Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.747
Filter
1.
Neurobiol Dis ; : 106588, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960101

ABSTRACT

Clinical and preclinical evidence has demonstrated an increased risk for neuropsychiatric disorders following prenatal cannabinoid exposure. However, given the phytochemical complexity of cannabis, there is a need to understand how specific components of cannabis may contribute to these neurodevelopmental risks later in life. To investigate this, a rat model of prenatal cannabinoid exposure was utilized to examine the impacts of specific cannabis constituents (Δ9-tetrahydrocannabinol [THC]; cannabidiol [CBD]) alone and in combination on future neuropsychiatric liability in male and female offspring. Prenatal THC and CBD exposure were associated with low birth weight. At adolescence, offspring displayed sex-specific behavioural changes in anxiety, temporal order and social cognition, and sensorimotor gating. These phenotypes were associated with sex and treatment-specific neuronal and gene transcriptional alterations in the prefrontal cortex, and ventral hippocampus, regions where the endocannabinoid system is implicated in affective and cognitive development. Electrophysiology and RT-qPCR analysis in these regions implicated dysregulation of the endocannabinoid system and balance of excitatory and inhibitory signalling in the developmental consequences of prenatal cannabinoids. These findings reveal critical insights into how specific cannabinoids can differentially impact the developing fetal brains of males and females to enhance subsequent neuropsychiatric risk.

2.
Poult Sci ; 103(9): 103980, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38959666

ABSTRACT

Utilizing publicly available RNA-seq data to screen for ideal reference genes is more efficient and accurate than traditional methods. Previous studies have identified optimal reference genes in various chicken tissues, but none have specifically focused on the oviduct (including the infundibulum, magnum, isthmus, uterus, and vagina), which is crucial for egg production. Identifying stable reference genes in the oviduct is essential for improving research on gene expression levels. This study investigated genes with consistent expression patterns in the chicken oviduct, encompassing both individual oviduct tract tissues and the entire oviduct, by utilizing multiple RNA-seq datasets. The screening results revealed the discovery of 100 novel reference genes in each segment of oviduct tissues, primarily associated with cell cycle regulation and RNA binding. Moreover, the majority of housekeeping genes (HKGs) showed inconsistent expression levels across distinct samples, suggesting their lack of stability under varying conditions. The stability of the newly identified reference genes was assessed in comparison to previously validated stable reference genes in chicken oviduct and commonly utilized HKGs, employing traditional reference gene screening methods. HERPUD2, CSDE1, VPS35, PBRM1, LSM14A, and YWHAB were identified to be suitable novel reference gene for different parts of the oviduct. HERPUD2 and YWHAB were reliable for gene expression normalization throughout the oviduct tract. Furthermore, overexpression and interference assays in DF1 cells showed LSM14A and YWHAB play a crucial role in cell proliferation, highlighting the importance of these newly reference genes for further research. Overall, this study has expanded the options for reference genes in RT-qPCR experiments in different segments of the chicken oviduct and the entire oviduct.

3.
Int J Radiat Biol ; : 1-11, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953870

ABSTRACT

PURPOSE: Radiation-induced alterations in gene expression show great promise for dose reconstruction and for severity prediction of acute health effects. Among several genes explored as potential biomarkers, FDXR is widely used due to high upregulation in white blood cells following radiation exposure. Nonetheless, the absence of a standardized protocols for gene expression-based biodosimetry is a notable gap that warrants attention to enhance the accuracy, reproducibility and reliability. The objective of this study was to evaluate the sensitivity of transcriptional biodosimetry to differences in protocols used by different laboratories and establish guidelines for the calculation of calibration curve using FDXR expression data. MATERIAL AND METHODS: Two sets of irradiated blood samples generated during RENEB exercise were used. The first included samples irradiated with known doses including: 0, 0.25, 0.5, 1, 2, 3 and 4 Gy. The second set consisted of three 'blind' samples irradiated with 1.8 Gy, 0.4 Gy and a sham-irradiated sample. After irradiation, samples were incubated at 37 °C over 24 h and sent to participating laboratories, where RNA isolation and FDXR expression analysis by qPCR were performed using sets of primers/probes and reference genes specific for each laboratory. Calibration curves based on FDXR expression data were generated using non-linear and linear regression and used for dose estimation of 'blind' samples. RESULTS: Dose estimates for sham-irradiated sample (0.020-0.024 Gy) and sample irradiated with 0.4 Gy (0.369-0.381 Gy) showed remarkable consistency across all laboratories, closely approximating the true doses regardless variation in primers/probes and reference genes used. For sample irradiated with 1.8 Gy the dose estimates were less precise (1.198-2.011 Gy) but remained within an acceptable margin for triage within the context of high dose range. CONCLUSION: Methodological differences in reference genes and primers/probes used for FDXR expression measurement do not have a significant impact on the dose estimates generated, provided that all reference genes performed as expected and the primers/probes target a similar set of transcript variants. The preferred method for constructing a calibration curve based on FDXR expression data involves employing linear regression to establish a function that describes the relationship between the logarithm of absorbed dose and FDXR ΔCt values. However, one should be careful with using non-irradiated sample data as these cannot be accurately represented on a logarithmic scale. A standard curve generated using this approach can give reliable dose estimations in a dose range from 50 mGy to 4 Gy at least.

4.
Vet Res Commun ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951465

ABSTRACT

Heat therapy has been reported as a safe, effective, and readily available treatment method for heat-tolerant frogs infected with Batrachochytrium dendrobatidis (Bd). We treated wild-caught Australian green tree frogs (Litoria caerulea) infected with Bd using two periods of elevated ambient room temperature (28.2-30.3 °C for 7 weeks followed by 28.9-34.1 °C for 4 weeks). Frogs exhibited persistent and even increasing infection loads in the first treatment period despite prolonged exposure to elevated temperatures, likely due to the presence of cooler microenvironments within their enclosure (25.5-27.0 °C). All frogs eventually returned negative qPCR tests for Bd at the end of the second treatment period, but detectable infections reoccurred one month after frogs were returned to standard housing temperatures (21.2-28.7 °C). Our findings suggest that elevated ambient temperature alone might not eliminate Bd in vivo but can reduce infections loads such that they are undetectable by qPCR analysis of skin swabs. Additional factors, such as cooler microenvironments within enclosures or relative humidity, may influence the success of heat therapy. We recommend further research into the combined effects of temperature and humidity during heat therapy and emphasize the importance of accurate temperature measurements as well as post-treatment monitoring at Bd-permissive temperatures to confirm successful clearance of infections.

5.
Front Microbiol ; 15: 1409065, 2024.
Article in English | MEDLINE | ID: mdl-38919501

ABSTRACT

Background: Adults with community-acquired pneumonia (CAP) in China suffer high morbidity. CAP is caused by a multitude of pathogens; however, pathogen-directed clinical symptoms are often lacking. Therefore, patients lacking an accurate microbiological diagnosis are administered with empirical antimicrobials. Methods: We collected bronchoalveolar lavage fluid, as well as clinical and laboratory data from 650 adult patients with CAP admitted to three hospitals in Hubei, Sichuan, and Zhejiang provinces in China. Specimens were cultured and tested using real-time reverse transcription qPCR (RT-qPCR) assays for the presence of 42 respiratory bacteria and viruses. CAP was investigated with respect to regions, genders, and age and patterns of infections or co-infections. Employing clinical guidelines adapted for diagnosis, we assessed retrospectively the appropriate pathogen-directed therapy and compared it with the initial empirical therapies. Results: Our study identified that 21.38% (139/650) of the patients were classified as having Severe CAP (S-CAP), with a higher prevalence among males, older adults, and during the warm season. Bacterial pathogens were detected in 35.53% (231/650) of cases. K. pneumoniae, H. influenzae, and S. aureus were the most prevalent bacteria across different demographics and regions. Viral pathogens were found in 48.76% (317/650) of patients Epstein-Barr, Human rhinovirus, and Cytomegalovirus were the most common viruses. Co-infections were present in 24.31% (158/650) of cases, with viral-bacterial co-infections being the most frequent. The RT-qPCR demonstrated significantly higher detection rates for key pathogens compared to standard culture methods. It showed potential in optimizing antimicrobial prescriptions by allowing for de-escalation in 18.30% (95/518) of patients, among which reducing the number of excessive antibiotics mainly comprised decreasing the use of 2nd or 3rd generation cephalosporins (5.79%, 30/518) and ß-lactamase inhibitor combinations. Conclusion: The study highlights the significant burden of S-CAP, particularly among specific demographics and seasons. The prevalence of bacterial and viral pathogens, along with the high rate of co-infections, emphasizes the need for comprehensive diagnostic approaches. The RT-qPCR assays emerge as a superior diagnostic tool, offering enhanced pathogen detection capabilities and facilitating more precise antimicrobial therapy. This could lead to improved patient outcomes and contribute to the rational use of antimicrobials, addressing the growing concern of antibiotic resistance.

