Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Biomimetics (Basel) ; 9(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38921187

ABSTRACT

In the complex and dynamic landscape of cyber threats, organizations require sophisticated strategies for managing Cybersecurity Operations Centers and deploying Security Information and Event Management systems. Our study enhances these strategies by integrating the precision of well-known biomimetic optimization algorithms-namely Particle Swarm Optimization, the Bat Algorithm, the Gray Wolf Optimizer, and the Orca Predator Algorithm-with the adaptability of Deep Q-Learning, a reinforcement learning technique that leverages deep neural networks to teach algorithms optimal actions through trial and error in complex environments. This hybrid methodology targets the efficient allocation and deployment of network intrusion detection sensors while balancing cost-effectiveness with essential network security imperatives. Comprehensive computational tests show that versions enhanced with Deep Q-Learning significantly outperform their native counterparts, especially in complex infrastructures. These results highlight the efficacy of integrating metaheuristics with reinforcement learning to tackle complex optimization challenges, underscoring Deep Q-Learning's potential to boost cybersecurity measures in rapidly evolving threat environments.

2.
Biomimetics (Basel) ; 8(5)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37754151

ABSTRACT

In this work, an approach is proposed to solve binary combinatorial problems using continuous metaheuristics. It focuses on the importance of binarization in the optimization process, as it can have a significant impact on the performance of the algorithm. Different binarization schemes are presented and a set of actions, which combine different transfer functions and binarization rules, under a selector based on reinforcement learning is proposed. The experimental results show that the binarization rules have a greater impact than transfer functions on the performance of the algorithms and that some sets of actions are statistically better than others. In particular, it was found that sets that incorporate the elite or elite roulette binarization rule are the best. Furthermore, exploration and exploitation were analyzed through percentage graphs and a statistical test was performed to determine the best set of actions. Overall, this work provides a practical approach for the selection of binarization schemes in binary combinatorial problems and offers guidance for future research in this field.

3.
Sensors (Basel) ; 23(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37571502

ABSTRACT

Recent studies and literature reviews have shown promising results for 3GPP system solutions in unlicensed bands when coexisting with Wi-Fi, either by using the duty cycle (DC) approach or licensed-assisted access (LAA). However, it is widely known that general performance in these coexistence scenarios is dependent on traffic and how the duty cycle is adjusted. Most DC solutions configure their parameters statically, which can result in performance losses when the scenario experiences changes on the offered data. In our previous works, we demonstrated that reinforcement learning (RL) techniques can be used to adjust DC parameters. We showed that a Q-learning (QL) solution that adapts the LTE DC ratio to the transmitted data rate can maximize the Wi-Fi/LTE-Unlicensed (LTE-U) aggregated throughput. In this paper, we extend our previous solution by implementing a simpler and more efficient algorithm based on multiarmed bandit (MAB) theory. We evaluate its performance and compare it with the previous one in different traffic scenarios. The results demonstrate that our new solution offers improved balance in throughput, providing similar results for LTE and Wi-Fi, while still showing a substantial system gain. Moreover, in one of the scenarios, our solution outperforms the previous approach by 6% in system throughput. In terms of user throughput, it achieves more than 100% gain for the users at the 10th percentile of performance, while the old solution only achieves a 10% gain.

4.
Sensors (Basel) ; 23(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36772270

ABSTRACT

In recent years, cybersecurity has been strengthened through the adoption of processes, mechanisms and rapid sources of indicators of compromise in critical areas. Among the most latent challenges are the detection, classification and eradication of malware and Denial of Service Cyber-Attacks (DoS). The literature has presented different ways to obtain and evaluate malware- and DoS-cyber-attack-related instances, either from a technical point of view or by offering ready-to-use datasets. However, acquiring fresh, up-to-date samples requires an arduous process of exploration, sandbox configuration and mass storage, which may ultimately result in an unbalanced or under-represented set. Synthetic sample generation has shown that the cost associated with setting up controlled environments and time spent on sample evaluation can be reduced. Nevertheless, the process is performed when the observations already belong to a characterized set, totally detached from a real environment. In order to solve the aforementioned, this work proposes a methodology for the generation of synthetic samples of malicious Portable Executable binaries and DoS cyber-attacks. The task is performed via a Reinforcement Learning engine, which learns from a baseline of different malware families and DoS cyber-attack network properties, resulting in new, mutated and highly functional samples. Experimental results demonstrate the high adaptability of the outputs as new input datasets for different Machine Learning algorithms.

