Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Acta Parasitol ; 69(2): 1253-1266, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38743178

ABSTRACT

PURPOSE: Searching for a novel early diagnostic biomarker for toxoplasmosis, real-time-PCR was currently used to measure the serum mmu-miR-511-5p level in male Swiss-albino mice infected with either; ME49 or RH Toxoplasma gondii (T. gondii) strains. METHODS: Three mice groups were used; (GI) constituted the non-infected control group, while (GII) and (GIII) were experimentally infected with ME49 or RH strains, respectively. GII mice were orally infected using 10 or 20 ME49 cysts (ME-10 and ME-20), both were subdivided into; non-treated (ME-10-NT and ME-20-NT) and were further subdivided into; immunocompetent (ME-10-IC and ME-20-IC) [euthanized 3-days, 1, 2, 6 or 8-weeks post-infection (PI)], and immunosuppressed using two Endoxan® injections (ME-10-IS and ME-20-IS) [euthanized 6- or 8-weeks PI], and spiramycin-treated (ME-10-SP and ME-20-SP) that received daily spiramycin, for one-week before euthanasia. GIII mice individually received 2500 intraperitoneal RH strain tachyzoites, then, were subdivided into; non-treated (RH-NT) [euthanized 3 or 5-days PI], and spiramycin-treated (RH-SP) that were euthanized 5 or 10-days PI (refer to the graphical abstract). RESULTS: Revealed significant upregulation of mmu-miR-511-5p in GII, one-week PI, with gradually increased expression, reaching its maximum 8-weeks PI, especially in ME-20-NT group that received the higher infective dose. Immunosuppression increased the upregulation. Contrarily, treatment caused significant downregulation. GIII recorded significant upregulation 3-days PI, yet, treatment significantly decreased this expression. CONCLUSION: Serum mmu-miR-511-5p is a sensitive biomarker for early diagnosis of ME49 and RH infection (as early as one-week and 3-days, respectively), and its expression varies according to T. gondii infective dose, duration of infection, spiramycin-treatment and host immune status.


Subject(s)
Biomarkers , MicroRNAs , Toxoplasma , Toxoplasmosis, Animal , Animals , MicroRNAs/blood , MicroRNAs/genetics , Mice , Male , Toxoplasma/immunology , Toxoplasma/genetics , Biomarkers/blood , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/drug therapy , Spiramycin , Disease Models, Animal , Toxoplasmosis/diagnosis , Toxoplasmosis/immunology , Toxoplasmosis/drug therapy
2.
Parasitol Res ; 123(5): 217, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38772951

ABSTRACT

Toxoplasmosis poses a global health threat, ranging from asymptomatic cases to severe, potentially fatal manifestations, especially in immunocompromised individuals and congenital transmission. Prior research suggests that oregano essential oil (OEO) exhibits diverse biological effects, including antiparasitic activity against Toxoplasma gondii. Given concerns about current treatments, exploring new compounds is important. This study was to assess the toxicity of OEO on BeWo cells and T. gondii tachyzoites, as well as to evaluate its effectiveness in in vitro infection models and determine its direct action on free tachyzoites. OEO toxicity on BeWo cells and T. gondii tachyzoites was assessed by MTT and trypan blue methods, determining cytotoxic concentration (CC50), inhibitory concentration (IC50), and selectivity index (SI). Infection and proliferation indices were analyzed. Direct assessments of the parasite included reactive oxygen species (ROS) levels, mitochondrial membrane potential, necrosis, and apoptosis, as well as electron microscopy. Oregano oil exhibited low cytotoxicity on BeWo cells (CC50: 114.8 µg/mL ± 0.01) and reduced parasite viability (IC50 12.5 ± 0.06 µg/mL), demonstrating 9.18 times greater selectivity for parasites than BeWo cells. OEO treatment significantly decreased intracellular proliferation in infected cells by 84% after 24 h with 50 µg/mL. Mechanistic investigations revealed increased ROS levels, mitochondrial depolarization, and lipid droplet formation, linked to autophagy induction and plasma membrane permeabilization. These alterations, observed through electron microscopy, suggested a necrotic process confirmed by propidium iodide labeling. OEO treatment demonstrated anti-T. gondii action through cellular and metabolic change while maintaining low toxicity to trophoblastic cells.


Subject(s)
Autophagy , Oils, Volatile , Origanum , Reactive Oxygen Species , Toxoplasma , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Toxoplasma/drug effects , Toxoplasma/growth & development , Origanum/chemistry , Humans , Autophagy/drug effects , Reactive Oxygen Species/metabolism , Cell Line , Antiprotozoal Agents/pharmacology , Inhibitory Concentration 50 , Necrosis/drug therapy , Cell Survival/drug effects , Apoptosis/drug effects , Membrane Potential, Mitochondrial/drug effects
3.
Iran J Public Health ; 52(7): 1495-1503, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37593518

ABSTRACT

Background: Toxoplasma infection is caused by Toxoplasma gondii, which is an intracellular protozoan parasite. This infection consequently lead various congenital disabilities during pregnancy in patients. Spiramycin (Spi), a macrolide antibiotic, is typically recommended for T. gondii infection in pregnant women. We aimed to prepare the nanoemulsion of spiramycin (NE-Spi) and to evaluate the activity of this formulation in tachyzoites of T. gondii, RH strain. Methods: This study was conducted in 2019-2021 at the School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. NE-Spi was prepared by spontaneous emulsification. The effects of this nanoemulsion on the viability of cultured cells were measured using MTT assay. To estimate the effects of NE-Spi on tachyzoites of T. gondii, RH strain, different concentrations of NE-Spi, S-Spi (suspension of spiramycin), and NE (nanoemulsion without any spiramycin) were added to tachyzoites and then stored for 30, 60, 90, 120 min and 24 h in 250 µg/ml concentration at room temperature. Finally, Tachyzoites mortality rates were evaluated by trypan blue staining. Of note, flow cytometry was conducted to confirm the obtained results. Results: The final particle size of NE-Spi was calculated to be 11.3 nm by DLS and TEM. Thereafter, using MTT assay, in 62.5 µg/ml concentration of NE-Spi, the Vero cells viability was obtained as 82%. The highest mortality rates of tachyzoites of T.gondii, RH strain were observed at 250 µg/ml concentration and after 120 min of exposure, but it was not significantly different from 24 h of exposure. Conclusion: NE-Spi has lethal efficacy on T. gondii RH strain in-vitro.

4.
Trop Med Infect Dis ; 8(7)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37505651

ABSTRACT

The present study aimed to evaluate the in vitro, in vivo, and safety of Stachys lavandulifolia Vahl. methanolic extract (SLME) against acute toxoplasmosis caused by Toxoplasma gondii RH strain in mice. METHODS: MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the in vitro effect of the SLME on T. gondii tachyzoites. Totally, 72 male BALB/c mice (40 mice for in vivo evaluation of SLME and 32 mice for its toxicity effects on liver and kidney serum enzymes) were used for the present investigation. At first, 40 mice were orally pre-treated with the SLME at doses of 25, 50, and 75 mg/kg/day for two weeks. Mice were checked daily, and the rate of survival and the mean number of tachyzoites were recorded. Liver lipid peroxidation (LPO) and nitric oxide (NO) levels, the effects on kidney and liver function, as well as the expression level of the proinflammatory cytokines such as interleukin-1ß (IL-1ß) and interferon-γ (IFN-γ), were studied by the quantitative real-time PCR. Flow cytometry analysis was performed on the effects of SLME on the detection of apoptotic and necrotic cells in T. gondii tachyzoites. RESULTS: The SLME at the concentrations 75 and 150 µg/mL completely killed the tachyzoites after 2 hr of incubation. SLME at 25, 50, and 75 mg/kg/day increased the survival rate of infected mice by the sixth, seventh, and eighth days, respectively. SLME also significantly (p < 0.05) decreased the LPO and NO levels and upregulated the IL-1ß and IFN-γ mRNA gene expression levels, whereas no considerable change was observed in the serum level of kidney and liver enzymes. Flow cytometry analysis revealed the prompted early and late apoptosis after exposure to T. gondii tachyzoites with various concentrations of SLME. CONCLUSION: We found the relevant in vitro anti-Toxoplasma effects of SLME against T. gondii. Moreover, the results confirmed the promising in vivo prophylactic effects of SLME. SLME provokes the innate immune system, induces apoptosis, modulates the proinflammatory cytokines, and inhibits hepatic injury in infected mice. With all these descriptions, further surveys are required to support these findings and elucidate this plant's possible mechanisms of action.

5.
Front Cell Infect Microbiol ; 13: 1161133, 2023.
Article in English | MEDLINE | ID: mdl-37249978

ABSTRACT

Background: Chemotherapy with synthetic drugs is the principal approach for toxoplasmosis treatment; however, recent studies reported the limitations and adverse side effects of these chemical drugs. Objective: This study aimed to examine the in vitro and in vivo effects of Curcuma longa essential oil (CLE) against the Toxoplasma gondii RH strain. Methods: The in vitro effect of different concentrations of CLE on T. gondii tachyzoites was assessed by cell viability assay. Flow cytometry and apoptosis analysis were performed, and nitric oxide production by CLE was also evaluated in tachyzoites. BALB/c mice were orally treated with various doses (1.25, 2.5, and 5 mg·kg-1·day-1) of CLE for 2 weeks. After the induction of acute toxoplasmosis in the mice, their survival rate and the mean number of peritoneal parasites were checked. The hepatic level of antioxidant enzymes and oxidative stress markers was evaluated by commercial kits. The mRNA expression level of proinflammatory cytokines such as interleukin 1-beta (IL-1ß) and interferon-gamma (IFN-γ) was evaluated by quantitative real-time PCR. Results: CLE, especially at 50 µg/ml, showed potent inhibitory effects on T. gondii tachyzoites. It increased the survival rate (ninth day) and reduced the mean number of peritoneal tachyzoites in the infected mice. CLE dependently increased (p < 0.01) the number of necrotic and apoptotic cells as well as NO production. CLE significantly (p < 0.05) reduced the hepatic level of oxidative stress markers but increased (p < 0.001) the antioxidant enzymes and proinflammatory cytokines in the infected mice, with no important toxicity for vital organs. Conclusion: The findings of this survey revealed the significant in vitro inhibitory effects of CLE on T. gondii tachyzoites. The results also exhibited promising in vivo effects of CLE. CLE improved the survival rate of infected mice and reduced the parasite number in them. Although the mechanisms of action of CLE are not clear, our study demonstrated its beneficial effects on acute toxoplasmosis by strengthening the immune system and reducing inflammation and oxidative stress. Still, more studies are required to confirm these results.


Subject(s)
Toxoplasma , Toxoplasmosis , Animals , Mice , Antioxidants/metabolism , Curcuma/metabolism , Immune System/metabolism , Cytokines/metabolism , Inflammation/drug therapy , Oxidative Stress , Mice, Inbred BALB C
6.
Pathog Glob Health ; 117(4): 417-434, 2023 06.
Article in English | MEDLINE | ID: mdl-36922743

ABSTRACT

Mixed parasitic infections could affect the host immunological responses and re-design the pathogenesis of each other. The impact of Toxoplasma gondii (T. gondii) and Trichinella spiralis (T. spiralis) co-infection on the immune response remains unclear. The objective of the present study was to investigate the possible effect of chronic trichinellosis on the immune response of rats infected with T. gondii virulent RH strain. Animals were divided into four groups: group I: non-infected negative control; group II: infected with T. spiralis; group III: infected with T. gondii and group IV: infected with T. spiralis then infected with T. gondii 35 days post T. spiralis infection (co-infected group). The interaction between T. spiralis and T. gondii was evaluated by histopathological examination of liver and brain tissues, immunohistochemical expression of inducible nitric oxide synthase (iNOS), and ß-catenin in the brain tissues, and CD4+ and CD8+ T cells percentages, and tumor necrosis factor (TNF)-alpha expression in the spleen tissues. Along with, splenic interleukin (IL)-4 and IL-10 mRNA expression levels were measured 15 days post-Toxoplasma infection. Our study revealed that prior infection with T. spiralis leads to attenuation of Th1 response against T. gondii, including iNOS, TNF-α, and CD8+ T-cell response with improvement of the histopathological changes in the tissues. In conclusion, in the co-infected rats, a balanced immune response has been developed with the end result, improvement of the histopathological changes in the liver and brain.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Trichinella spiralis , Trichinellosis , Animals , Rats , Trichinellosis/parasitology , Trichinellosis/pathology , CD8-Positive T-Lymphocytes/pathology , Immunity
7.
Acta Trop ; 232: 106508, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35568067

ABSTRACT

BACKGROUND: Toxoplasmosis is a deleterious parasitic disease with harmful impact on both humans and animals. The present study was carried out to evaluate the antiparasitic effect of chloroquine (CQ), spiramycin (SP), and combination of both against the highly virulent RH HXGPRT (-) strain of Toxoplasma gondii (T. gondii) and to explore the mechanisms underlying such effect. METHODS: We counted the tachyzoites in the peritoneal fluid and liver smears of mice and performed scanning and transmission electron microscopy and immunofluorescence staining of tachyzoites. Moreover, relative caspase 3 gene expression was measured by real time polymerase chain reaction of liver tissues and immunoassay of anti-apoptotic markers [B cell lymphoma-2 (Bcl-2) and X-chromosome linked inhibitor of apoptosis (XIAP)] and interferon gamma (IFN-γ) was done in liver tissues by ELISA. In addition, we estimated serum levels of aspartate transaminase (AST) and alanine transaminase (ALT) and performed histopathological examination of liver sections for scoring of inflammation. RESULTS: We found that both CQ and CQ/SP combination significantly reduced parasitic load in the peritoneal fluid and liver smears, induced apical disruption of tachyzoites, triggered host cell apoptosis through elevation of relative caspase 3 gene expression and suppression of both Bcl-2 and XIAP. Also, they upregulated IFN-γ level, reduced serum AST and ALT, and ameliorated liver inflammation. CONCLUSIONS: Either of CQ and CQ/SP combination was more effective than SP alone against T. gondii with the CQ/SP combination being more efficient. Therefore, adding CQ to other anti-Toxoplasma therapeutic regimens may be considered in future research.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Alanine Transaminase , Animals , Antiparasitic Agents/therapeutic use , Aspartate Aminotransferases , Caspase 3/pharmacology , Caspase 3/therapeutic use , Chloroquine/pharmacology , Chloroquine/therapeutic use , Inflammation/drug therapy , Interferon-gamma/genetics , Interferon-gamma/therapeutic use , Proto-Oncogene Proteins c-bcl-2/pharmacology , Proto-Oncogene Proteins c-bcl-2/therapeutic use , Toxoplasma/genetics , Toxoplasmosis, Animal/drug therapy
8.
Ann Med Surg (Lond) ; 74: 103245, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35079376

ABSTRACT

BACKGROUND: Conventional treatment for toxoplasmosis have severe side effects and the inability to completely eradicate the disease. Therefore, the acquisition of new anti-Toxoplasma drugs has always been of interest among researchers. In the present study, we prepare a new indole-triazole derivatives and evaluated their potential anti-parasitic activity against tachyzoites of Toxoplasma RH strain. MATERIALS AND METHODS: In this study, after synthesis of the two new compounds of indole-triazole, the effect of their different concentrations (2-1024 µg/ml) were determined on Toxoplasma tachyzoites using flow cytometry. Furthermore, tachyzoites were exposed to different concentrations of compounds (4, 16, 64, 265, 1024 µg/ml) for 1.5 h and their infectivity were evaluated in BALB/c mice. RESULTS: The flow cytometry results indicated the benzyl derivative of indole-triazole in various concentrations had a lethal effect on tachyzoites between 11.93% and 89.66%, while the naphthalene derivative had a lethality of 26.63%-66.82%. The infectivity analysis showed that the survival time of mice at concentrations of 1024 µg/ml and 512 µg/ml of benzyl derivatives was significantly increased (P = 0.008 and P = 0.016, respectively), compared to that in the negative control group. Furthermore, survival time of mice was statistically significant at the concentration of 1024 µg/ml for naphthyl derivative (P = 0.012). CONCLUSION: Findings of the current study suggested indole triazole compounds, based on their structure and enzymes targeting, have a considerable effect on tachyzoites of T. gondii RH strain and can be considered as a new anti-Toxoplasma agent.

9.
Infect Drug Resist ; 14: 5057-5068, 2021.
Article in English | MEDLINE | ID: mdl-34876824

ABSTRACT

BACKGROUND: Since no effective vaccine has been developed for toxoplasmosis, prophylaxis in seronegative pregnant women and immunocompromised patients with a CD4 <100 cells/µL is highly recommended as an ideal strategy to prevent this disease. This study aimed to assess the chemical composition, in vitro, and in vivo effects of Allium sativum essential oil (ASEO) against Toxoplasma gondii RH strain. METHODS: The in vitro anti-Toxoplasma effects of different concentrations of ASEO (32.5, 75, 150 µg/mL) were measured by MTT assay for 0.5, 1, 2, and 3 h. Male Balb/c mice were orally administrated ASEO at the doses of 200, 400, and 600 µg/kg/day for 14 days. One day after the completion of oral drug administration, the mice in all groups were infected intraperitoneally with 1×104 tachyzoites. They were checked daily and the rate of survival was recorded. The peritoneal fluids of the mice were collected and the mean number of tachyzoites was calculated via a light microscope. The level of liver lipid peroxidation (LPO) and nitric oxide (NO), toxicity effects on the liver and kidney, and the mRNA expression levels of some pro-inflammatory cytokines such as IL-1ß and IFN-γ were determined by quantitative real-time PCR. RESULTS: Different concentrations of ASEO showed a significant (p < 0.001) anti-Toxoplasma activity against T. gondii tachyzoites, and the highest efficacy was observed at the concentration of 150 µg/mL. Fourteen days of pre-treatment of infected mice with ASEO at the doses of 200, 400, and 600 µg/kg/day significantly (p < 0.001) decreased the mean number of tachyzoites and mortality rate by the 6th, 7th, and 8th days after infection, respectively. ASEO at the doses of 200, 400, and 600 µg/kg/day significantly (p < 0.05) improved the increase in the LPO and NO. Pre-treatment of mice with different doses of ASEO provoked a considerable (P < 0.001) downregulation of IL-1ß and IFN-γ mRNA gene expression levels, but it had no significant toxicity on the serum levels of some liver and kidney enzymes. CONCLUSION: The present study demonstrated the considerable prophylactic effects of ASEO that increased the survival rate of mice and reduced the parasite load in them. Our findings also showed that ASEO promotes the innate immune system, pro-inflammatory cytokines, inhibition of hepatic injury, etc. in the mice with acute toxoplasmosis. However, additional investigations are mandatory to clarify the accurate prophylactic and therapeutic anti-Toxoplasma mechanisms of ASEO as well as all its toxicity aspects, especially in clinical settings.

10.
J Am Coll Emerg Physicians Open ; 2(1): e12327, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33521779
11.
Infect Drug Resist ; 12: 2657-2669, 2019.
Article in English | MEDLINE | ID: mdl-31695442

ABSTRACT

BACKGROUND: The aim of the present study was to develop a simple, portable, and rapid assay for serodiagnosis of toxoplasmosis based on recombinant Toxoplasma gondii (T. gondii) SAG1 (rSAG1) and GRA7 (rGRA7) proteins. METHODS: The rSAG1 and rGRA7 proteins were expressed in Escherichia coli (E. coli) and purified in a single step by immobilized metal ion affinity chromatography. The immunoreactivity of the recombinant antigens was tested in an in-house IgG and IgM Dot enzyme-linked immunosorbent assay (Dot-ELISA) for potential use in serodiagnosis of T. gondii infection. RESULTS: Results from the comparison of in-house rSAG1-Dot-ELISA with ELISA for the detection of anti-Toxoplasma IgG and IgM include sensitivity of 83.7% and 81.2%, specificity of 90.2% and 89.3%, positive predictive values of 85.9% and 68.4%, and negative predictive values of 88.6% and 94.3%, respectively. Sensitivity of 66.2%, specificity of 81.2%, positive predictive values of 71.6%, and negative predictive values of 77.1% were concluded from in-house IgG rGRA7-Dot-ELISA. The sensitivity and specificity of IgM rGRA7-Dot-ELISA included 87.5% and 83.9%, respectively. Sensitivity and specificity of in-house Dot-ELISA for a combination of rSAG1 and rGRA7 included 87.5% and 91.1% for IgG and IgM, respectively. Sensitivity and specificity of a combination of rSAG1 and rGRA7 for the detection of IgM in suspected sera to acute toxoplasmosis were higher than those for the detection of IgG in sera with chronic infections (90.6% and 92% instead of 86.2% and 91.6%, respectively). CONCLUSION: The highlighted parameters of combined recombinant proteins were more significant than those of single recombinant proteins in in-house Dot-ELISA. These data suggest that the in-house Dot-ELISA based on rSAG1 and rGRA7 combination is a promising diagnostic tool with a similar sensitivity to the native antigens of T. gondii, which can be used for the serodiagnosis of toxoplasmosis in fields as well as less equipped laboratories.

12.
Infect Drug Resist ; 12: 2519-2530, 2019.
Article in English | MEDLINE | ID: mdl-31616167

ABSTRACT

BACKGROUND: Toxoplasmosis, a protozoan parasitic disease caused by Toxoplasma gondii, has been a serious human and veterinary medicine problem with global distribution. In the current study, we assessed immunogenicity and protective efficiency of a novel dual-promoter DNA vaccine, harboring SAG1 and GRA7 genes, from RH strain of Toxoplasma gondii (T. gondii) with or without CpG-ODN as adjuvant in a murine model. METHODS: BALB/c mice were immunized intramuscularly with pVitro-SAG1-GRA7 alone and pVitro-SAG1-GRA7 with CpG-ODN three times at three-week intervals. Enzyme-linked immunosorbent assay (ELISA) was used to assess total IgG, IgG1 and IgG2a antibodies and gamma interferon (IFN-γ) and interleukin-10 (IL-10) cytokines in mice sera. Four weeks post final vaccination, MTT assay and lethal challenge-infection with 1×103 tachyzoites of T. gondii RH strain were carried out to assess stimulation index (SI) and mice survival time, respectively. RESULTS: The IgG levels in mice immunized with multicomponent vaccines, including pVitro-SAG1-GRA7 alone and pVitro-SAG1-GRA7 with CpG-ODN, were significantly higher than those in control mice or single-gene DNA-vaccinated ones (P<0.05). Furthermore, level of IgG2a in mice receiving pVitro-SAG1-GRA7 with CpG-ODN was significantly higher than that in mice receiving pVitro-SAG1-GRA7 alone (P<0.05). The Toxoplasma lysate antigen (TLA)-stimulated lymphocytes from pVitro-SAG1-GRA7 with CpG-ODN group responded more dramatically than those from control groups or single-gene DNA-vaccinated groups (P<0.001). The pVitro-SAG1-GRA7 with CpG-ODN-vaccinated mice developed high levels of IgG2a and IFN-γ (P<0.001) and low levels of IgG1 and IL-10, compared to control groups, suggesting a modulated immune response type Th1. In addition, survival time of the mice immunized with pVitro-SAG1-GRA7 with CpG-ODN was significantly extended, compared to controls (P<0.05); however, all mice died. CONCLUSION: The multivalent pVitro-SAG1-GRA7 DNA vaccine with CpG-ODN adjuvant is a promising vaccine candidate against toxoplasmosis.

13.
Int J Nanomedicine ; 13: 7363-7374, 2018.
Article in English | MEDLINE | ID: mdl-30519020

ABSTRACT

BACKGROUND: The aim of this study was to prepare curcumin nanoemulsion (CR-NE) to solve the problems associated with poor water solubility and low bioavailability of CR and to test its efficiency in the treatment of acute and chronic toxoplasmosis in mouse models. MATERIALS AND METHODS: CR-NE 1% was prepared using spontaneous emulsification by soybean as oil phase; a mixture of Tween 80 and Tween 85 as surfactant; ethanol as cosurfactant and distilled water. Particle size and zeta potential of NE were assessed using Nano-ZS90 dynamic light scattering. Stability testing of NE was assessed after storage for 2 months at room temperature. In vivo experiments were carried out using 50 BALB/c mice inoculated with virulent RH strain (type I) and 50 BALB/c mice inoculated with avirulent Tehran strain (type II) of Toxoplasma gondii and treated with CR-NE (1% w/v), CR suspension (CR-S, 1% w/v), and NE without CR (NE-no CR). RESULTS: The mean particle size and zeta potential of CR-NE included 215.66±16.8 nm and -29.46±2.65 mV, respectively, and were stable in particle size after a three freeze-thaw cycle. In acute phase experiment, the survival time of mice infected with RH strain of T. gondii and treated with CR-NE extended from 8 to 10 days postinoculation. The differences were statistically significant between the survival time of mice in CR-NE-treated group compared with negative control group (P<0.001). Furthermore, CR-NE significantly decreased the mean counts of peritoneum tachyzoites from 5,962.5±666 in negative control group to 627.5±73 in CR-NE-treated mice (P<0.001). Growth inhibition rates of tachyzoites in peritoneum of mice receiving CR-NE, CR-S, and NE-no CR included 90%, 21%, and 11%, respectively, compared with negative control group. In chronic phase experiment, the average number and size of tissue cysts significantly decreased to 17.2±15.6 and 31.5±6.26 µm, respectively, in mice inoculated with bradyzoites of T. gondii Tehran strain and treated with CR-NE compared with that in negative control group (P<0.001). Decrease of cyst numbers was verified by downregulation of BAG1 in treatment groups compared with negative control group with a minimum relative expression in CR-NE (1.12±0.28), CR-S (11.76±0.87), and NE-no CR (14.67±0.77), respectively, (P<0.001). CONCLUSION: Results from the current study showed the potential of CR-S and CR-NE in treatment of acute and chronic toxoplasmosis in mouse models for the first time. However, CR-NE was more efficient than CR-S, and it seems that CR-NE has a potential formula for the treatment of acute and chronic toxoplasmosis, especially in those with latent bradyzoites in brain.


Subject(s)
Curcumin/therapeutic use , Emulsions/chemistry , Nanoparticles/chemistry , Toxoplasmosis/drug therapy , Acute Disease , Animals , Brain/pathology , Chronic Disease , Disease Models, Animal , Female , Gene Expression Regulation , Mice, Inbred BALB C , Toxicity Tests , Toxoplasma/growth & development , Toxoplasmosis/pathology
14.
Int J Nanomedicine ; 13: 1341-1351, 2018.
Article in English | MEDLINE | ID: mdl-29563791

ABSTRACT

BACKGROUND: Natural polysaccharides such as chitosan (CS) are widely used as antimicrobial agents. In recent years, and considering that CS has a strong antimicrobial potential, interest has been focused on antimicrobial activity of chitosan nanoparticles (CS NPs). The main factors affecting the antibacterial activity of chitosan include molecular weight (MW) and concentration. In this regard, the aim of this study was to produce various MWs and concentrations of CS NPs, through the ionic gelation method, and investigate their potential anti-parasitic activity against tachyzoites of Toxoplasma gondii RH strain. MATERIALS AND METHODS: The MWs and degree of deacetylation of the CS were characterized using viscometric and acid-base titration methods, respectively. The efficacy of various MWs and concentrations of NPs was assessed by performing in vitro experiments for tachyzoites of T. gondii RH strain, such as MTT assay, scanning electron microscopy, bioassay in mice and PCR. In vivo experiment was carried out in BALB/c mice which were inoculated with tachyzoites of T. gondii RH strain and treated with various MWs of CS NPs. RESULTS: The results of in vitro and in vivo experiments revealed that anti-Toxoplasma activity strengthened as the CS NPs concentration increased and the MW decreased. In vitro experiment showed 100% mortality of tachyzoites at 500 and 1,000 ppm concentrations of low molecular weight (LMW) CS NPs after 180 min and at 2,000 ppm after 120 min. Furthermore, a 100% mortality of tachyzoites was observed at 1,000 and 2,000 ppm concentrations of medium molecular weight (MMW) CS NPs and at 2,000 ppm concentration of high molecular weight (HMW) CS NPs after 180 min. Growth inhibition rates of tachyzoites in peritoneal exudates of mice receiving low, medium and high MWs of CS NPs were found to be 86%, 84% and 79% respectively, compared to those of mice in sulfadiazine treatment group (positive control). CONCLUSION: Various MWs of CS NPs exhibited great anti-Toxoplasma efficiency against tachyzoites of RH strain, with the greatest efficacy shown by LMW CS NPs in both experiments. It seems that CS NPs can be used as an alternative natural medicine in the treatment of toxoplasmosis.


Subject(s)
Chitosan/chemistry , Chitosan/pharmacology , Life Cycle Stages , Nanoparticles/chemistry , Toxoplasma/drug effects , Toxoplasma/growth & development , Animals , Biological Assay , Female , Life Cycle Stages/drug effects , Mice, Inbred BALB C , Molecular Weight , Toxoplasma/ultrastructure , Toxoplasmosis/drug therapy , Toxoplasmosis/parasitology
15.
Parasitol Res ; 117(5): 1465-1471, 2018 May.
Article in English | MEDLINE | ID: mdl-29550996

ABSTRACT

Toxoplasmosis is a zoonosis of worldwide distribution. Currently, two drugs, pyrimethamine and sulfadiazine, are used as a reference in the treatment of toxoplasmosis, but the resistance of Toxoplasma gondii appears as a relevant public health problem. In order to identify new drugs to toxoplasmosis treatment, we performed a molecular docking of raltitrexed to T. gondii thymidylate synthase-dihydrofolate reductase (TS-DHFR) and also evaluated its efficacy in infected mice. Initially, raltitrexed was docked on the crystallographic structures of TS-DHFR from T. gondii and Mus musculus. Then, 48 h after infection with the T. gondii RH strain, different groups of mice received an oral dose of raltitrexed (0.15, 0.75, and 1.5 mg kg-1). Two days after treatments, raltitrexed was able to prevent mortality and reduce the number of tachyzoites in the peritoneal fluid and liver imprints from infected mice. The results showed that raltitrexed has important protective activities against the T. gondii RH strain. Molecular docking still suggests that the effects against the parasite may be dependent on the inhibition of T. gondii thymidylate synthase. This study opens new perspectives for the use of raltitrexed in patients infected with T. gondii, especially when conventional treatments do not exhibit the expected efficacy.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Multienzyme Complexes/antagonists & inhibitors , Quinazolines/metabolism , Quinazolines/pharmacology , Thiophenes/metabolism , Thiophenes/pharmacology , Thymidylate Synthase/antagonists & inhibitors , Toxoplasma/drug effects , Toxoplasmosis, Animal/drug therapy , Animals , Humans , Male , Mice , Molecular Docking Simulation , Multienzyme Complexes/metabolism , Tetrahydrofolate Dehydrogenase/metabolism , Thymidylate Synthase/metabolism , Toxoplasma/enzymology , Toxoplasmosis, Animal/parasitology
16.
Jundishapur J Microbiol ; 9(10): e36666, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27942363

ABSTRACT

BACKGROUND: Toxoplasma gondii is one of the most common causes of latent infections in humans worldwide. Detecting anti-Toxoplasma antibodies in serum using serological tests is a common method to diagnose toxoplasmosis. OBJECTIVES: In the present study, an indigenous ELISA kit was prepared using tachyzoites from the RH strain of T. gondii, and its sensitivity and specificity were compared with those of commercial kits. METHODS: To produce antigens, 0.02 mL of locally isolated T. gondii RH strain parasites along with 109 tachyzoites were injected into the peritoneal cavities of 50 laboratory mice (BALB/C). Parasites were collected after 4 days. After filtering and washing, the concentration of protein in sonicated tachyzoites was calculated using the Lowry protein assay. The dilution of antigen, serum and alkaline phosphatase conjugate was assessed in designing an indigenous ELISA method; then ELISA was performed based on these dilutions, and its sensitivity was determined using 200 serum samples. In addition, the specificity of the assay was evaluated using 40 serum samples from patients with tuberculosis, leukemia or hydatid cyst. RESULTS: Indigenous ELISA was used to examine 100 serum samples containing anti-T. gondii IgG, with a sensitivity of 98% (commercial kits: 100%). Another 100 serum samples containing anti-T. gondii IgM were also tested, with a sensitivity of 99% (commercial kits: 100%). When 40 serum samples from patients with leukemia, hydatid cyst or tuberculosis were examined using anti-T. gondii IgG, the specificity was 100%, identical to commercial kits. However, the specificity of a similar test with anti-T. gondii IgM was just 28.6% for serum samples from leukemia patients, 21.4% for hydatid cyst and 16.7% for tuberculosis. CONCLUSIONS: We found that purified locally isolated soluble crude antigens of the RH strain of T. gondii from the peritoneal cavity of mice may be one of the most promising antigens for detection of human toxoplasmosis in routine screening.

17.
Exp Parasitol ; 167: 7-16, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27132051

ABSTRACT

Toxoplasmosis is a globally spread zoonosis. The pathogen Toxoplasma gondii can hijack cellular organelles of host for replication. Although a number of important cellular life events are controlled by cell organelles, very little is known of the transcriptional changes of host cellular organelles after infection with T. gondii. Herein, we performed RNA-sequencing (RNA-seq) and bioinformatics analyses to study the global organelle component changes. It was found that many transcripts of the mouse spleen cellular organelle components were altered by acute T. gondii infection with the RH strain (Type I). Most differentially expressed transcripts of mitochondrial components were downregulated, especially those involved in biosynthetic and metabolic processes. Moreover, mitochondria based apoptosis process was downregulated. In terms of cytoskeleton, most differentially expressed transcript of cytoskeleton components were also downregulated, including septin cytoskeleton, cytoskeleton organization, centrosome and myosin. For endolysosomal system, ion transporters were downregulated at mRNA level, whereas the cytolytic components were increased, such as granzymes, Rab27a and perforin1 (Prf1). The main transcripts of Golgi apparatus components involved in sialylation or vesicle-mediated transportation were downregulated, while immune related components were upregulated. For endoplasmic reticulum (ER), posttranslational modification, drug metabolism and material transportation related transcripts were downregulated. In addition, T. gondii antigen cross-presentation by MHC-I complex could be downregulated by the downregulation of CD76 and ubiquitination related transcripts. The present study, for the first time, described the transcriptional changes of the mouse spleen cellular organelles following acute T. gondii infection, which provides a foundation to study the interaction between T. gondii and host cells at the sub-cellular level.


Subject(s)
Organelles/metabolism , Spleen/metabolism , Toxoplasmosis, Animal/metabolism , Animals , Apoptosis , Computational Biology , Cytoskeleton/metabolism , Down-Regulation , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/metabolism , Endosomes/immunology , Endosomes/metabolism , Energy Metabolism , Gene Expression , Golgi Apparatus/metabolism , Lysosomes/immunology , Lysosomes/metabolism , Mice , Mitochondria/metabolism , Organelles/parasitology , Organelles/pathology , RNA, Protozoan/chemistry , RNA, Protozoan/isolation & purification , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Spleen/parasitology , Spleen/pathology , Spleen/ultrastructure , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/pathology , Transcriptome , Up-Regulation
18.
Iran J Parasitol ; 11(1): 81-5, 2016.
Article in English | MEDLINE | ID: mdl-27095972

ABSTRACT

BACKGROUND: This study was performed to induce conversion of RH strain tachyzoites of Toxoplasma gondii to bradyzoites by pH changing of the culture medium. METHODS: HeLa cell monolayers were infected at a 1:1 tachyzoite to cell ratio. Four hours after infection, the culture medium was removed and replaced with culture medium and 5% FCS, adjusted to pH 8 with NaOH. The culture was maintained at 37 °C without CO2 until the end of the experiment. Cyst-like structures were collected and stained with periodic acid schiff (PAS) staining method. The soluble antigens of cyst-like structures of RH strain, in addition to RH tachyzoite, bradyzoites of avirulent Tehran strain and uninfected HeLa cells were electrophoresed on 12.5% polyacrylamide gel. The gel was stained by coomassie brilliant blue R-250. RESULTS: Four days after infection of HeLa cells with tachyzoites of T. gondii, RH strain, cyst- like structures were noticed and stained with PAS. In the SDS-PAGE, protein bands of these structures had some differences with tachyzoites of RH strain, but there was quite similarity between protein bands of these structures and tissue cysts (bradyzoites) of Tehran strains. P34 and P36 (bradyzoite-specific proteins) were observed only in T. gondii bradyzoites of RH (cyst like structures) and bradyzoites of Tehran strains. CONCLUSION: Alkalization of culture medium to pH 8 induced expression of bradyzoite- specific proteins and production of RH cysts in cell culture.

19.
J Parasit Dis ; 39(3): 526-35, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26345065

ABSTRACT

Toxoplasma gondii is an obligate intracellular protozoan that has a major importance in public health, in addition to veterinary medicine. Therefore, the development of an effective vaccine for controlling toxoplasmosis is an important goal. Excretory/secretory antigens (ESA), were previously identified as potential vaccine candidates, proved to play important roles in the pathogenesis and immune escape of the parasite. In addition, autoclaved Toxoplasma vaccine (ATV) is a special type of killed vaccine, recently characterized. The aim of the present work was, to compare between excretory/secretory and ATV against RH strain of T. gondii in mice based on; parasitological and histopathological levels. Tachyzoites were harvested from peritoneal exudates of infected mice and were used for challenge infection and vaccine preparation. BCG was used as an adjuvant. Mice were allocated equally into five groups; they were vaccinated intradermally over the sternum. The results of this study showed that the survival time after challenge, extended up to 16 days in ESA vaccinated group and up to 15 days in autoclaved Toxoplasma vaccinated group. ESA vaccinated group exhibited a profound decrease in parasite load following parasite challenge with a higher percentage of reduction in parasite count in all examined organs than the autoclaved Toxoplasma vaccinated group. The histopathological picture of the liver in both immunized groups, revealed marked reduction in the pathological changes observed as compared to controls, especially in ESA vaccinated group. It was concluded that vaccination with ESA showed more promising results versus ATV, as demonstrated by the survival rate of vaccinated mice, tachyzoites count and histopathological examination.

20.
Iran J Parasitol ; 10(2): 238-44, 2015.
Article in English | MEDLINE | ID: mdl-26246821

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the effects of conjugated linoleic acid (CLA) on apoptosis of tachyzoites of T. gondii, RH strain (type I) and the cyst-forming Tehran strain (type II) in vitro. METHODS: Toxoplasma strains were injected into the peritoneal cavity of BALB/c mice. The Tehran strain forms cysts in the brain of mice. Bradyzoites within the cysts are reactivated to proliferative tachyzoites, by dexamethasone. Tachyzoites were aspirated from the peritoneum of infected mice, and the percentage of viable parasites was estimated with trypan blue staining. Tachyzoites were inoculated into HeLa cells cultivated in DMEM medium. Different concentrations of CLA were evaluated on T. gondii in HeLa cells by the tetrazolium (MTT) colorimetric assay. Differentiation between apoptosis and cell death was determined by flow cytometry using Annexin V and propidium iodide (PI) double staining. The statistical analysis performed by GraphPad Prism version 6.00. RESULTS: CLA induces apoptosis in virulent (RH) and avirulent (Tehran) strains of T. gondii. The results of MTT indicated that CLA could decrease the proliferation of tachyzoites of both strains in HeLa cells. CONCLUSION: Conjugated linoleic acid has anti-toxoplasmacidal activity on tachyzoites of T. gondii. Therefore, we recommended further studies on this component in order to achieve a new drug against the parasite.

SELECTION OF CITATIONS
SEARCH DETAIL
...