6.
Plant Biotechnol J ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923713

ABSTRACT

Developing early maturing lentil has the potential to minimize yield losses, mainly during terminal drought. Whole-genome resequencing (WGRS) based QTL-seq identified the loci governing earliness in lentil. The genetic analysis for maturity duration provided a good fit to 3:1 segregation (F2), indicating earliness as a recessive trait. WGRS of Globe Mutant (late parent), late-flowering, and early-flowering bulks (from RILs) has generated 1124.57, 1052.24 million raw and clean reads, respectively. The QTL-Seq identified three QTLs (LcqDTF3.1, LcqDTF3.2, and LcqDTF3.3) on chromosome 3 having 246244 SNPs and 15577 insertions/deletions (InDels) and 13 flowering pathway genes. Of these, 11 exhibited sequence variations between bulks and validation (qPCR) revealed a significant difference in the expression of nine candidate genes (LcGA20oxG, LcFRI, LcLFY, LcSPL13a, Lcu.2RBY.3g060720, Lcu.2RBY.3g062540, Lcu.2RBY.3g062760, LcELF3a, and LcEMF1). Interestingly, the LcELF3a gene showed significantly higher expression in late-flowering genotype and exhibited substantial involvement in promoting lateness. Subsequently, an InDel marker (I-SP-383.9; LcELF3a gene) developed from LcqDTF3.2 QTL region showed 82.35% PVE (phenotypic variation explained) for earliness. The cloning, sequencing, and comparative analysis of the LcELF3a gene from both parents revealed 23 SNPs and InDels. Interestingly, a 52 bp deletion was recorded in the LcELF3a gene of L4775, predicted to cause premature termination of protein synthesis after 4 missense amino acids beyond the 351st amino acid due to the frameshift during translation. The identified InDel marker holds significant potential for breeding early maturing lentil varieties.

7.
Viruses ; 16(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38932109

ABSTRACT

Climate change, unpredictable weather patterns, and droughts are depleting water resources in some parts of the globe, where recycling and reusing wastewater is a strategy for different purposes. To counteract this, the EU regulation for water reuse sets minimum requirements for the use of reclaimed water for agricultural irrigation, including a reduction in human enteric viruses. In the present study, the occurrence of several human enteric viruses, including the human norovirus genogroup I (HuNoV GI), HuNoV GII, and rotavirus (RV), along with viral fecal contamination indicator crAssphage was monitored by using (RT)-qPCR methods on influent wastewater and reclaimed water samples. Moreover, the level of somatic coliphages was also determined as a culturable viral indicator. To assess the potential viral infectivity, an optimization of a capsid integrity PMAxx-RT-qPCR method was performed on sewage samples. Somatic coliphages were present in 60% of the reclaimed water samples, indicating inefficient virus inactivation. Following PMAxx-RT-qPCR optimization, 66% of the samples tested positive for at least one of the analyzed enteric viruses, with concentrations ranging from 2.79 to 7.30 Log10 genome copies (gc)/L. Overall, most of the analyzed reclaimed water samples did not comply with current EU legislation and contained potential infectious viral particles.


Subject(s)
Sewage , Wastewater , Wastewater/virology , Sewage/virology , Humans , Capsid , Coliphages/isolation & purification , Coliphages/genetics , Coliphages/classification , Rotavirus/genetics , Rotavirus/isolation & purification , Norovirus/isolation & purification , Norovirus/genetics , Water Microbiology , Real-Time Polymerase Chain Reaction , Feces/virology , Enterovirus/isolation & purification , Enterovirus/genetics , Enterovirus/classification , Capsid Proteins/genetics
8.
J Extracell Biol ; 3(1): e136, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38938675

ABSTRACT

Urinary extracellular vesicles (uEVs) are rich in valuable biomolecule information which are increasingly recognized as potential biomarkers for various diseases. uEV long RNAs are among the critical cargos capable of providing unique transcriptome information of the source cells. However, consensus regarding ideal reference genes for relative long RNAs quantification in uEVs is not available as of date. Here we explored stable reference genes through profiling the long RNA expression by RNA-seq following unsupervised analysis and validation studies. Candidate reference genes were identified using four algorithms: NormFinder, GeNorm, BestKeeper and the Delta Ct method, followed by validation. RNA profile showed uEVs contained abundant long RNAs information and the core transcriptome was related to cellular structures, especially ribosome which functions mainly as translation, protein and RNA binding molecules. Analysis of RNA-seq data identified RPL18A, RPL11, RPL27, RACK1, RPSA, RPL41, H1-2, RPL4, GAPDH, RPS27A as candidate reference genes. RT-qPCR validation revealed that RPL41, RPSA and RPL18A were reliable reference genes for long RNA quantification in uEVs from patients with diabetes mellitus (DM), diabetic nephropathy (DN), IgA nephropathy (IgAN) and prostate cancer (PCA). Interestingly, RPL41 also outperformed traditional reference genes in renal tissues of DN and IgAN, as well as in plasma EVs of several types of cancers. The stable reference genes identified in this study may facilitate development of uEVs as novel biomarkers and increase the accuracy and comparability of biomarker studies.

9.
Water Res ; 260: 121927, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38941866

ABSTRACT

Waterborne pathogens are threatening public health globally, but profiling multiple human pathogenic bacteria (HPBs) in various polluted environments is still a challenge due to the absence of rapid, high-throughput and accurate quantification tools. This work developed a novel chip, termed the HPB-Chip, based on high-throughput quantitative polymerase chain reactions (HT-qPCR). The HPB-Chip with 33-nL reaction volume could simultaneously complete 10,752 amplification reactions, quantifying 27 HPBs in up to 192 samples with two technical replicates (including those for generating standard curves). Specific positive bands of target genes across different species and single peak melting curves demonstrated high specificity of the HPB-Chip. The mixed plasmid serial dilution test validated its high sensitivity with the limit of quantification (LoD) of averaged 82 copies per reaction for 25 target genes. PCR amplification efficiencies and R2 coefficients of standard curves of the HPB-Chip averaged 101 % and 0.996, respectively. Moreover, a strong positive correlation (Pearson' r: 0.961-0.994, P < 0.001) of HPB concentrations (log10 copies/L) between HPB-Chip and conventional qPCR demonstrated high accuracy of the HPB-Chip. Subsequently, the HPB-Chip has been successfully applied to absolutely quantify 27 HPBs in municipal and hospital wastewater treatment plants (WWTPs) after PMA treatment. A total of 17 HPBs were detected in the 6 full-scale WWTPs, with an additional 19 in the hospital WWTP. Remarkably, Acinetobacter baumannii, Legionella pneumophila, and Arcobacter butzler were present in the final effluent of each municipal WWTP. Overall, the HPB-Chip is an efficient and accurate high-throughput quantification tool to comprehensively and rapidly quantify 27 HPBs in the environment.