5.
Front Robot AI ; 9: 880547, 2022.
Article in English | MEDLINE | ID: mdl-36226257

ABSTRACT

Social robotics represents a branch of human-robot interaction dedicated to developing systems to control the robots to operate in unstructured environments with the presence of human beings. Social robots must interact with human beings by understanding social signals and responding appropriately to them. Most social robots are still pre-programmed, not having great ability to learn and respond with actions adequate during an interaction with humans. Recently more elaborate methods use body movements, gaze direction, and body language. However, these methods generally neglect vital signs present during an interaction, such as the human emotional state. In this article, we address the problem of developing a system to turn a robot able to decide, autonomously, what behaviors to emit in the function of the human emotional state. From one side, the use of Reinforcement Learning (RL) represents a way for social robots to learn advanced models of social cognition, following a self-learning paradigm, using characteristics automatically extracted from high-dimensional sensory information. On the other side, Deep Learning (DL) models can help the robots to capture information from the environment, abstracting complex patterns from the visual information. The combination of these two techniques is known as Deep Reinforcement Learning (DRL). The purpose of this work is the development of a DRL system to promote a natural and socially acceptable interaction among humans and robots. For this, we propose an architecture, Social Robotics Deep Q-Network (SocialDQN), for teaching social robots to behave and interact appropriately with humans based on social signals, especially on human emotional states. This constitutes a relevant contribution for the area since the social signals must not only be recognized by the robot but help him to take action appropriated according to the situation presented. Characteristics extracted from people's faces are considered for extracting the human emotional state aiming to improve the robot perception. The development and validation of the system are carried out with the support of SimDRLSR simulator. Results obtained through several tests demonstrate that the system learned satisfactorily to maximize the rewards, and consequently, the robot behaves in a socially acceptable way.

6.
Sensors (Basel) ; 21(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34883907

ABSTRACT

This work explores interference coordination techniques (inter-cell interference coordination, ICIC) based on fractional frequency reuse (FFR) as a solution for a multi-cellular scenario with user concentration varying over time. Initially, we present the problem of high user concentration along with their consequences. Next, the use of multiple-input multiple-output (MIMO) and small cells are discussed as classic solutions to the problem, leading to the introduction of fractional frequency reuse and existing ICIC techniques that use FFR. An exploratory analysis is presented in order to demonstrate the effectiveness of ICIC techniques in reducing co-channel interference, as well as to compare different techniques. A statistical study was conducted using one of the techniques from the first analysis in order to identify which of its parameters are relevant to the system performance. Additionally, another study is presented to highlight the impact of high user concentration in the proposed scenario. Because of the dynamic aspect of the system, this work proposes a solution based on machine learning. It consists of changing the ICIC parameters automatically to maintain the best possible signal-to-interference-plus-noise ratio (SINR) in a scenario with hotspots appearing over time. All investigations are based on ns-3 simulator prototyping. The results show that the proposed Q-Learning algorithm increases the average SINR from all users and hotspot users when compared with a scenario without Q-Learning. The SINR from hotspot users is increased by 11.2% in the worst case scenario and by 180% in the best case.


Subject(s)
Fractional Flow Reserve, Myocardial , Machine Learning
7.
PeerJ Comput Sci ; 7: e556, 2021.
Article in English | MEDLINE | ID: mdl-34150998

ABSTRACT

Robot navigation allows mobile robots to navigate among obstacles without hitting them and reaching the specified goal point. In addition to preventing collisions, it is also essential for mobile robots to sense and maintain an appropriate battery power level at all times to avoid failures and non-fulfillment with their scheduled tasks. Therefore, selecting the proper time to recharge the batteries is crucial to address the navigation algorithm design for the robot's prolonged autonomous operation. In this paper, a machine learning algorithm is used to ensure the extended robot autonomy based on a reinforcement learning method combined with a fuzzy inference system. The proposal enables a mobile robot to learn whether to continue through its path toward the destination or modify its course on the fly, if necessary, to proceed toward the battery charging station, based on its current state. The proposal performs a flexible behavior to choose an action that allows a robot to move from a starting to a destination point, guaranteeing battery charge availability. This paper shows the obtained results using an approach with thirty-six states and its reduction with twenty states. The conducted simulations show that the robot requires fewer training epochs to achieve ten consecutive successes in the fifteen proposed scenarios than traditional reinforcement learning methods exhibit. Moreover, in four scenarios, the robot ends up with a battery level above 80%, that value is higher than the obtained results with two deterministic methods.

8.
Sensors (Basel) ; 20(6)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168774

ABSTRACT

Path planning for sailboat robots is a challenging task particularly due to the kinematics and dynamics modelling of such kinds of wind propelled boats. The problem is divided into two layers. The first one is global were a general trajectory composed of waypoints is planned, which can be done automatically based on some variables such as weather conditions or defined by hand using some human-robot interface (a ground-station). In the second local layer, at execution time, the global route should be followed by making the sailboat proceed between each pair of consecutive waypoints. Our proposal in this paper is an algorithm for the global, path generation layer, which has been developed for the N-Boat (The Sailboat Robot project), in order to compute feasible sailing routes between a start and a target point while avoiding dangerous situations such as obstacles and borders. A reinforcement learning approach (Q-Learning) is used based on a reward matrix and a set of actions that changes according to wind directions to account for the dead zone, which is the region against the wind where the sailboat can not gain velocity. Our algorithm generates straight and zigzag paths accounting for wind direction. The path generated also guarantees the sailboat safety and robustness, enabling it to sail for long periods of time, depending only on the start and target points defined for this global planning. The result is the development of a complete path planner algorithm that, together with the local planner solved in previous work, can be used to allow the final developments of an N-Boat making it a fully autonomous sailboat.

SELECTION OF CITATIONS
SEARCH DETAIL