Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Plant J ; 115(3): 803-819, 2023 08.
Article in English | MEDLINE | ID: mdl-37118888

ABSTRACT

Effectors play important roles in facilitating the infection of plant pathogenic fungi. However, the gene expression regulatory mechanism of effector genes, in particular at the post-transcriptional level, is largely unknown. In this study, we uncovered the post-transcriptional regulation of an effector gene VmSP1 by a miRNA-like RNA (Vm-milR16) facilitating the infection of the apple tree Valsa canker pathogen Valsa mali. Genetic and molecular biological assays indicated that the expression of VmSP1 could be suppressed by Vm-milR16-mediated mRNA cleavage in a sequence-specific manner. During V. mali infection, Vm-milR16 was downregulated, whereas VmSP1 was upregulated, which further indicated the regulation relationship. VmSP1 was further demonstrated to be a secreted protein and could suppress plant immunity. Deletion of VmSP1 did not affect the vegetative growth but significantly reduced the virulence of V. mali. Further study indicated that VmSP1 could interact with the transcription factor MdbHLH189 of apple. Transiently overexpression of MdbHLH189 enhanced host resistance to V. mali by enhancing the expression of apple defense-related genes, together with the increased callose deposition. Silencing of MdbHLH189 compromised host resistance to V. mali. Our findings uncovered the novel epigenetic regulation mechanism of a virulence-associated effector gene mediated by a fungal milRNA at the post-transcriptional level, and the results enriched the understanding of the function and action mechanism of effectors in tree pathogenic fungi.


Subject(s)
Malus , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Epigenesis, Genetic , Plant Diseases/genetics , Plant Diseases/microbiology , Malus/metabolism
2.
Chinese Pharmacological Bulletin ; (12): 211-215,216, 2016.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-603944

ABSTRACT

Aim To investigate the effects of silencing MALAT1 gene on cell proliferation inhibition and apop-tosis induced by Melittin in human hepatocellular car-cinoma HepG2 cells. Methods The inhibitory rate of cell proliferation treated with Melittin in HepG2 cells was examined by MTT assay. Apoptotic rate was detec-ted by flow cytometry. The MALAT1 expression level in HepG2 cells was measured by qPCR. Specific siR-NAs were utilized to silence MALAT1 expression. The rates of cell proliferation inhibition and apoptosis in HepG2 cells treated with siRNA and Melittin were compared with those of Melittin alone. Results Melit-tin significantly suppressed the growth of HepG2 and induced cell apoptosis in a dose-dependent manner. Compared with normal liver cell lines, MALAT1 was highly expressed in HepG2 cells ( P<0. 05 ) . The ex-pression of MALAT1 in HepG2 cells was inhibited by Melittin, and the inhibitory rate increased with the in-crease of concentration. The rates of cell proliferation inhibition and apoptosis in HepG2 cells treated with siRNA and Melittin were significantly higher than those treated merely with Melittin. Conclusion Melittin can reduce the expression of MALAT1 and silencing MALAT1 can effectively promote proliferation inhibi-tion and apoptosis in HepG2 cells induced by Melittin.

SELECTION OF CITATIONS
SEARCH DETAIL
...