10.
Pathogens ; 13(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38921767

ABSTRACT

Oropouche orthobunyavirus (OROV) is an arbovirus transmitted by midges that has been involved in outbreaks throughout Central and South America. In Brazil, human cases have been historically concentrated in the northern region of the country. Oropouche fever in humans range from mild clinical signs to rare neurological events, and is considered a neglected tropical disease in Brazil. Due to the clinical similarities to other arboviruses, such as chikungunya and dengue viruses, OROV infections are likely to be underreported. Chikungunya virus (CHIKV) cases in Brazil were first recognized in 2014 in the states of Amapá and Bahia in the north and northeast regions, respectively. Both OROV and CHIKV cause nonspecific symptoms, making clinical diagnosis difficult in a scenario of arbovirus cocirculation. Aiming to investigate OROV transmission during the CHIKV introduction in the state of Amapá located in the Brazilian Amazon, we conducted a retrospective molecular (RT-qPCR) and serological investigation in febrile cases (N = 166) collected between August 2014 and May 2015. All acute serum samples were negative for OROV RNA using RT-qPCR. However, neutralizing antibodies for OROV were detected using a plaque reduction neutralization test (PRNT90) in 10.24% (17/166) of the patients, with neutralizing antibody titers ranging from 20 to ≥640, suggesting the previous exposure of patients to OROV. Regarding CHIKV, recent exposure was confirmed by the detection of CHIKV RNA in 20.25% (33/163) of the patients and by the detection of anti-CHIKV IgM in 28.57% (44/154) of the patients. The additional detection of anti-CHIKV IgG in 12.58% (19/151) of the febrile patients suggests that some individuals had been previously exposed to CHIKV. Whether the OROV exposure reported here occurred prior or during the CHIKV circulation in Amapá, is unknown, but because those arboviral infections share similar clinical signs and symptoms, a silent circulation of enzootic arboviruses during the introduction of exotic arboviruses may occur, and highlights the importance of syndromic cases' surveillance to arboviruses in Brazil.

11.
Diagnostics (Basel) ; 14(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928623

ABSTRACT

There is a significant need to develop new environmentally friendly, extraction-free sample collection mediums that can effectively preserve and protect genetic material for point-of-care and/or self-collection, home-collection, and mail-back testing. Systematic evolution of ligands by exponential enrichment (SELEX) was used to create anti-ribonuclease (RNase) deoxyribonucleic acid (DNA) aptamers against purified RNase A conjugated to paramagnetic carboxylated beads. Following eight rounds of SELEX carried out under various stringency conditions, e.g., selection using Xtract-Free™ (XF) specimen collection medium and elevated ambient temperature of 28 °C, a panel of five aptamers was chosen following bioinformatic analysis using next-generation sequencing. The efficacy of aptamer inactivation of RNase was assessed by monitoring ribonucleic acid (RNA) integrity via fluorometric and real-time RT-PCR analysis. Inclusion of aptamers in reaction incubations resulted in an 8800- to 11,200-fold reduction in RNase activity, i.e., digestion of viral RNA compared to control. Thus, anti-RNase aptamers integrated into XF collection medium as well as other commercial reagents and kits have great potential for ensuring quality intact RNA for subsequent genomic analyses.

12.
Foods ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928862

ABSTRACT

Even low levels of dairy propionic acid bacteria (dPAB) can cause cheese defects, resulting in severe economic losses for the producers of selected raw milk cheeses. Therefore, routine quality control of raw cheese milk for dPAB contamination is essential if propionic acid fermentation is undesired. Although knowledge of dPAB contamination of raw milk is important to understand cheese spoilage, long-term dPAB screening data are outdated, and studies taking into account different farm management parameters and their potential influence on dPAB levels are scarce. This study aims to provide insight into the dPAB levels of raw milk over time, to identify farm management factors that potentially influence dPAB levels, and to compare a cultural yeast extract lactate agar (YELA) and lithium glycerol agar (LGA) and a culture-independent method (qPCR) for dPAB quantification with respect to their applicability in routine quality control for the dairy industry. For this purpose, bulk tank milk from 25 dairy farms was screened for dPAB contamination over a one-year period. We were able to identify significant differences in the dPAB contamination levels in raw milk depending on selected farm-specific factors and observed relationships between the different types of milking systems and dPAB contamination levels in raw milk. When dPAB were quantified by cultivation on YELA, strong overgrowth of commensal microbiota impeded counting. Therefore, we conclude that quantification on LGA or by qPCR is preferable. Both methods, colony counting on LGA as well as quantification of dPAB using qPCR, have advantages for the application in (routine) quality control of raw milk, one being low-tech and inexpensive, the other being fast and highly specific, but the detection of (low level) dPAB contamination in raw milk remains a challenge.

13.
Microorganisms ; 12(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38930487

ABSTRACT

Verifying the inclusivity of molecular detection methods gives indications about the reliability of viral infection diagnosis because of the tendency of viral pathogens to undergo sequence variation. This study was aimed at selecting inclusive probes based on reverse transcription-quantitative PCR (RT-qPCR) assays for the diagnosis of the most widespread and detrimental viruses infecting honeybees, namely the acute bee paralysis virus (ABPV), the black queen cell virus (BQCV), the chronic paralysis bee virus (CBPV), the deformed wing virus variants A (DWVA) and B (DWVB), and the sacbrood virus (SBV). Therefore, previously described detection methods were re-evaluated in silico for their specificity and inclusivity. Based on this evaluation, selected methods were modified, or new ones were designed and tested in duplex RT-qPCR reactions. The limits of detection (LODs), effect of multiplexing on sensitivity and the viral RNA quantification potential in bees and hive debris were assessed. This study made available diagnostic assays able to detect an increased number of virus variants compared with previously described tests and two viral pathogens in a single PCR reaction.

14.
Microorganisms ; 12(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930586

ABSTRACT

The pandemic of Southern rice black-streaked dwarf virus (SRBSDV) in and after the late 2000s caused serious yield losses in rice in Southeast and East Asia. This virus was first recorded in China in 2001, but its exclusive vector insect, Sogatella furcifera, occurred there before then. To clarify the evolutionary origin of SRBSDV as the first plant virus transmitted by S. furcifera, we tested virus transmission using three chronological strains of S. furcifera, two of which were established before the first report of SRBSDV. When the strains fed on SRBSDV-infected rice plants were transferred to healthy rice plants, those established in 1989 and 1999 transmitted the virus to rice similarly to the strain established in 2010. SRBSDV quantification by RT-qPCR confirmed virus accumulation in the salivary glands of all three strains. Therefore, SRBSDV transmission by S. furcifera was not caused by biological changes in the vector, but probably by the genetic change of the virus from a closely related Fijivirus, Rice black-streaked dwarf virus, as suggested by ecological and molecular biological comparisons between the two viruses. This result will help us to better understand the evolutionary relationship between plant viruses and their vector insects and to better manage viral disease in rice cropping in Asia.

15.
Microorganisms ; 12(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930605

ABSTRACT

In this study, we designed and validated in silico and experimentally a rapid, sensitive, and specific multiplex RT qPCR for the detection and quantification of faecal indicator bacteria (FIB) used as microbiological references in marine bathing water regulations (Escherichia coli and intestinal enterococci). The 16S rRNA gene was used to quantify group-specific enterococci and Escherichia/Shigella and species-specific such as Enterococcus faecalis and E. faecium. Additionally, a ybbW gene encoding allantoin transporter protein was used to detect E. coli. An assessment of marine coastal systems (i.e., marine water and sediment) revealed that intestinal enterococci were the predominant group compared to Escherichia/Shigella. The low contribution of E. faecalis to the intestinal enterococci group was reported. As E. faecalis and E. faecium were reported at low concentrations, it is assumed that other enterococci of faecal origin are contributing to the high gene copy number of this group-specific enterococci. Moreover, low 16S rRNA gene copy numbers with respect to E. faecalis and E. faecium were reported in seawater compared to marine sediment. We conclude that marine sediments can affect the quantification of FIBs included in bathing water regulations. Valuing the quality of the marine coastal system through sediment monitoring is recommended.

16.
Article in English | MEDLINE | ID: mdl-38876439

ABSTRACT

External and internal factors are involved in controlling the growth of fishes. However, little is known about the mechanisms by which external factors trigger stimulus signals. This study explored the physiological roles of melatonin in the transcription of growth-related genes in the brain and liver of Chrysiptera cyanea, a tropical damselfish with long-day preference. In brain samples of this species collected at 4-h intervals, the transcript levels of arylalkylamine N-acetyltransferase2 (aanat2), the rate-limiting enzyme of melatonin synthesis, and growth hormone (gh) peaked at 20:00 and 00:00, respectively. Concomitantly, the transcript levels of insulin-like growth factors (igf1 and igf2) in the brain and liver were upregulated during the scotophase. Levels of iodothyronine deiodinases (dio2 and dio3), enzymes that convert thyroxine (T4) to triiodothyronine (T3) and reverse T3, respectively, increased in the brain (dio2 and dio3) and liver (dio2) during the photophase, whereas dio3 levels in the liver showed the opposite trend. Fish reared in melatonin-containing water exhibited significant increases in the transcription levels of gh and igf1 in the brain and igf1 in the liver, suggesting that growth in this fish is positively regulated by the GH/IGF pathway on a daily basis. Melatonin treatment also stimulated the transcript levels of dio2 and dio3 in the liver, but not in the brain. Fish consuming pellets containing T3, but not T4, showed significant increases in gh and igf1 in the brain and igf1 and igf2 in the liver, suggesting that the intercellular actions of the TH/IGF pathway have an impact on growth on a daily basis. In summary, IGF synthesis and action in the brain and liver undergo dual regulation by distinct hormone networks, which may also be affected by daily, seasonal, or nutritional factors.

17.
Gene ; 927: 148710, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901536

ABSTRACT

Copy number variations (CNVs) are key structural variations in the genome and may contribute to phenotypic differences. In this study, we used a F2 chicken population created from reciprocal crossing between fast-growing Arian broiler line and Urmia native chickens. The chickens were genotyped by 60 K SNP BeadChip, and PennCNV algorithm was used to detect genome-wide CNVs. The growth curve parameters of W0, k, L, Wf, Wi, ti and average GR were used as phenotypic data. The association between CNV and growth curve parameters was carried out using the CNVRanger R/Bioconductor package. Five CNV regions (CNVRs) were chosen for the validation experiment using qPCR. Gene enrichment analysis was done using WebGestalt. The STRING database was used to search for significant pathways. The results identified 966 CNVs and 600 CNVRs including 468 gains, 67 losses, and 65 both events on autosomal chromosomes. Validation of the CNVRs obtained from the qPCR assay were 79 % consistent with the prediction by PennCNV. A total of 43 significant CNVs were obtained for the seven growth curve parameters. The 416 genes annotated for significant CNVs. Six genes out of 416 genes were most related to growth curve parameters. These genes were LCP2, Dock2, CD80, CYFIP1, NIPA1 and NIPA2. Some of these genes in their biological process were associated with the growth, reproduction and development of cells or organs that ultimately lead to the growth of the body. The results of the study could pave the way for better understanding the molecular process of CNVs and growth curve parameters in birds.

18.
Genes (Basel) ; 15(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38927645

ABSTRACT

With the rapid development of gene therapy technology in recent years, its abuse as a method of sports doping in athletics has become a concern. However, there is still room for improvement in gene-doping testing methods, and a robust animal model needs to be developed. Therefore, the purposes of this study were to establish a model of gene doping using recombinant adeno-associated virus vector-9, including the human erythropoietin gene (rAAV9-hEPO), and to establish a relevant testing method. First, it was attempted to establish the model using rAAV9-hEPO on mice. The results showed a significant increase in erythrocyte volume accompanied by an increase in spleen weight, confirming the validity of the model. Next, we attempted to detect proof of gene doping by targeting DNA and RNA. Direct proof of gene doping was detected using a TaqMan-qPCR assay with certain primers/probes. In addition, some indirect proof was identified in RNAs through the combination of a TB Green qPCR assay with RNA sequencing. Taken together, these results could provide the foundation for an effective test for gene doping in human athletes in the future.


Subject(s)
Dependovirus , Doping in Sports , Erythropoietin , Genetic Vectors , Erythropoietin/genetics , Animals , Mice , Doping in Sports/methods , Dependovirus/genetics , Humans , Genetic Vectors/genetics , Male , Genetic Therapy/methods , Models, Animal
19.
Genes (Basel) ; 15(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38927683

ABSTRACT

Grapevine varieties from "Douro Superior" (NE Portugal) experience high temperatures, solar radiation, and water deficit during the summer. This summer's stressful growing conditions induce nucleic acids, lipids, and protein oxidation, which cause cellular, physiological, molecular, and biochemical changes. Cell cycle anomalies, mitosis delay, or cell death may occur at the cellular level, leading to reduced plant productivity. However, the foliar application of kaolin (KL) can mitigate the impact of abiotic stress by decreasing leaf temperature and enhancing antioxidant defence. Hence, this study hypothesised that KL-treated grapevine plants growing in NE Portugal would reveal, under summer stressful growing conditions, higher progression and stability of the leaf mitotic cell cycle than the untreated (control) plants. KL was applied after veraison for two years. Leaves, sampled 3 and 5 weeks later, were cytogenetically, molecularly, and biochemically analysed. Globally, integrating these multidisciplinary data confirmed the decreased leaf temperature and enhanced antioxidant defence of the KL-treated plants, accompanied by an improved regularity and completion of the leaf cell cycle relative to the control plants. Nevertheless, the KL efficacy was significantly influenced by the sampling date and/or variety. In sum, the achieved results confirmed the hypothesis initially proposed.


Subject(s)
Kaolin , Plant Leaves , Vitis , Vitis/genetics , Vitis/drug effects , Vitis/growth & development , Vitis/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Kaolin/pharmacology , Seasons , Stress, Physiological/drug effects , Cell Cycle/drug effects , Antioxidants/pharmacology
20.
Genes (Basel) ; 15(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38927680

ABSTRACT

DNA quantification is a crucial step in the STR typing workflow for human identification purposes. Given the reaction's nature, qPCR assays may be subjected to the same stochastic effects of traditional PCR for low-input concentrations. The study aims to evaluate the precision of the PowerQuant® (Promega) kit assay measurements and the degree of variability for DNA templates falling below the optimal threshold of the PowerPlex® ESX-17 Fast STR typing kit (Promega). Five three-fold dilutions of the 2800 M control DNA (Promega) were set up. Each dilution (concentrations: 0.05, 0.0167, 0.0055, 0.00185, and 0.000617 ng/µL) was quantified and amplified in four replicates. Variability for qPCR results, STR profile completeness, and EPGs' peak height were evaluated. The qPCR-estimated concentration of casework samples was correlated with profile completeness and peak intensity, to assess the predictive value of qPCR results for the successful STR typing of scarce samples. qPCR was subjected to stochastic effects, of which the degree was inversely proportional to the initial input template. Quantitation results and the STR profile's characteristics were strongly correlated. Due to the intrinsic nature of real casework samples, a qPCR-derived DNA concentration threshold for correctly identifying probative STR profiles may be difficult to establish. Quantitation data may be useful in interpreting and corroborating STR typing results and for clearly illustrating them to the stakeholders.


Subject(s)
Microsatellite Repeats , Real-Time Polymerase Chain Reaction , Humans , Microsatellite Repeats/genetics , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , DNA Fingerprinting/methods , Forensic Genetics/methods , DNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...