Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Ecol Evol ; 14(9): e11143, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39234161

ABSTRACT

Intracellular plant defense against pathogens is mediated by a class of disease resistance genes known as NB-LRRs or NLRs (R genes). Many of the diseases these genes protect against are more prevalent in regions of higher rainfall, which provide better growth conditions for the pathogens. As such, we expect a higher selective pressure for the maintenance and proliferation of R genes in plants adapted to wetter conditions. In this study, we enriched libraries for R genes using RenSeq from baits primarily developed from the common sunflower (Helianthus annuus) reference genome. We sequenced the R gene libraries of Silphium integrifolium Michx, a perennial relative of sunflower, from 12 prairie remnants across a rainfall gradient in the Central Plains of the United States, with both Illumina short-read (n = 99) and PacBio long-read (n = 10) approaches. We found a positive relationship between the mean effective annual precipitation of a plant's source prairie remnant and the number of R genes in its genome, consistent with intensity of plant pathogen coevolution increasing with precipitation. We show that RenSeq can be applied to the study of ecological hypotheses in non-model relatives of model organisms.

2.
Plant Cell Environ ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254418

ABSTRACT

Old trees are remarkable for their ability to endure for centuries or even millennia, acting as recordkeepers of historical climate and custodians of genetic diversity. The secret to their longevity has long been a subject of fascination. Despite the challenges associated with studying old trees, such as massive size, slow growth rate, long lifespan and often remote habitat, accumulating studies have investigated the mechanisms underlying tree aging and longevity over the past decade. The recent publication of high-quality genomes of long-lived tree species, coupled with research on stem cell function and secondary metabolites in longevity, has brought us closer to unlocking the secrets of arboreal longevity. This review provides an overview of the global distribution of old trees and examines the environmental and anthropogenic factors that shape their presence. We summarize the contributions of physiological characteristics, stem cell activity, and immune system responses to their extraordinary longevity. We also explore the genetic and epigenetic 'longevity code', which consists of resistance and defense genes, DNA repair genes and patterns of DNA methylation modification. Further, we highlight key areas for future research that could enhance our understanding of the mechanisms underlying tree longevity.

3.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-39190925

ABSTRACT

BACKGROUND: The Papilionoideae subfamily contains a large amount of underutilized legume crops, which are important for food security and human sustainability. However, the lack of genomic resources has hindered the breeding and utilization of these crops. RESULTS: Here, we present chromosome-level reference genomes for 5 underutilized diploid Papilionoideae crops: sword bean (Canavalia gladiata), scarlet runner bean (Phaseolus coccineus), winged bean (Psophocarpus tetragonolobus), smooth rattlebox (Crotalaria pallida), and butterfly pea (Clitoria ternatea), with assembled genome sizes of 0.62 Gb, 0.59 Gb, 0.71 Gb, 1.22 Gb, and 1.72 Gb, respectively. We found that the long period of higher long terminal repeat retrotransposon activity is the major reason that the genome size of smooth rattlebox and butterfly pea is enlarged. Additionally, there have been no recent whole-genome duplication (WGD) events in these 5 species except for the shared papilionoid-specific WGD event (∼55 million years ago). Then, we identified 5,328 and 10,434 species-specific genes between scarlet runner bean and common bean, respectively, which may be responsible for their phenotypic and functional differences and species-specific functions. Furthermore, we identified the key genes involved in root-nodule symbiosis (RNS) in all 5 species and found that the NIN gene was duplicated in the early Papilionoideae ancestor, followed by the loss of 1 gene copy in smooth rattlebox and butterfly pea lineages. Last, we identified the resistance (R) genes for plant defenses in these 5 species and characterized their evolutionary history. CONCLUSIONS: In summary, this study provides chromosome-scale reference genomes for 3 grain and vegetable beans (sword bean, scarlet runner bean, winged bean), along with genomes for a green manure crop (smooth rattlebox) and a food dyeing crop (butterfly pea). These genomes are crucial for studying phylogenetic history, unraveling nitrogen-fixing RNS evolution, and advancing plant defense research.


