Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Methods Mol Biol ; 2847: 153-161, 2025.
Article in English | MEDLINE | ID: mdl-39312142

ABSTRACT

Understanding the connection between complex structural features of RNA and biological function is a fundamental challenge in evolutionary studies and in RNA design. However, building datasets of RNA 3D structures and making appropriate modeling choices remain time-consuming and lack standardization. In this chapter, we describe the use of rnaglib, to train supervised and unsupervised machine learning-based function prediction models on datasets of RNA 3D structures.


Subject(s)
Computational Biology , Nucleic Acid Conformation , RNA , Software , RNA/chemistry , RNA/genetics , Computational Biology/methods , Machine Learning , Models, Molecular
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38436560

ABSTRACT

RNA is a complex macromolecule that plays central roles in the cell. While it is well known that its structure is directly related to its functions, understanding and predicting RNA structures is challenging. Assessing the real or predictive quality of a structure is also at stake with the complex 3D possible conformations of RNAs. Metrics have been developed to measure model quality while scoring functions aim at assigning quality to guide the discrimination of structures without a known and solved reference. Throughout the years, many metrics and scoring functions have been developed, and no unique assessment is used nowadays. Each developed assessment method has its specificity and might be complementary to understanding structure quality. Therefore, to evaluate RNA 3D structure predictions, it would be important to calculate different metrics and/or scoring functions. For this purpose, we developed RNAdvisor, a comprehensive automated software that integrates and enhances the accessibility of existing metrics and scoring functions. In this paper, we present our RNAdvisor tool, as well as state-of-the-art existing metrics, scoring functions and a set of benchmarks we conducted for evaluating them. Source code is freely available on the EvryRNA platform: https://evryrna.ibisc.univ-evry.fr.


Subject(s)
Benchmarking , RNA , Models, Structural , RNA/genetics , Software
3.
Molecules ; 29(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542881

ABSTRACT

RNAs play crucial roles in various essential biological functions, including catalysis and gene regulation. Despite the widespread use of coarse-grained (CG) models/simulations to study RNA 3D structures and dynamics, their direct application is challenging due to the lack of atomic detail. Therefore, the reconstruction of full atomic structures is desirable. In this study, we introduced a straightforward method called ABC2A for reconstructing all-atom structures from RNA CG models. ABC2A utilizes diverse nucleotide fragments from known structures to assemble full atomic structures based on the CG atoms. The diversification of assembly fragments beyond standard A-form ones, commonly used in other programs, combined with a highly simplified structure refinement process, ensures that ABC2A achieves both high accuracy and rapid speed. Tests on a recent large dataset of 361 RNA experimental structures (30-692 nt) indicate that ABC2A can reconstruct full atomic structures from three-bead CG models with a mean RMSD of ~0.34 Å from experimental structures and an average runtime of ~0.5 s (maximum runtime < 2.5 s). Compared to the state-of-the-art Arena, ABC2A achieves a ~25% improvement in accuracy and is five times faster in speed.


Subject(s)
Molecular Dynamics Simulation , RNA , RNA/chemistry , Nucleotides
4.
J Mol Biol ; 436(6): 168455, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38272438

ABSTRACT

Knots are very common in polymers, including DNA and protein molecules. Yet, no genuine knot has been identified in natural RNA molecules to date. Upon re-examining experimentally determined RNA 3D structures, we discovered a trefoil knot 31, the most basic non-trivial knot, in the RydC RNA. This knotted RNA is a member of a small family of short bacterial RNAs, whose secondary structure is characterized by an H-type pseudoknot. Molecular dynamics simulations suggest a folding pathway of the RydC RNA that starts with a native twisted loop. Based on sequence analyses and computational RNA 3D structure predictions, we postulate that this trefoil knot is a conserved feature of all RydC-related RNAs. The first discovery of a knot in a natural RNA molecule introduces a novel perspective on RNA 3D structure formation and on fundamental research on the relationship between function and spatial structure of biopolymers.


Subject(s)
RNA Folding , RNA , Molecular Dynamics Simulation , RNA/chemistry , RNA/genetics
5.
Methods Mol Biol ; 2709: 51-64, 2023.
Article in English | MEDLINE | ID: mdl-37572272

ABSTRACT

Precise RNA tertiary structure prediction can aid in the design of RNA nanoparticles. However, most existing RNA tertiary structure prediction methods are limited to small RNAs with relatively simple secondary structures. Large RNA molecules usually have complex secondary structures, including multibranched loops and pseudoknots, allowing for highly flexible RNA geometries and multiple stable states. Various experiments and bioinformatics analyses can often provide information about the distance between atoms (or residues) in RNA, which can be used to guide the prediction of RNA tertiary structure. In this chapter, we will introduce a platform, iFoldNMR, that can incorporate non-exchangeable imino protons resonance data from NMR as restraints for RNA 3D structure prediction. We also introduce an algorithm, DVASS, which optimizes distance restraints for better RNA 3D structure prediction.


Subject(s)
Algorithms , RNA , RNA/genetics , Nucleic Acid Conformation , Models, Molecular , Nanotechnology
6.
Proteins ; 91(12): 1790-1799, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37615316

ABSTRACT

As CASP15 participants, in the new category of 3D RNA structure prediction, we applied expert modeling with the support of our proprietary system RNAComposer. Although RNAComposer is primarily known as an automated web server, its features allow it to be used interactively, for example, for homology-based modeling or assembling models from user-provided structural elements. In the paper, we present various scenarios of applying the system to predict the 3D RNA structures that we employed. Their combination with expert input, comparative analysis of models, and routines to select representative resultant structures form a ready-for-reuse workflow. With selected examples, we demonstrate its application for the in silico modeling of natural and synthetic RNA molecules targeted in CASP15.


Subject(s)
RNA , Software , Humans , RNA/chemistry , Nucleic Acid Conformation , Models, Molecular , Computer Simulation
7.
Molecules ; 28(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37513407

ABSTRACT

Ribonucleic acid (RNA) molecules play vital roles in numerous important biological functions such as catalysis and gene regulation. The functions of RNAs are strongly coupled to their structures or proper structure changes, and RNA structure prediction has been paid much attention in the last two decades. Some computational models have been developed to predict RNA three-dimensional (3D) structures in silico, and these models are generally composed of predicting RNA 3D structure ensemble, evaluating near-native RNAs from the structure ensemble, and refining the identified RNAs. In this review, we will make a comprehensive overview of the recent advances in RNA 3D structure modeling, including structure ensemble prediction, evaluation, and refinement. Finally, we will emphasize some insights and perspectives in modeling RNA 3D structures.


Subject(s)
RNA , RNA/chemistry , Nucleic Acid Conformation , Models, Molecular
8.
Methods Mol Biol ; 2586: 263-285, 2023.
Article in English | MEDLINE | ID: mdl-36705910

ABSTRACT

Computational modeling of RNA three-dimensional (3D) structure may help in unrevealing the molecular mechanisms of RNA molecules and in designing molecules with novel functions. An unbiased blind assessment to benchmark the computational modeling is required to understand the achievements and bottlenecks of the prediction, while a standard structure comparison protocol is necessary. RNA-Puzzles is a community-wide effort on the assessment of blind prediction of RNA tertiary structures. And RNA-Puzzles toolkit is a computational resource derived from RNA-Puzzles, which includes (i) decoy sets generated by different RNA 3D structure prediction methods; (ii) 3D structure normalization, analysis, manipulation, and visualization tools; and (iii) 3D structure comparison metric tools. In this chapter, we illustrate a standard RNA 3D structure prediction assessment protocol using the selected tools from RNA-Puzzles toolkit: rna-tools and RNA_assessment.


Subject(s)
RNA , Software , RNA/chemistry , Nucleic Acid Conformation , Computer Simulation , Benchmarking
9.
Methods Mol Biol ; 2568: 147-163, 2023.
Article in English | MEDLINE | ID: mdl-36227567

ABSTRACT

Small angle X-ray scattering (SAXS) has been widely applied as an enabling integrative technique for comprehensive analysis of the structure of biomacromolecules by multiple, complementary techniques in solution. SAXS in combination with computational modeling can be a powerful strategy bridging the secondary and 3D structural analysis of large RNAs, including the long noncoding RNAs (lncRNA). Here, we outline the major procedures and techniques in the combined use of SAXS and computational modeling for 3D structural characterization of a lncRNA, the subgenomic flaviviral RNA from Zika virus. lncRNA production and purification, RNA buffer and sample preparation for SAXS experiments, SAXS data collection and analysis, SAXS-aided RNA 3D structure prediction, and computational modeling are described.


Subject(s)
RNA, Long Noncoding , Zika Virus Infection , Zika Virus , Humans , Computer Simulation , Models, Molecular , Nucleic Acid Conformation , Scattering, Small Angle , X-Ray Diffraction , X-Rays , Zika Virus/genetics , Subgenomic RNA
10.
RNA Biol ; 19(1): 1208-1227, 2022 01.
Article in English | MEDLINE | ID: mdl-36384383

ABSTRACT

This study investigates the importance of the structural context in the formation of a type I/II A-minor motif. This very frequent structural motif has been shown to be important in the spatial folding of RNA molecules. We developed an automated method to classify A-minor motif occurrences according to their 3D context similarities, and we used a graph approach to represent both the structural A-minor motif occurrences and their classes at different scales. This approach leads us to uncover new subclasses of A-minor motif occurrences according to their local 3D similarities. The majority of classes are composed of homologous occurrences, but some of them are composed of non-homologous occurrences. The different classifications we obtain allow us to better understand the importance of the context in the formation of A-minor motifs. In a second step, we investigate how much knowledge of the context around an A-minor motif can help to infer its presence (and position). More specifically, we want to determine what kind of information, contained in the structural context, can be useful to characterize and predict A-minor motifs. We show that, for some A-minor motifs, the topology combined with a sequence signal is sufficient to predict the presence and the position of an A-minor motif occurrence. In most other cases, these signals are not sufficient for predicting the A-minor motif, however we show that they are good signals for this purpose. All the classification and prediction pipelines rely on automated processes, for which we describe the underlying algorithms and parameters.


Subject(s)
Imaging, Three-Dimensional , RNA , Algorithms , Predictive Value of Tests , Humans , RNA/chemistry
11.
J Chem Inf Model ; 62(23): 5862-5874, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36451090

ABSTRACT

RNA molecules carry out various cellular functions, and understanding the mechanisms behind their functions requires the knowledge of their 3D structures. Different types of computational methods have been developed to model RNA 3D structures over the past decade. These methods were widely used by researchers although their performance needs to be further improved. Recently, along with these traditional methods, machine-learning techniques have been increasingly applied to RNA 3D structure prediction and show significant improvement in performance. Here we shall give a brief review of the traditional methods and recent related advances in machine-learning approaches for RNA 3D structure prediction.


Subject(s)
Computational Biology , RNA , RNA/chemistry , Nucleic Acid Conformation , Computational Biology/methods
12.
Int J Mol Sci ; 23(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36077037

ABSTRACT

RNA is a unique biomolecule that is involved in a variety of fundamental biological functions, all of which depend solely on its structure and dynamics. Since the experimental determination of crystal RNA structures is laborious, computational 3D structure prediction methods are experiencing an ongoing and thriving development. Such methods can lead to many models; thus, it is necessary to build comparisons and extract common structural motifs for further medical or biological studies. Here, we introduce a computational pipeline dedicated to reference-free high-throughput comparative analysis of 3D RNA structures. We show its application in the RNA-Puzzles challenge, in which five participating groups attempted to predict the three-dimensional structures of 5'- and 3'-untranslated regions (UTRs) of the SARS-CoV-2 genome. We report the results of this puzzle and discuss the structural motifs obtained from the analysis. All simulated models and tools incorporated into the pipeline are open to scientific and academic use.


Subject(s)
COVID-19 , RNA , 3' Untranslated Regions , Humans , Nucleic Acid Conformation , RNA/chemistry , SARS-CoV-2
13.
J Mol Biol ; 434(11): 167452, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35662453

ABSTRACT

3D structures of RNAs are the basis for understanding their biological functions. However, experimentally solved RNA 3D structures are very limited. Therefore, many computational methods have been proposed to solve this problem, including our 3dRNA. 3dRNA is an automated template-based method of building RNA 3D structures from sequences and secondary structures by using the smallest secondary elements (SSEs) (http://biophy.hust.edu.cn/new/3dRNA). The first version of 3dRNA simply predicts an assembled structure for a target RNA. Later, it is improved to generate a set of assembled models and a method to further optimize them using experimental or theoretical restraints. In particular, pseudoknot base pairings are treated as restraints to solve the problem of no 3D templates for pseudoknots. Here 3dRNA is further extended to predict the 3D structures of circular RNAs since thousands of circular RNAs have been found recently but no 3D structures of them have been determined up to now. We show that circular RNAs can be divided into four types and two types show similar 3D structures with their linear counterparts while two types very different. We also show that the predicted structures of circular RNAs can bind to their ligands more stable than those of their linear counterparts, consistent with experimental results.


Subject(s)
Imaging, Three-Dimensional , RNA, Circular , Software , Algorithms , Models, Molecular , Nucleic Acid Conformation , RNA, Circular/chemistry
14.
Front Bioinform ; 1: 809082, 2021.
Article in English | MEDLINE | ID: mdl-36303785

ABSTRACT

The 3D architectures of RNAs are essential for understanding their cellular functions. While an accurate scoring function based on the statistics of known RNA structures is a key component for successful RNA structure prediction or evaluation, there are few tools or web servers that can be directly used to make comprehensive statistical analysis for RNA 3D structures. In this work, we developed RNAStat, an integrated tool for making statistics on RNA 3D structures. For given RNA structures, RNAStat automatically calculates RNA structural properties such as size and shape, and shows their distributions. Based on the RNA structure annotation from DSSR, RNAStat provides statistical information of RNA secondary structure motifs including canonical/non-canonical base pairs, stems, and various loops. In particular, the geometry of base-pairing/stacking can be calculated in RNAStat by constructing a local coordinate system for each base. In addition, RNAStat also supplies the distribution of distance between any atoms to the users to help build distance-based RNA statistical potentials. To test the usability of the tool, we established a non-redundant RNA 3D structure dataset, and based on the dataset, we made a comprehensive statistical analysis on RNA structures, which could have the guiding significance for RNA structure modeling. The python code of RNAStat, the dataset used in this work, and corresponding statistical data files are freely available at GitHub (https://github.com/RNA-folding-lab/RNAStat).

15.
Comput Struct Biotechnol J ; 18: 2416-2423, 2020.
Article in English | MEDLINE | ID: mdl-33005304

ABSTRACT

Most of computational methods of building RNA tertiary structure are template-based. The template-based methods usually can give more accurate 3D structures due to the use of native 3D templates, but they cannot work if the 3D templates are not available. So, a more complete library of the native 3D templates is very important for this type of methods. 3dRNA is a template-based method for building RNA tertiary structure previously proposed by us. In this paper we report improved 3D template libraries of 3dRNA by using two different schemes that give two libraries 3dRNA_Lib1 and 3dRNA_Lib2. These libraries expand the original one by nearly ten times. Benchmark shows that they can significantly increase the accuracy of 3dRNA, especially in building complex and large RNA 3D structures.

16.
Plant Sci ; 299: 110602, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32900440

ABSTRACT

The conducting sieve tubes of the phloem consist of sieve elements (SEs), which are enucleate cells incapable of transcription and translation. Nevertheless, SEs contain a large variety of RNAs, and long-distance RNA trafficking via the phloem has been documented. The phloem transport of certain RNAs, as well as the further unloading of these RNAs at target tissues, is essential for plant individual development and responses to environmental cues. The translocation of such RNAs via the phloem is believed to be directed by RNA structural elements serving as phloem transport signals (PTSs), which are recognized by proteins that direct the PTS-containing RNAs into the phloem translocation pathway. The ability of phloem transport has been reported for several classes of structured RNAs including viroids, genuine tRNAs, mRNAs with tRNA sequences embedded into mRNA untranslated regions, tRNA-like structures in the genomic RNAs of plant viruses, and micro-RNA (miRNA) precursors (pri-miRNA). Here, three distinct types of such RNAs are discussed, along with the proteins that may specifically interact with these structures in the phloem. Three-dimensional (3D) motifs, which are characteristic of imperfect RNA duplexes, are discussed as elements of phloem-mobile structured RNAs specifically recognized by proteins involved in phloem transport, thus serving as PTSs.


Subject(s)
Phloem/metabolism , Plant Proteins/metabolism , RNA, Plant/metabolism , Biological Transport , Protein Transport
17.
BMC Bioinformatics ; 20(1): 512, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31640563

ABSTRACT

BACKGROUND: The understanding of the importance of RNA has dramatically changed over recent years. As in the case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined by the molecule's sequence. The prediction of tertiary structures of complex RNAs is still a challenging task. RESULTS: Using the observation that RNA sequences from the same RNA family fold into conserved structure, we test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction. EvoClustRNA is a multi-step modeling process, in which homologous sequences for the target sequence are selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and SimRNA are carried out. The model of the target sequence is selected based on the most common structural arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP riboswitch. Moreover, through a benchmark of known structures, we discovered several cases in which particular homologs were unusually amenable to structure recovery in folding simulations compared to the single original target sequence. CONCLUSION: This work, for the first time to our knowledge, demonstrates the importance of the selection of the target sequence from an alignment of an RNA family for the success of RNA 3D structure prediction. These observations prompt investigations into a new direction of research for checking 3D structure "foldability" or "predictability" of related RNA sequences to obtain accurate predictions. To support new research in this area, we provide all relevant scripts in a documented and ready-to-use form. By exploring new ideas and identifying limitations of the current RNA 3D structure prediction methods, this work is bringing us closer to the near-native computational RNA 3D models.


Subject(s)
Models, Molecular , RNA Folding , RNA/chemistry , Sequence Homology , Algorithms , Riboswitch , Software
18.
RNA ; 25(7): 793-812, 2019 07.
Article in English | MEDLINE | ID: mdl-30996105

ABSTRACT

Knowledge-based statistical potentials have been shown to be efficient in protein structure evaluation/prediction, and the core difference between various statistical potentials is attributed to the choice of reference states. However, for RNA 3D structure evaluation, a comprehensive examination on reference states is still lacking. In this work, we built six statistical potentials based on six reference states widely used in protein structure evaluation, including averaging, quasi-chemical approximation, atom-shuffled, finite-ideal-gas, spherical-noninteracting, and random-walk-chain reference states, and we examined the six reference states against three RNA test sets including six subsets. Our extensive examinations show that, overall, for identifying native structures and ranking decoy structures, the finite-ideal-gas and random-walk-chain reference states are slightly superior to others, while for identifying near-native structures, there is only a slight difference between these reference states. Our further analyses show that the performance of a statistical potential is apparently dependent on the quality of the training set. Furthermore, we found that the performance of a statistical potential is closely related to the origin of test sets, and for the three realistic test subsets, the six statistical potentials have overall unsatisfactory performance. This work presents a comprehensive examination on the existing reference states and statistical potentials for RNA 3D structure evaluation.


Subject(s)
Computational Biology/methods , DNA/metabolism , Nucleic Acid Conformation , Proteins/metabolism , RNA/chemistry , RNA/metabolism , Knowledge Bases , Models, Molecular , Reference Values
19.
RNA ; 25(2): 219-231, 2019 02.
Article in English | MEDLINE | ID: mdl-30420522

ABSTRACT

RNA molecules are highly dynamic systems characterized by a complex interplay between sequence, structure, dynamics, and function. Molecular simulations can potentially provide powerful insights into the nature of these relationships. The analysis of structures and molecular trajectories of nucleic acids can be nontrivial because it requires processing very high-dimensional data that are not easy to visualize and interpret. Here we introduce Barnaba, a Python library aimed at facilitating the analysis of nucleic acid structures and molecular simulations. The software consists of a variety of analysis tools that allow the user to (i) calculate distances between three-dimensional structures using different metrics, (ii) back-calculate experimental data from three-dimensional structures, (iii) perform cluster analysis and dimensionality reductions, (iv) search three-dimensional motifs in PDB structures and trajectories, and (v) construct elastic network models for nucleic acids and nucleic acids-protein complexes. In addition, Barnaba makes it possible to calculate torsion angles, pucker conformations, and to detect base-pairing/base-stacking interactions. Barnaba produces graphics that conveniently visualize both extended secondary structure and dynamics for a set of molecular conformations. The software is available as a command-line tool as well as a library, and supports a variety of file formats such as PDB, dcd, and xtc files. Source code, documentation, and examples are freely available at https://github.com/srnas/barnaba under GNU GPLv3 license.


Subject(s)
Computational Biology/methods , Nucleic Acid Conformation , RNA/ultrastructure , Software , Base Pairing/genetics , Databases, Protein , Models, Molecular
20.
BMC Bioinformatics ; 19(1): 304, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30134831

ABSTRACT

BACKGROUND: Computational RNA 3D structure prediction and modeling are rising as complementary approaches to high-resolution experimental techniques for structure determination. They often apply to substitute or complement them. Recently, researchers' interests have directed towards in silico methods to fit, remodel and refine RNA tertiary structure models. Their power lies in a problem-specific exploration of RNA conformational space and efficient optimization procedures. The aim is to improve the accuracy of models obtained either computationally or experimentally. RESULTS: Here, we present RNAfitme, a versatile webserver tool for remodeling of nucleobase- and nucleoside residue conformations in the fixed-backbone RNA 3D structures. Our approach makes use of dedicated libraries that define RNA conformational space. They have been built upon torsional angle characteristics of PDB-deposited RNA structures. RNAfitme can be applied to reconstruct full-atom model of RNA from its backbone; remodel user-selected nucleobase/nucleoside residues in a given RNA structure; predict RNA 3D structure based on the sequence and the template of a homologous molecule of the same size; refine RNA 3D model by reducing steric clashes indicated during structure quality assessment. RNAfitme is a publicly available tool with an intuitive interface. It is freely accessible at http://rnafitme.cs.put.poznan.pl/ CONCLUSIONS: RNAfitme has been applied in various RNA 3D remodeling scenarios for several types of input data. Computational experiments proved its efficiency, accuracy, and usefulness in the processing of RNAs of any size. Fidelity of RNAfitme predictions has been thoroughly tested for RNA 3D structures determined experimentally and modeled in silico.


Subject(s)
Internet , Nucleic Acid Conformation , Nucleosides/genetics , RNA/chemistry , RNA/genetics , Software , Algorithms , Base Sequence , Glutamine/chemistry , Models, Molecular , Nucleotide Motifs , RNA, Transfer/chemistry , RNA, Transfer/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL