Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 377
Filter
1.
Sci Rep ; 14(1): 15145, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956134

ABSTRACT

Hepatitis C virus (HCV) is a plus-stranded RNA virus that often chronically infects liver hepatocytes and causes liver cirrhosis and cancer. These viruses replicate their genomes employing error-prone replicases. Thereby, they routinely generate a large 'cloud' of RNA genomes (quasispecies) which-by trial and error-comprehensively explore the sequence space available for functional RNA genomes that maintain the ability for efficient replication and immune escape. In this context, it is important to identify which RNA secondary structures in the sequence space of the HCV genome are conserved, likely due to functional requirements. Here, we provide the first genome-wide multiple sequence alignment (MSA) with the prediction of RNA secondary structures throughout all representative full-length HCV genomes. We selected 57 representative genomes by clustering all complete HCV genomes from the BV-BRC database based on k-mer distributions and dimension reduction and adding RefSeq sequences. We include annotations of previously recognized features for easy comparison to other studies. Our results indicate that mainly the core coding region, the C-terminal NS5A region, and the NS5B region contain secondary structure elements that are conserved beyond coding sequence requirements, indicating functionality on the RNA level. In contrast, the genome regions in between contain less highly conserved structures. The results provide a complete description of all conserved RNA secondary structures and make clear that functionally important RNA secondary structures are present in certain HCV genome regions but are largely absent from other regions. Full-genome alignments of all branches of Hepacivirus C are provided in the supplement.


Subject(s)
Conserved Sequence , Genome, Viral , Hepacivirus , Nucleic Acid Conformation , RNA, Viral , Hepacivirus/genetics , RNA, Viral/genetics , RNA, Viral/chemistry , Humans , Sequence Alignment , Hepatitis C/virology , Hepatitis C/genetics
2.
Viruses ; 16(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38932262

ABSTRACT

Hepatitis A virus (HAV), a member of the genus Hepatovirus (Picornaviridae HepV), remains a significant viral pathogen, frequently causing enterically transmitted hepatitis worldwide. In this study, we conducted an epidemiological survey of HepVs carried by small terrestrial mammals in the wild in Yunnan Province, China. Utilizing HepV-specific broad-spectrum RT-PCR, next-generation sequencing (NGS), and QNome nanopore sequencing (QNS) techniques, we identified and characterized two novel HepVs provisionally named EpMa-HAV and EpLe-HAV, discovered in the long-tailed mountain shrew (Episoriculus macrurus) and long-tailed brown-toothed shrew (Episoriculus leucops), respectively. Our sequence and phylogenetic analyses of EpMa-HAV and EpLe-HAV indicated that they belong to the species Hepatovirus I (HepV-I) clade II, also known as the Chinese shrew HepV clade. Notably, the codon usage bias pattern of novel shrew HepVs is consistent with that of previously identified Chinese shrew HepV. Furthermore, our structural analysis demonstrated that shrew HepVs differ from other mammalian HepVs in RNA secondary structure and exhibit variances in key protein sites. Overall, the discovery of two novel HepVs in shrews expands the host range of HepV and underscores the existence of genetically diverse animal homologs of human HAV within the genus HepV.


Subject(s)
Genome, Viral , Phylogeny , Shrews , Animals , Shrews/virology , China/epidemiology , RNA, Viral/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Picornaviridae Infections/epidemiology
3.
Antiviral Res ; 228: 105946, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925369

ABSTRACT

SARS-CoV-2 is a betacoronavirus that causes COVID-19, a global pandemic that has resulted in many infections, deaths, and socio-economic challenges. The virus has a large positive-sense, single-stranded RNA genome of ∼30 kb, which produces subgenomic RNAs (sgRNAs) through discontinuous transcription. The most abundant sgRNA is sgRNA N, which encodes the nucleocapsid (N) protein. In this study, we probed the secondary structure of sgRNA N and a shorter model without a 3' UTR in vitro, using the SHAPE (selective 2'-hydroxyl acylation analyzed by a primer extension) method and chemical mapping with dimethyl sulfate and 1-cyclohexyl-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate. We revealed the secondary structure of sgRNA N and its shorter variant for the first time and compared them with the genomic RNA N structure. Based on the structural information, we designed gapmers, siRNAs and antisense oligonucleotides (ASOs) to target the N protein coding region of sgRNA N. We also generated eukaryotic expression vectors containing the complete sequence of sgRNA N and used them to screen for new SARS-CoV-2 gene N expression inhibitors. Our study provides novel insights into the structure and function of sgRNA N and potential therapeutic tools against SARS-CoV-2.

4.
Methods Mol Biol ; 2822: 311-334, 2024.
Article in English | MEDLINE | ID: mdl-38907926

ABSTRACT

The structure of RNA molecules is absolutely critical to their functions in a biological system. RNA structure is dynamic and changes in response to cellular needs. Within the last few decades, there has been an increased interest in studying the structure of RNA molecules and how they change to support the needs of the cell in different conditions. Selective 2'-hydroxyl acylation-based mutational profiling using high-throughput sequencing is a powerful method to predict the secondary structure of RNA molecules both in vivo and in immunopurified samples. Selective 2'-hydroxyl acylation-based mutational profiling using high-throughput sequencing works by adding bulky groups onto accessible "flexible" bases in an RNA molecule that are not involved in any base-pairing or RNA-protein interactions. When the RNA is reverse transcribed into cDNA, the bulky groups are incorporated as base mutations, which can be compared to an unmodified control to identify the locations of flexible bases. The comparison of sequence data between modified and unmodified samples allows the computer software program (developed to generate reactivity profiles) to generate RNA secondary structure models. These models can be compared in a variety of conditions to determine how specific stimuli influence RNA secondary structures.


Subject(s)
High-Throughput Nucleotide Sequencing , Mutation , Nucleic Acid Conformation , RNA Folding , RNA , RNA/genetics , RNA/chemistry , High-Throughput Nucleotide Sequencing/methods , Software , Acylation
5.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38855913

ABSTRACT

MOTIVATION: Coding and noncoding RNA molecules participate in many important biological processes. Noncoding RNAs fold into well-defined secondary structures to exert their functions. However, the computational prediction of the secondary structure from a raw RNA sequence is a long-standing unsolved problem, which after decades of almost unchanged performance has now re-emerged due to deep learning. Traditional RNA secondary structure prediction algorithms have been mostly based on thermodynamic models and dynamic programming for free energy minimization. More recently deep learning methods have shown competitive performance compared with the classical ones, but there is still a wide margin for improvement. RESULTS: In this work we present sincFold, an end-to-end deep learning approach, that predicts the nucleotides contact matrix using only the RNA sequence as input. The model is based on 1D and 2D residual neural networks that can learn short- and long-range interaction patterns. We show that structures can be accurately predicted with minimal physical assumptions. Extensive experiments were conducted on several benchmark datasets, considering sequence homology and cross-family validation. sincFold was compared with classical methods and recent deep learning models, showing that it can outperform the state-of-the-art methods.


Subject(s)
Computational Biology , Deep Learning , Nucleic Acid Conformation , RNA , RNA/chemistry , RNA/genetics , Computational Biology/methods , Algorithms , Neural Networks, Computer , Thermodynamics
6.
J Comput Biol ; 31(6): 549-563, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935442

ABSTRACT

Extrinsic, experimental information can be incorporated into thermodynamics-based RNA folding algorithms in the form of pseudo-energies. Evolutionary conservation of RNA secondary structure elements is detectable in alignments of phylogenetically related sequences and provides evidence for the presence of certain base pairs that can also be converted into pseudo-energy contributions. We show that the centroid base pairs computed from a consensus folding model such as RNAalifold result in a substantial improvement of the prediction accuracy for single sequences. Evidence for specific base pairs turns out to be more informative than a position-wise profile for the conservation of the pairing status. A comparison with chemical probing data, furthermore, strongly suggests that phylogenetic base pairing data are more informative than position-specific data on (un)pairedness as obtained from chemical probing experiments. In this context we demonstrate, in addition, that the conversion of signal from probing data into pseudo-energies is possible using thermodynamic structure predictions as a reference instead of known RNA structures.


Subject(s)
Algorithms , Nucleic Acid Conformation , Phylogeny , RNA , Thermodynamics , RNA/chemistry , RNA/genetics , Base Pairing , RNA Folding , Base Sequence , Computational Biology/methods
7.
Methods Mol Biol ; 2726: 235-254, 2024.
Article in English | MEDLINE | ID: mdl-38780734

ABSTRACT

Generating accurate alignments of non-coding RNA sequences is indispensable in the quest for understanding RNA function. Nevertheless, aligning RNAs remains a challenging computational task. In the twilight-zone of RNA sequences with low sequence similarity, sequence homologies and compatible, favorable (a priori unknown) structures can be inferred only in dependency of each other. Thus, simultaneous alignment and folding (SA&F) remains the gold-standard of comparative RNA analysis, even if this method is computationally highly demanding. This text introduces to the recent release 2.0 of the software package LocARNA, focusing on its practical application. The package enables versatile, fast and accurate analysis of multiple RNAs. For this purpose, it implements SA&F algorithms in a specific, lightweight flavor that makes them routinely applicable in large scale. Its high performance is achieved by combining ensemble-based sparsification of the structure space and banding strategies. Probabilistic banding strongly improves the performance of LocARNA 2.0 even over previous releases, while simplifying its effective use. Enabling flexible application to various use cases, LocARNA provides tools to globally and locally compare, cluster, and multiply aligned RNAs based on optimization and probabilistic variants of SA&F, which optionally integrate prior knowledge, expressible by anchor and structure constraints.


Subject(s)
Algorithms , Computational Biology , RNA Folding , RNA , Software , RNA/genetics , RNA/chemistry , Computational Biology/methods , Nucleic Acid Conformation , Sequence Alignment/methods , Sequence Analysis, RNA/methods
8.
Methods Mol Biol ; 2726: 105-124, 2024.
Article in English | MEDLINE | ID: mdl-38780729

ABSTRACT

The structure of an RNA sequence encodes information about its biological function. Dynamic programming algorithms are often used to predict the conformation of an RNA molecule from its sequence alone, and adding experimental data as auxiliary information improves prediction accuracy. This auxiliary data is typically incorporated into the nearest neighbor thermodynamic model22 by converting the data into pseudoenergies. Here, we look at how much of the space of possible structures auxiliary data allows prediction methods to explore. We find that for a large class of RNA sequences, auxiliary data shifts the predictions significantly. Additionally, we find that predictions are highly sensitive to the parameters which define the auxiliary data pseudoenergies. In fact, the parameter space can typically be partitioned into regions where different structural predictions predominate.


Subject(s)
Algorithms , Computational Biology , Nucleic Acid Conformation , RNA , Thermodynamics , RNA/chemistry , RNA/genetics , Computational Biology/methods , Software
9.
Methods Mol Biol ; 2726: 315-346, 2024.
Article in English | MEDLINE | ID: mdl-38780737

ABSTRACT

Although RNA molecules are synthesized via transcription, little is known about the general impact of cotranscriptional folding in vivo. We present different computational approaches for the simulation of changing structure ensembles during transcription, including interpretations with respect to experimental data from literature. Specifically, we analyze different mutations of the E. coli SRP RNA, which has been studied comparatively well in previous literature, yet the details of which specific metastable structures form as well as when they form are still under debate. Here, we combine thermodynamic and kinetic, deterministic, and stochastic models with automated and visual inspection of those systems to derive the most likely scenario of which substructures form at which point during transcription. The simulations do not only provide explanations for present experimental observations but also suggest previously unnoticed conformations that may be verified through future experimental studies.


Subject(s)
Escherichia coli , Nucleic Acid Conformation , RNA Folding , RNA, Bacterial , Thermodynamics , Transcription, Genetic , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Signal Recognition Particle/chemistry , Signal Recognition Particle/metabolism , Signal Recognition Particle/genetics , Kinetics , Computational Biology/methods , Mutation , Models, Molecular
10.
Methods Mol Biol ; 2726: 1-13, 2024.
Article in English | MEDLINE | ID: mdl-38780725

ABSTRACT

A number of analyses require estimates of the folding free energy changes of specific RNA secondary structures. These predictions are often based on a set of nearest neighbor parameters that models the folding stability of a RNA secondary structure as the sum of folding stabilities of the structural elements that comprise the secondary structure. In the software suite RNAstructure, the free energy change calculation is implemented in the program efn2. The efn2 program estimates the folding free energy change and the experimental uncertainty in the folding free energy change. It can be run through the graphical user interface for RNAstructure, from the command line, or a web server. This chapter provides detailed protocols for using efn2.


Subject(s)
Nucleic Acid Conformation , RNA Folding , RNA , Software , Thermodynamics , RNA/chemistry , Computational Biology/methods , Models, Molecular
11.
Methods Mol Biol ; 2802: 347-393, 2024.
Article in English | MEDLINE | ID: mdl-38819565

ABSTRACT

Over the last quarter of a century it has become clear that RNA is much more than just a boring intermediate in protein expression. Ancient RNAs still appear in the core information metabolism and comprise a surprisingly large component in bacterial gene regulation. A common theme with these types of mostly small RNAs is their reliance of conserved secondary structures. Large-scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible non-coding RNAs that exert a vastly diverse array of molecule functions. In this chapter we provide a-necessarily incomplete-overview of the current state of comparative analysis of non-coding RNAs, emphasizing computational approaches as a means to gain a global picture of the modern RNA world.


Subject(s)
Computational Biology , Genomics , Humans , Computational Biology/methods , Genomics/methods , Nucleic Acid Conformation , RNA/genetics , RNA, Untranslated/genetics , Sequence Analysis, RNA/methods
12.
Microorganisms ; 12(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674712

ABSTRACT

Different bacterial species have dramatically different generation times, from 20-30 min in Escherichia coli to about two weeks in Mycobacterium leprae. The translation machinery in a cell needs to synthesize all proteins for a new cell in each generation. The three subprocesses of translation, i.e., initiation, elongation, and termination, are expected to be under stronger selection pressure to optimize in short-generation bacteria (SGB) such as Vibrio natriegens than in the long-generation Mycobacterium leprae. The initiation efficiency depends on the start codon decoded by the initiation tRNA, the optimal Shine-Dalgarno (SD) decoded by the anti-SD (aSD) sequence on small subunit rRNA, and the secondary structure that may embed the initiation signals and prevent them from being decoded. The elongation efficiency depends on the tRNA pool and codon usage. The termination efficiency in bacteria depends mainly on the nature of the stop codon and the nucleotide immediately downstream of the stop codon. By contrasting SGB with long-generation bacteria (LGB), we predict (1) SGB to have more ribosome RNA operons to produce ribosomes, and more tRNA genes for carrying amino acids to ribosomes, (2) SGB to have a higher percentage of genes using AUG as the start codon and UAA as the stop codon than LGB, (3) SGB to exhibit better codon and anticodon adaptation than LGB, and (4) SGB to have a weaker secondary structure near the translation initiation signals than LGB. These differences between SGB and LGB should be more pronounced in highly expressed genes than the rest of the genes. We present empirical evidence in support of these predictions.

13.
Front Vet Sci ; 11: 1374430, 2024.
Article in English | MEDLINE | ID: mdl-38681855

ABSTRACT

N6-methyladenosine (m6A) methylation is an internal post-transcriptional modification that has been linked to viral multiplication and pathogenicity. To elucidate the conservation patterns of potential 5'-DRACH-3' motifs in avian leukosis virus subgroup J (ALV-J), 149 ALV-J strains (139 isolates from China; ALV-J prototype HPRS-103 from the UK; and 9 strains from the USA, Russia, India, and Pakistan) available in GenBank before December 2023 were retrieved. According to the prediction results of the SRAMP web-server, these ALV-J genomes contained potential DRACH motifs, with the total number ranging from 43 to 64, which were not determined based on the isolation region and time. Conservative analysis suggested that 37 motifs exhibited a conservation of >80%, including 17 motifs with a grading above "high confidence." Although these motifs were distributed in the U5 region of LTRs and major coding regions, they were enriched in the coding regions of p27, p68, p32, and gp85. The most common m6A-motif sequence of the DRACH motif in the ALV-J genome was GGACU. The RNA secondary structure of each conserved motif predicted by SRAMP and RNAstructure web-server was mainly of two types-A-U pair (21/37) and hairpin loop (16/37)-based on the core adenosine. Considering the systematic comparative analysis performed in this study, future thorough biochemical research is warranted to determine the role of m6A modification during the replication and infection of ALV-J. These conservation and distribution analysis of the DRACH motif for potential m6A sites in ALV-J would provide a foundation for the future intervention of ALV-J infection and m6A modification.

15.
BMC Bioinformatics ; 25(1): 91, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429654

ABSTRACT

BACKGROUND: Uncovering functional genetic variants from an allele-specific perspective is of paramount importance in advancing our understanding of gene regulation and genetic diseases. Recently, various allele-specific events, such as allele-specific gene expression, allele-specific methylation, and allele-specific binding, have been explored on a genome-wide scale due to the development of high-throughput sequencing methods. RNA secondary structure, which plays a crucial role in multiple RNA-associated processes like RNA modification, translation and splicing, has emerged as an essential focus of relevant research. However, tools to identify genetic variants associated with allele-specific RNA secondary structures are still lacking. RESULTS: Here, we develop a computational tool called 'AStruct' that enables us to detect allele-specific RNA secondary structure (ASRS) from RT-stop based structuromic probing data. AStruct shows robust performance in both simulated datasets and public icSHAPE datasets. We reveal that single nucleotide polymorphisms (SNPs) with higher AStruct scores are enriched in coding regions and tend to be functional. These SNPs are highly conservative, have the potential to disrupt sites involved in m6A modification or protein binding, and are frequently associated with disease. CONCLUSIONS: AStruct is a tool dedicated to invoke allele-specific RNA secondary structure events at heterozygous SNPs in RT-stop based structuromic probing data. It utilizes allelic variants, base pairing and RT-stop information under different cell conditions to detect dynamic and functional ASRS. Compared to sequence-based tools, AStruct considers dynamic cell conditions and outperforms in detecting functional variants. AStruct is implemented in JAVA and is freely accessible at: https://github.com/canceromics/AStruct .


Subject(s)
Gene Expression Regulation , RNA , RNA/genetics , RNA/chemistry , Alleles , RNA Splicing , High-Throughput Nucleotide Sequencing/methods
16.
Res Sq ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38464300

ABSTRACT

The prediction of RNA secondary structures is essential for understanding its underlying principles and applications in diverse fields, including molecular diagnostics and RNA-based therapeutic strategies. However, the complexity of the search space presents a challenge. This work proposes a Graph Convolutional Network (GCNfold) for predicting the RNA secondary structure. GCNfold considers an RNA sequence as graph-structured data and predicts posterior base-pairing probabilities given the prior base-pairing probabilities, calculated using McCaskill's partition function. The performance of GCNfold surpasses that of the state-of-the-art folding algorithms, as we have incorporated minimum free energy information into the richly parameterized network, enhancing its robustness in predicting non-homologous RNA secondary structures. A Symmetric Argmax Post-processing algorithm ensures that GCNfold formulates valid structures. To validate our algorithm, we applied it to the SARS-CoV-2 E gene and determined the secondary structure of the E-gene across the Betacoronavirus subgenera.

17.
J Mol Biol ; : 168549, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38522645

ABSTRACT

Nearest neighbor thermodynamic parameters are widely used for RNA and DNA secondary structure prediction and to model thermodynamic ensembles of secondary structures. The Nearest Neighbor Database (NNDB) is a freely available web resource (https://rna.urmc.rochester.edu/NNDB) that provides the functional forms, parameter values, and example calculations. The NNDB provides the 1999 and 2004 set of RNA folding nearest neighbor parameters. We expanded the database to include a set of DNA parameters and a set of RNA parameters that includes m6A in addition to the canonical RNA nucleobases. The site was redesigned using the Quarto open-source publishing system. A downloadable PDF version of the complete resource and downloadable sets of nearest neighbor parameters are available.

18.
FEBS Lett ; 598(5): 579-586, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408766

ABSTRACT

Oligoribonucleotides complementary to the template 3' terminus were tested for their ability to initiate RNA synthesis on legitimate templates capable of exponential amplification by Qß replicase. Oligonucleotides shorter than the distance to the nearest predicted template hairpin proved able to serve as primers, with the optimal length varying for different templates, suggesting that during initiation the template retains its native fold incorporating the 3' terminus. The priming activity of an oligonucleotide is greatly enhanced by its 5'-triphosphate group, the effect being strongly dependent on Mg2+ ions. This indicates that, unlike other studied RNA polymerases, Qß replicase binds the 5'-triphosphate of the initiating nucleotide GTP, and this binding is needed for the replication of legitimate templates.


Subject(s)
Polyphosphates , Q beta Replicase , Q beta Replicase/genetics , Q beta Replicase/metabolism , DNA Primers/genetics , RNA/genetics , RNA/metabolism , RNA, Viral , Templates, Genetic
19.
Mol Syst Biol ; 20(5): 481-505, 2024 May.
Article in English | MEDLINE | ID: mdl-38355921

ABSTRACT

Multiplexed assays of variant effect are powerful methods to profile the consequences of rare variants on gene expression and organismal fitness. Yet, few studies have integrated several multiplexed assays to map variant effects on gene expression in coding sequences. Here, we pioneered a multiplexed assay based on polysome profiling to measure variant effects on translation at scale, uncovering single-nucleotide variants that increase or decrease ribosome load. By combining high-throughput ribosome load data with multiplexed mRNA and protein abundance readouts, we mapped the cis-regulatory landscape of thousands of catechol-O-methyltransferase (COMT) variants from RNA to protein and found numerous coding variants that alter COMT expression. Finally, we trained machine learning models to map signatures of variant effects on COMT gene expression and uncovered both directional and divergent impacts across expression layers. Our analyses reveal expression phenotypes for thousands of variants in COMT and highlight variant effects on both single and multiple layers of expression. Our findings prompt future studies that integrate several multiplexed assays for the readout of gene expression.


Subject(s)
Catechol O-Methyltransferase , Machine Learning , Polymorphism, Single Nucleotide , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , Ribosomes/genetics , Protein Biosynthesis
20.
Genome Biol ; 25(1): 54, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38388963

ABSTRACT

BACKGROUND: RNA secondary structure (RSS) can influence the regulation of transcription, RNA processing, and protein synthesis, among other processes. 3' untranslated regions (3' UTRs) of mRNA also hold the key for many aspects of gene regulation. However, there are often contradictory results regarding the roles of RSS in 3' UTRs in gene expression in different organisms and/or contexts. RESULTS: Here, we incidentally observe that the primary substrate of miR159a (pri-miR159a), when embedded in a 3' UTR, could promote mRNA accumulation. The enhanced expression is attributed to the earlier polyadenylation of the transcript within the hybrid pri-miR159a-3' UTR and, resultantly, a poorly structured 3' UTR. RNA decay assays indicate that poorly structured 3' UTRs could promote mRNA stability, whereas highly structured 3' UTRs destabilize mRNA in vivo. Genome-wide DMS-MaPseq also reveals the prevailing inverse relationship between 3' UTRs' RSS and transcript accumulation in the transcriptomes of Arabidopsis, rice, and even human. Mechanistically, transcripts with highly structured 3' UTRs are preferentially degraded by 3'-5' exoribonuclease SOV and 5'-3' exoribonuclease XRN4, leading to decreased expression in Arabidopsis. Finally, we engineer different structured 3' UTRs to an endogenous FT gene and alter the FT-regulated flowering time in Arabidopsis. CONCLUSIONS: We conclude that highly structured 3' UTRs typically cause reduced accumulation of the harbored transcripts in Arabidopsis. This pattern extends to rice and even mammals. Furthermore, our study provides a new strategy of engineering the 3' UTRs' RSS to modify plant traits in agricultural production and mRNA stability in biotechnology.


Subject(s)
Arabidopsis , Exoribonucleases , Animals , Humans , 3' Untranslated Regions , RNA, Messenger/genetics , RNA, Messenger/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation , Mammals/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...