Subject(s)
Crops, Agricultural , Disease Resistance , Genome, Plant , Plant Root Nodulation , Crops, Agricultural/genetics , Disease Resistance/genetics , Plant Root Nodulation/genetics , Fabaceae/genetics , Phylogeny , Plant Diseases/genetics , Genome Size , Genomics/methods
4.
Plant Cell Environ ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973616

ABSTRACT

Plant resistance (R) genes play a crucial role in the detection of effector proteins secreted by pathogens, either directly or indirectly, as well as in the subsequent activation of downstream defence mechanisms. However, little is known about how R genes regulate the defence responses of conifers, particularly Pinus massoniana, against the destructive pine wood nematode (PWN; Bursaphelenchus xylophilus). Here, we isolated and characterised PmHs1pro-1, a nematode-resistance gene of P. massoniana, using bioinformatics, molecular biology, histochemistry and transgenesis. Tissue-specific expressional pattern and localisation of PmHs1pro-1 suggested that it was a crucial positive regulator in response to PWN attack in resistant P. massoniana. Meanwhile, overexpression of PmHs1pro-1 was found to activate reactive oxygen species (ROS) metabolism-related enzymes and the expressional level of their key genes, including superoxide dismutase, peroxidase and catalase. In addition, we showed that PmHs1pro-1 directly recognised the effector protein BxSCD1of PWN, and induced the ROS burst responding to PWN invasion in resistant P. massoniana. Our findings illustrated the molecular framework of R genes directly recognising the effector protein of pathology in pine, which offered a novel insight into the plant-pathogen arms race.

5.
Front Plant Sci ; 15: 1384431, 2024.
Article in English | MEDLINE | ID: mdl-38751834

ABSTRACT

Vascular wilt disease, caused by the soil-borne fungus Fusarium oxysporum (Fo), poses a threat to many crop species. Four different tomato resistance (R) genes (I-1, I-2, I-3, and I-7) have been identified to confer protection against Fo f.sp. lycopersici (Fol). These I genes are root-expressed and mount an immune response upon perception of the invading fungus. Despite immune activation, Fol is still able to colonize the xylem vessels of resistant tomato lines. Yet, the fungus remains localized in the vessels and does not colonize adjacent tissues or cause disease. The molecular mechanism constraining Fol in the vascular system of the stem remains unclear. We here demonstrate that an I-2-resistant rootstock protects a susceptible scion from Fusarium wilt, notwithstanding fungal colonization of the susceptible scion. Proteomic analyses revealed the presence of fungal effectors in the xylem sap of infected plants, showing that the lack of fungal pathogenicity is not due to its inability to express its virulence genes. To identify mobile root-derived proteins, potentially involved in controlling fungal proliferation, comparative xylem sap proteomics was performed. We identified distinct pathogenesis-related (PR) protein profiles in xylem sap from Fol-inoculated I-1, I-2, I-3, and I-7 resistant lines. Despite structural diversity, all four immune receptors trigger the accumulation of a common set of four PR proteins: PR-5x, PR-P2, and two glucan endo-1,3-ß-D-glucosidases. This research provides insights into Fusarium resistance mechanisms and identifies a core set of proteins whose abundance correlates with defense against Fusarium wilt.

6.
Vavilovskii Zhurnal Genet Selektsii ; 28(2): 175-184, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38680181

ABSTRACT

Pathogen recognition receptors encoded by R genes play a key role in plant protection. Nowadays, R genes are a basis for breeding many crops, including potato. Many potato R genes have been discovered and found suitable for breeding thanks to the studies of a wide variety of wild potato species. The use of primitive cultivated potato species (PCPS) as representatives of the primary gene pool can also be promising in this respect. PCPS are the closest to the early domesticated forms of potato; therefore, their investigation could help understand the evolution of R genes. The present study was aimed at identifying and analyzing R genes in PCPS listed in the open database of NCBI and Solomics DB. In total, the study involved 27 accessions belonging to three species: Solanum phureja Juz. & Bukasov, S. stenotomum Juz. & Bukasov and S. goniocalyx Juz. & Bukasov Materials for the analysis were the sequencing data for the said three species from the PRJNA394943 and PRJCA006011 projects. An in silico search was carried out for sequences homologous to 26 R genes identified in potato species differing in phylogenetic distance from PCPS, namely nightshade (S. americanum), North- (S. bulbocastanum, S. demissum) and South-American (S. venturii, S. berthaultii) wild potato species, as well as the cultivated potato species S. tuberosum and S. andigenum. Homologs of all investigated protein-coding sequences were discovered in PCPS with a relatively high degree of similarity (85-100 %). Homologs of the Rpi-R3b, Rpi-amr3 and Rpi-ber1 genes have been identified in PCPS for the first time. An analysis of polymorphism of nucleotide and amino acid sequences has been carried out for 15 R genes. The differences in frequencies of substitutions in PCPS have been demonstrated by analysis of R genes, the reference sequences of which have been identified in different species. For all the studied NBS-LRR genes, the proportion of substituted amino acids in the LRR domain exceeds this figure for the NBS domain. The potential prospects of using PCPS as sources of resistance to Verticillium wilt have been shown.

7.
Front Plant Sci ; 15: 1365989, 2024.
Article in English | MEDLINE | ID: mdl-38633460

ABSTRACT

Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is a widespread and destructive disease in rice production. Previously, we cloned an executor R gene, Xa7, which confers durable and broad-spectrum resistance to BB. Here, we further confirmed that the transcription activator-like effector (TALE) AvrXa7 in Xoo strains could directly bind to the effector-binding element (EBE) in the promoter of the Xa7 gene. Other executor R genes (Xa7, Xa10, Xa23, and Xa27) driven by the promoter of the Xa7 gene could be activated by AvrXa7 and trigger the hypersensitive response (HR) in tobacco leaves. When the expression of the Xa23 gene was driven by the Xa7 promoter, the transgenic rice plants displayed a similar resistance spectrum as the Xa7 gene, demonstrating that the disease resistance characteristics of executor R genes are mainly determined by their induction patterns. Xa7 gene is induced locally by Xoo in the infected leaves, and its induction not only inhibited the growth of incompatible strains but also enhanced the resistance of rice plants to compatible strains, which overcame the shortcomings of its race-specific resistance. Transcriptome analysis of the Xa7 gene constitutive expression in rice plants displayed that Xa7-mediated disease resistance was related to the biosynthesis of lignin and thus enhanced resistance to Xoo. Overall, our results provided novel insights and important resources for further clarifying the molecular mechanisms of the executor R genes.

8.
Adv Virus Res ; 118: 77-212, 2024.
Article in English | MEDLINE | ID: mdl-38461031

ABSTRACT

Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.


Subject(s)
Plant Growth Regulators , Plant Immunity , Plant Immunity/genetics , Plant Growth Regulators/metabolism , Plants , Signal Transduction , Plant Diseases/genetics
9.
Plant Biotechnol J ; 22(2): 296-315, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37883664

ABSTRACT

Soybean rust (SBR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is a devastating foliar disease threatening soybean production. To date, no commercial cultivars conferring durable resistance to SBR are available. The development of long-lasting SBR resistance has been hindered by the lack of understanding of this complex pathosystem, encompassing challenges posed by intricate genetic structures in both the host and pathogen, leading to a gap in the knowledge of gene-for-gene interactions between soybean and P. pachyrhizi. In this review, we focus on recent advancements and emerging technologies that can be used to improve our understanding of the P. pachyrhizi-soybean molecular interactions. We further explore approaches used to combat SBR, including conventional breeding, transgenic approaches and RNA interference, and how advances in our understanding of plant immune networks, the availability of new molecular tools, and the recent sequencing of the P. pachyrhizi genome could be used to aid in the development of better genetic resistance against SBR. Lastly, we discuss the research gaps of this pathosystem and how new technologies can be used to shed light on these questions and to develop durable next-generation SBR-resistant soybean plants.


Subject(s)
Basidiomycota , Phakopsora pachyrhizi , Phakopsora pachyrhizi/genetics , Glycine max/genetics , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology
10.
Phytopathology ; : PHYTO07230247R, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-37889164

ABSTRACT

Northern corn leaf blight, caused by Exserohilum turcicum, is mainly controlled by the use of resistant cultivars. Maize lines carrying individual resistance genes B37Ht1, B37Ht2, B37Ht3, and B37Htn1 express different defense symptoms having an impact on the photosynthetic activity, the accumulation of reactive oxygen species, and epidemiological parameters. Plants were inoculated with a race 0 isolate of E. turcicum conferring a compatible interaction with B37 and incompatible interactions with plants carrying resistance genes. Five days postinoculation (dpi), the resistant lines displayed a reduction in leaf CO2 assimilation of 30 to 80% compared with healthy plants. At 14 dpi, inoculated plants of B37Ht1 showed a significant decrease in leaf CO2 assimilation, similar to B37 (up to 94%). The instantaneous carboxylation efficiency was significantly reduced on inoculated plants of the lines B37Ht2, B37Ht3, and B37Htn1 (54 to 81%) at 5 dpi. Curiously, the reduction in carboxylation efficiency for B37 and B37Ht1 (up to 95%) was higher at 14 dpi than at 5 dpi (up to 81%). At 6 dpi, low levels of H2O2 were detected in B37Ht1, in contrast to B37Htn1, where a high H2O2 level and peroxidase activity were observed. The sporulation rate on B37Ht1, B37Ht3, and B37Htn1 decreased by 92% compared with the susceptible control, whereas strong sporulation occurred in lesions on line B37Ht2. The resistance in maize to E. turcicum conferred by Ht resistance genes is associated with photosynthetic costs and may have quite contrasting effects on host physiology and major epidemiological parameters, such as sporulation, which contributes inoculum for secondary infections.

11.
Trends Plant Sci ; 29(3): 278-282, 2024 03.
Article in English | MEDLINE | ID: mdl-38016865

ABSTRACT

Resistance (R) genes in the Triticeae tribe include not only genes encoding the canonical intracellular nucleotide-binding leucine-rich-repeat proteins (NLRs) but also genes encoding kinase fusion proteins (KFPs). Exploring these unconventional KFPs may expand the scope of effector-triggered immunity (ETI) and will have significant implications for crop improvement.


Subject(s)
NLR Proteins , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , NLR Proteins/genetics , NLR Proteins/metabolism , Plant Immunity/genetics , Plant Diseases
12.
Plants (Basel) ; 12(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37765410

ABSTRACT

Stylosanthes scabra is a scientifically orphaned legume found in the Brazilian Caatinga biome (a semi-arid environment). This work utilized omics approaches to investigate some ecophysiological aspects of stress tolerance/resistance in S. scabra, study its genomic landscape, and predict potential metabolic pathways. Considering its high-confidence conceptual proteome, 1694 (~2.6%) proteins were associated with resistance proteins, some of which were found in soybean QTL regions that confer resistance to Asian soybean rust. S. scabra was also found to be a potential source of terpenes, as biosynthetic gene clusters associated with terpene biosynthesis were identified in its genome. The analysis revealed that mobile elements comprised approximately 59% of the sequenced genome. In the remaining 41% of the sections, some of the 22,681 protein-coding gene families were categorized into two informational groups: those that were specific to S. scabra and those that expanded significantly compared to their immediate ancestor. Biological process enrichment analyses indicated that these gene families play fundamental roles in the adaptation of S. scabra to extreme environments. Additionally, phylogenomic analysis indicated a close evolutionary relationship between the genera Stylosanthes and Arachis. Finally, this study found a high number (57) of aquaporin-encoding loci in the S. scabra genome. RNA-Seq and qPCR data suggested that the PIP subfamily may play a key role in the species' adaptation to water deficit conditions. Overall, these results provide valuable insights into S. scabra biology and a wealth of gene/transcript information for future legume omics studies.

13.
J Exp Bot ; 74(19): 6052-6068, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37449766

ABSTRACT

Plants use different receptors to detect potential pathogens: membrane-anchored pattern recognition receptors (PRRs) activated upon perception of pathogen-associated molecular patterns (PAMPs) that elicit pattern-triggered immunity (PTI); and intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) activated by detection of pathogen-derived effectors, activating effector-triggered immunity (ETI). The interconnections between PTI and ETI responses have been increasingly reported. Elevated NLR levels may cause autoimmunity, with symptoms ranging from fitness cost to developmental arrest, sometimes combined with run-away cell death, making accurate control of NLR dosage key for plant survival. Small RNA-mediated gene regulation has emerged as a major mechanism of control of NLR dosage. Twenty-two nucleotide miRNAs with the unique ability to trigger secondary siRNA production from target transcripts are particularly prevalent in NLR regulation. They enhance repression of the primary NLR target, but also bring about repression of NLRs only complementary to secondary siRNAs. We summarize current knowledge on miRNAs and siRNAs in the regulation of NLR expression with an emphasis on 22 nt miRNAs and propose that miRNA and siRNA regulation of NLR levels provides additional links between PTI and NLR defense pathways to increase plant responsiveness against a broad spectrum of pathogens and control an efficient deployment of defenses.


Subject(s)
MicroRNAs , Plant Immunity , Plant Immunity/genetics , Plants/metabolism , MicroRNAs/genetics , RNA, Small Interfering/genetics , Nucleotides , Plant Diseases , NLR Proteins/genetics
14.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446029

ABSTRACT

Crown rot, caused by Phytophthora cactorum, is a devastating disease of strawberry. While most commercial octoploid strawberry cultivars (Fragaria × ananassa Duch) are generally susceptible, the diploid species Fragaria vesca is a potential source of resistance genes to P. cactorum. We previously reported several F. vesca genotypes with varying degrees of resistance to P. cactorum. To gain insights into the strawberry defence mechanisms, comparative transcriptome profiles of two resistant genotypes (NCGR1603 and Bukammen) and a susceptible genotype (NCGR1218) of F. vesca were analysed by RNA-Seq after wounding and subsequent inoculation with P. cactorum. Differential gene expression analysis identified several defence-related genes that are highly expressed in the resistant genotypes relative to the susceptible genotype in response to P. cactorum after wounding. These included putative disease resistance (R) genes encoding receptor-like proteins, receptor-like kinases, nucleotide-binding sites, leucine-rich repeat proteins, RPW8-type disease resistance proteins, and 'pathogenesis-related protein 1'. Seven of these R-genes were expressed only in the resistant genotypes and not in the susceptible genotype, and these appeared to be present only in the genomes of the resistant genotypes, as confirmed by PCR analysis. We previously reported a single major gene locus RPc-1 (Resistance to Phytophthora cactorum 1) in F. vesca that contributed resistance to P. cactorum. Here, we report that 4-5% of the genes (35-38 of ca 800 genes) in the RPc-1 locus are differentially expressed in the resistant genotypes compared to the susceptible genotype after inoculation with P. cactorum. In particular, we identified three defence-related genes encoding wall-associated receptor-like kinase 3, receptor-like protein 12, and non-specific lipid-transfer protein 1-like that were highly expressed in the resistant genotypes compared to the susceptible one. The present study reports several novel candidate disease resistance genes that warrant further investigation for their role in plant defence against P. cactorum.


Subject(s)
Fragaria , Phytophthora , Transcriptome , Fragaria/genetics , Phytophthora/genetics , Disease Resistance/genetics , Gene Expression Profiling
15.
Plants (Basel) ; 12(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37447014

ABSTRACT

Modern plant pathology relies on bioinformatics approaches to create novel plant disease diagnostic tools. In recent years, a significant amount of biological data has been generated due to rapid developments in genomics and molecular biology techniques. The progress in the sequencing of agriculturally important crops has made it possible to develop a better understanding of plant-pathogen interactions and plant resistance. The availability of host-pathogen genome data offers effective assistance in retrieving, annotating, analyzing, and identifying the functional aspects for characterization at the gene and genome levels. Physical mapping facilitates the identification and isolation of several candidate resistance (R) genes from diverse plant species. A large number of genetic variations, such as disease-causing mutations in the genome, have been identified and characterized using bioinformatics tools, and these desirable mutations were exploited to develop disease resistance. Moreover, crop genome editing tools, namely the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 (CRISPR-associated) system, offer novel and efficient strategies for developing durable resistance. This review paper describes some aspects concerning the databases, tools, and techniques used to characterize resistance (R) genes for plant disease management.

16.
Phytopathology ; 113(10): 2006-2013, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37260102

ABSTRACT

Two infectious clones of turnip mosaic virus (TuMV), pKBC-1 and pKBC-8, with differential infectivity in Chinese cabbage (Brassica rapa subsp. pekinensis), were obtained. Both infected Nicotiana benthamiana systemically, inducing similar symptoms, whereas only virus KBC-8 infected Chinese cabbage systemically. To identify the determinants affecting infectivity on Chinese cabbage, chimeric clones were constructed by restriction fragment exchange between the parental clones and tested on several Chinese cabbage cultivars. Chimeric clones p1N8C and p8N1C demonstrated that the C-terminal portion of the polyprotein determines systemic infection of Chinese cabbage despite only three amino acid differences in this region, in the cylindrical inclusion (CI), viral protein genome-linked (VPg), and coat protein (CP). A second pair of hybrid constructs, pHindIII-1N8C and pHindIII-8N1C, failed to infect cultivars CR Victory and Jinseonnorang systemically, yet pHindIII-1N8C caused hypersensitive response-like lesions on inoculated leaves of these cultivars, and could systemically infect cultivars CR Chusarang and Jeongsang; this suggests that R genes effective against TuMV may exist in the first two cultivars but not the latter two. Constructs with single amino acid changes in both VPg (K2045E) and CP (Y3095H) failed to infect Chinese cabbage, implying that at least one of these two amino acid substitutions is essential for successful infection on Chinese cabbage. Successful infection by mutant KBC-8-CP-H and delayed infection with mutant HJY1-VPg-E following mutation or reversion suggested that VPg (2045K) is the residue required for infection of Chinese cabbage and involved in the interaction between VPg and eukaryotic initiation factor eIF(iso)4E, confirmed by yeast two-hybrid assay.


Subject(s)
Brassica , Potyvirus , Amino Acids/metabolism , Plant Diseases , Potyvirus/genetics
17.
BMC Plant Biol ; 23(1): 332, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349684

ABSTRACT

BACKGROUND: Bacterial leaf blight (BLB) is a highly destructive disease, causing significant yield losses in rice (Oryza sativa). Genetic variation is contemplated as the most effective measure for inducing resistance in plants. The mutant line T1247 derived from R3550 (BLB susceptible) was highly resistant to BLB. Therefore, by utilizing this valuable source, we employed bulk segregant analysis (BSA) and transcriptome profiling to identify the genetic basis of BLB resistance in T1247. RESULTS: The differential subtraction method in BSA identified a quantitative trait locus (QTL) on chromosome 11 spanning a 27-27.45 Mb region with 33 genes and 4 differentially expressed genes (DEGs). Four DEGs (P < 0.01) with three putative candidate genes, OsR498G1120557200, OsR498G1120555700, and OsR498G1120563600,0.01 in the QTL region were identified with specific regulation as a response to BLB inoculation. Moreover, transcriptome profiling identified 37 resistance analogs genes displaying differential regulation. CONCLUSIONS: Our study provides a substantial addition to the available information regarding QTLs associated with BLB, and further functional verification of identified candidate genes can broaden the scope of understanding the BLB resistance mechanism in rice.


Subject(s)
Oryza , Oryza/genetics , Oryza/microbiology , Transcriptome , Quantitative Trait Loci/genetics , Gene Expression Profiling , Metabolomics , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
18.
Mol Plant Pathol ; 24(10): 1287-1299, 2023 10.
Article in English | MEDLINE | ID: mdl-37366340

ABSTRACT

Glomerella leaf spot (GLS), caused by the fungal pathogen Colletotrichum fructicola, significantly threatens apple production. Some resistances to plant disease are mediated by the accumulation of nucleotide-binding site and leucine-rich repeat (NBS-LRR) proteins that are encoded by a major class of plant disease resistance genes (R genes). However, the R genes that confer resistance to GLS in apple remain largely unclear. Malus hupehensis YT521-B homology domain-containing protein 2 (MhYTP2) was identified as an N6 -methyladenosine RNA methylation (m6 A) modified RNA reader in our previous study. However, whether MhYTP2 binds to mRNAs without m6 A RNA modifications remains unknown. In this study, we discovered that MhYTP2 exerts both m6 A-dependent and -independent functions by analysing previously obtained RNA immunoprecipitation sequencing results. The overexpression of MhYTP2 significantly reduced the resistance of apple to GLS and down-regulated the transcript levels of some R genes whose transcripts do not contain m6 A modifications. Further analysis indicated that MhYTP2 binds to and reduces the stability of MdRGA2L mRNA. MdRGA2L positively regulates resistance to GLS by activating salicylic acid signalling. Our findings revealed that MhYTP2 plays an essential role in the regulation of resistance to GLS and identified a promising R gene, MdRGA2L, for use in developing apple cultivars with GLS resistance.


Subject(s)
Malus , Phyllachorales , Phyllachorales/genetics , Phyllachorales/metabolism , Malus/microbiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Base Sequence , Signal Transduction , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
19.
Viruses ; 15(4)2023 03 30.
Article in English | MEDLINE | ID: mdl-37112870

ABSTRACT

African swine fever (ASF) is an acute infectious disease of domestic pigs and wild boars caused by the African swine fever virus (ASFV), with up to a 100% case fatality rate. The development of a vaccine for ASFV is hampered by the fact that the function of many genes in the ASFV genome still needs to be discovered. In this study, the previously unreported E111R gene was analyzed and identified as an early-expressed gene that is highly conserved across the different genotypes of ASFV. To further explore the function of the E111R gene, a recombinant strain, SY18ΔE111R, was constructed by deleting the E111R gene of the lethal ASFV SY18 strain. In vitro, the replication kinetics of SY18ΔE111R with deletion of the E111R gene were consistent with those of the parental strain. In vivo, high-dose SY18ΔE111R (105.0 TCID50), administered intramuscularly to pigs, caused the same clinical signs and viremia as the parental strain (102.0 TCID50), with all pigs dying on days 8-11. After being infected with a low dose of SY18ΔE111R (102.0 TCID50) intramuscularly, pigs showed a later onset of disease and 60% mortality, changing from acute to subacute infection. In summary, deletion of the E111R gene has a negligible effect on the lethality of ASFV and does not affect the viruses' ability to replicate, suggesting that E111R could not be the priority target of ASFV live-attenuated vaccine candidates.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , Virulence/genetics , Gene Deletion , Viral Proteins/genetics , Sus scrofa , Virus Replication
20.
Genes (Basel) ; 14(2)2023 01 31.
Article in English | MEDLINE | ID: mdl-36833304

ABSTRACT

Dalbergioid is a large group within the family Fabaceae that consists of diverse plant species distributed in distinct biogeographic realms. Here, we have performed a comprehensive study to understand the evolution of the nucleotide-binding leucine-rich repeats (NLRs) gene family in Dalbergioids. The evolution of gene families in this group is affected by a common whole genome duplication that occurred approximately 58 million years ago, followed by diploidization that often leads to contraction. Our study suggests that since diploidization, the NLRome of all groups of Dalbergioids is expanding in a clade-specific manner with fewer exceptions. Phylogenetic analysis and classification of NLRs revealed that they belong to seven subgroups. Specific subgroups have expanded in a species-specific manner, leading to divergent evolution. Among the Dalbergia clade, the expansion of NLRome in six species of the genus Dalbergia was observed, with the exception of Dalbergia odorifera, where a recent contraction of NLRome occurred. Similarly, members of the Pterocarpus clade genus Arachis revealed a large-scale expansion in the diploid species. In addition, the asymmetric expansion of NLRome was observed in wild and domesticated tetraploids after recent duplications in the genus Arachis. Our analysis strongly suggests that whole genome duplication followed by tandem duplication after divergence from a common ancestor of Dalbergioids is the major cause of NLRome expansion. To the best of our knowledge, this is the first ever study to provide insight toward the evolution of NLR genes in this important tribe. In addition, accurate identification and characterization of NLR genes is a substantial contribution to the repertoire of resistances among members of the Dalbergioids species.


Subject(s)
Fabaceae , Genome , Phylogeny , Fabaceae/genetics , Arachis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL