96.3%) and lower disease incidence (48.1%) and greater rhizome yield (365.6 g pot(-1) and 384.4 g pot(-1), respectively), while control registered the lowest sprouting (66%), maximum soft rot incidence (100%) and lowest rhizome yield (134.4 g pot(-1)). In the field experiments also, GRB68 (S. marcescens) and GRB35 (B. amyloliquefaciens) registered the greatest sprouting (80% each), markedly lower soft rot incidence (5.2% and 7.3%, respectively) and higher yield (5.0 and 4.3 kg(3)m(-2), respectively) compared to chemicals like Streptomycin sulphate (73.0%, 18.5% and 2.3 kg(3)m(-2), respectively), Metalaxyl-Mancozeb (73.0%, 14.0% and 3.8 kg(3)m(-2), respectively) and control (73.0%, 25.1% and 2.2 kg 3m(-2), respectively). Overall, the results suggested that for growth promotion and management of soft rot disease in ginger, GRB35 B. amyloliquefaciens and GRB68 S. marcescens could be good alternatives to chemical measures. Since, the latter has been reported to be an opportunistic human pathogen, we recommend the use of B. amyloliquefaciens for integration into nutrient and disease management schedules for ginger cultivation.


Subject(s)
Antibiosis , Bacteria/isolation & purification , Plant Diseases/prevention & control , Pythium/physiology , Soil Microbiology , Zingiber officinale/microbiology , Bacteria/classification , Bacteria/genetics , Bacterial Physiological Phenomena , Zingiber officinale/growth & development , Molecular Sequence Data , Phylogeny , Plant Diseases/microbiology , Rhizosphere
15.
J Basic Microbiol ; 54(12): 1322-30, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25123590

ABSTRACT

An extracellular endoglucanase (EG) that catalyzes the hydrolysis of carboxy-methyl cellulose (CMC) as substrate was purified to homogeneity from the soft-rot causing oomycete P. myriotylum with maximum EG production observed in presence of 1% (w/v) sucrose. The enzyme designated PmEG was observed to be monomeric with a molecular weight of 78 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Optimal activity of PmEG was determined at pH 5.0 and 25 °C with stability observed at pH extending over acidic to alkaline ranges viz., 3.0-10.0 and thermal stability upto 75 °C for 1 h. Optimal PmEG activity was obtained by addition of metal ions viz., Ca(2+) , Fe(3+) , Zn(2+) , Cu(2+) , Al(3+) , and also in presence of DTT and ß-mercaptoethanol while it was inhibited by Cr(2+) . Various organic solvents, surfactants, and the oxidant, H2 O2 had little/no effect on PmEG activity reflecting its robustness and potential commercial significance. Kinetic constants of PmEG, Km and Vmax were determined as 1.1 mM and 407 µmol min(-1) mg(-1) protein, respectively. Glucose was observed to cause mixed non-competitive inhibition of PmEG.


Subject(s)
Cellulase/isolation & purification , Pythium/enzymology , Cellulase/chemistry , Cellulase/metabolism , Hydrogen-Ion Concentration , Kinetics , Substrate Specificity
16.
Lett Appl Microbiol ; 59(1): 49-57, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24612040

ABSTRACT

UNLABELLED: This study reports the development of a loop-mediated isothermal amplification (LAMP) reaction for the detection of Pythium myriotylum. The primer set targeting the ITS sequence of P. myriotylum worked most efficiently at 60°C and allowed the detection of P. myriotylum DNA within 30 min by fluorescence monitoring using a real-time PCR instrument. The peak denaturing temperature of amplified DNA was about 87·0°C. In specificity tests using eight Pythium myriotylum strains, 59 strains from 39 species of Pythium, 11 Phytophthora strains and eight other soil-borne pathogens, LAMP gave no cross-reactions. The detection limit was 100 fg of genomic DNA, which was as sensitive as PCR. LAMP could detect P. myriotylum in hydroponic solution samples, and the results coincided with those of the conventional plating method in almost all cases. The LAMP method established in this study is a simple and sensitive tool for the detection of P. myriotylum. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the first LAMP assay for the detection of Pythium myriotylum. The primer set designed from ITS region of P. myriotylum can detect the pathogen in field sample with a fast and convenient method. Analysis of the annealing curve of the LAMP reaction products increases the reliability of the LAMP diagnosis. This study shows that the diagnostic method using the LAMP assay is useful for monitoring P. myriotylum in the field.


Subject(s)
Nucleic Acid Amplification Techniques , Pythium/genetics , DNA Primers/genetics , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Limit of Detection , Molecular Sequence Data , Nucleic Acid Amplification Techniques/methods , Phytophthora/genetics , Reproducibility of Results , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL