Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Vet Med (Praha) ; 69(5): 169-176, 2024 May.
Article in English | MEDLINE | ID: mdl-38841132

ABSTRACT

This study aimed to evaluate the immunomodulatory effect of the probiotic Limosilactobacillus reuteri L26 BiocenolTM (L26) and its purified exopolysaccharide (EPS) with respect to antiviral innate immune response. In our experiment, we used porcine epithelial IPEC-J2 cells as a model of the intestinal barrier in a homologous infection by porcine Rotavirus A strain OSU6 (RVA). The production of selected molecules of non-specific humoral immunity was evaluated at the mRNA level. The EPS alone significantly increased the level of interferon λ3 (IFN-λ3) mRNA in the non-infected IPEC-J2 cells (P < 0.001). We also tested whether the treatment of IPEC-J2 cells by L26 or EPS influences the replication of RVA by virus titration and real-time PCR. We found that a pre-treatment in combination with subsequent continuous stimulation has no influence on the RVA replication. However, both treatments significantly decreased the RVA-induced production of IFN-λ3 (P < 0.05) and the "SOS" cytokine interleukin 6 (IL-6; P < 0.01), already at the transcription level. In addition, the EPS treatment resulted in significantly increased IL-10 mRNA in the RVA-infected cells. In summary, we assume an immunoregulatory potential of L. reuteri L26 BiocenolTM and its EPS in the local intestinal antiviral immune response.

2.
Carbohydr Polym ; 339: 122264, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823928

ABSTRACT

Normal rice starch consists of amylopectin and amylose, whose relative amounts and chain-length distributions (CLDs) are major determinants of the digestibility and rheology of cooked rice, and are related to metabolic health and consumer preference. Here, the mechanism of how molecular structural features of pure amylopectin (waxy) starches affect starch properties was explored. Following debranching, chain-length distributions of seven waxy varieties were measured using size-exclusion chromatography, and parameterized using biosynthesis-based models, which involve breaking up the chain-length distribution into contributions from five enzyme sets covering overlapping ranges of chain length; structure-property correlations involving the fifth set were found to be statistically significant. Digestibility was measured in vitro, and parameters for the slower and longer digestion phase quantified using non-linear least-squares fitting. The coefficient for the significant correlation involving amylopectin fine structure for the fifth set was -0.903, while the amounts of amylopectin short and long chains were found to dominate breakdown viscosity (correlation coefficients 0.801 and - 0.911, respectively). This provides a methodology for finding or developing healthier starch in terms of lower digestion rate, while also having acceptable palatability. As rice breeders can to some extent control CLDs, this can help the development of waxy rices with improved properties.


Subject(s)
Amylopectin , Amylose , Oryza , Oryza/chemistry , Amylopectin/chemistry , Viscosity , Amylose/chemistry , Amylose/analysis , Starch/chemistry , Digestion , Rheology
3.
Porcine Health Manag ; 10(1): 12, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444040

ABSTRACT

BACKGROUND: Diarrheal diseases caused by viral agents have led to a great morbidity, mortality, and economic loss in global pig industry. Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and group A porcine rotavirus (RVA) are main causative agents of swine viral diarrhea with similar clinical signs on Chinese farms and their co-infection is also common. However, it is still lack of a convenient method to detect these four agents. METHODS: A TaqMan multiplex qPCR method was developed to detect PEDV, TGEV, PDCoV, and RVA, simultaneously. This method was then applied to investigate 7,342 swine fecal samples or rectal swabs, as well as 1,246 swine intestinal samples collected from 2075 farms in China in 2022. RESULTS: Minimum detection limits of this method were 3 copies/µL for PEDV, 4 copies/µL for TGEV, 8 copies/µL for RVA, and 8 copies/µL for PDCoV, suggesting a good sensitivity. No signals were observed by using this method detecting other viral agents commonly prevalent in pigs, which is suggestive of a good specificity. Application of this method on investigating clinical samples demonstrated a relatively high positive rate for PEDV (22.21%, 1907/8588) and RVA (44.00%, 3779/8588). In addition, co-infection between PEDV and RVA was observed on 360 investigated farms, accounting for 17.35% (360/2075) of the farms where co-infection events were screened. CONCLUSIONS: A TaqMan multiplex qPCR method targeting PEDV, TGEV, PDCoV, and RVA was developed in this study. This method demonstrated a good specificity and sensitivity on investigating these four common viruses responsible for viral diarrhea on Chinese pig farms, which represents a convenient method for the monitoring and differential diagnosis of swine viral diarrhea.

4.
Vet Microbiol ; 292: 110036, 2024 May.
Article in English | MEDLINE | ID: mdl-38458048

ABSTRACT

Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. ß2-microglobulin (ß2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. ß2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated ß2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of ß2 M occurred on the protein level. Mechanismly, RVA infection triggered ß2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of ß2 M, leading to the degradation of ß2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of ß2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades ß2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.


Subject(s)
Rotavirus Infections , Swine Diseases , Animals , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Cell Membrane , Endoplasmic Reticulum-Associated Degradation , Histocompatibility Antigens Class I/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Rotavirus Infections/veterinary , Swine , Swine Diseases/metabolism
5.
J Vet Res ; 68(1): 55-61, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38525231

ABSTRACT

Introduction: Although the presence of rotaviruses in pigeon samples has been reported since the 1980s, its importance as an aetiological agent of the "classical" young pigeon disease (YPD) was not proven until 2020, when the Henle-Koch postulates were confirmed for pigeon-type rotavirus A (RVA) genotype G18P(17). Material and Methods: From 2011 to 2020, archived liver samples from 117 pigeons submitted by 74 individual lofts were tested for the presence of pigeon-type RVA using a VP6-specific RT-qPCR test. For four positive racing pigeons, a more detailed necropsy and histopathological analysis was performed. Results: Indicators of an acute RVA infection were found in 24 out of 117 (20.5%) samples tested, the earliest in 2014. Necropsies of the four selected RVA-positive pigeons showed changes mainly in the liver, spleen and kidneys similar to those described by other researchers. The histopathological examination revealed mainly hyperaemia and necrosis in the liver, as well as mononuclear cell infiltrates in these organs. Conclusion: Pigeon-type RVA is also a cause of YPD in Poland and is a serious challenge for racing pigeon breeders and veterinarians, especially during the training and flights of young pigeons.

6.
Viruses ; 16(3)2024 03 14.
Article in English | MEDLINE | ID: mdl-38543818

ABSTRACT

Porcine rotavirus A (PoRVA) is an enteric pathogen capable of causing severe diarrhea in suckling piglets. Investigating the prevalence and molecular characteristics of PoRVA in the world, including China, is of significance for disease prevention. In 2022, a total of 25,768 samples were collected from 230 farms across China, undergoing porcine RVA positivity testing. The results showed that 86.52% of the pig farms tested positive for porcine RVA, with an overall positive rate of 51.15%. Through the genetic evolution analysis of VP7, VP4 and VP6 genes, it was revealed that G9 is the predominant genotype within the VP7 segment, constituting 56.55%. VP4 genotypes were identified as P[13] (42.22%), P[23] (25.56%) and P[7] (22.22%). VP6 exhibited only two genotypes, namely I5 (88.81%) and I1 (11.19%). The prevailing genotype combination for RVA was determined as G9P[23]I5. Additionally, some RVA strains demonstrated significant homology between VP7, VP4 and VP6 genes and human RV strains, indicating the potential for human RV infection in pigs. Based on complete genome sequencing analysis, a special PoRVA strain, CHN/SD/LYXH2/2022/G4P[6]I1, had high homology with human RV strains, revealing genetic reassortment between human and porcine RV strains in vivo. Our data indicate the high prevalence, major genotypes, and cross-species transmission of porcine RVA in China. Therefore, the continuous monitoring of porcine RVA prevalence is essential, providing valuable insights for virus prevention and control, and supporting the development of candidate vaccines against porcine RVA.


Subject(s)
Rotavirus Infections , Rotavirus , Humans , Animals , Swine , Rotavirus/genetics , Phylogeny , Rotavirus Infections/epidemiology , Rotavirus Infections/veterinary , Rotavirus Infections/genetics , Genome, Viral , Genotype
7.
Infect Genet Evol ; 118: 105566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316245

ABSTRACT

Rotavirus group A (RVA) is the most common cause of severe childhood diarrhea worldwide. The introduction of rotavirus vaccination programs has contributed to a reduction in hospitalizations and mortality caused by RVA. From 2016 to 2021, we conducted surveillance to monitor RVA prevalence and genotype distribution in Nam Dinh and Thua Thien Hue (TT Hue) provinces where a pilot Rotavin-M1 vaccine (Vietnam) implementation took place from 2017 to 2020. Out of 6626 stool samples, RVA was detected in 2164 (32.6%) by ELISA. RT-PCR using type-specific primers were used to determine the G and P genotypes of RVA-positive specimens. Whole genome sequences of a subset of 52 specimens randomly selected from 2016 to 2021 were mapped using next-generation sequencing. From 2016 to 2021, the G9, G3 and G8 strains dominated, with detected frequencies of 39%, 23%, and 19%, respectively; of which, the most common genotypes identified were G9P[8], G3P[8] and G8P[8]. G1 strains re-emerged in Nam Dinh and TT Hue (29.5% and 11.9%, respectively) from 2020 to 2021. G3 prevalence decreased from 74% to 20% in TT Hue and from 21% to 13% in Nam Dinh province between 2017 and 2021. The G3 strains consisted of 52% human typical G3 (hG3) and 47% equine-like G3 (eG3). Full genome analysis showed substantial diversity among the circulating G3 strains with different backgrounds relating to equine and feline viruses. G9 prevalence decreased sharply from 2016 to 2021 in both provinces. G8 strains peaked during 2019-2020 in Nam Dinh and TT Hue provinces (68% and 46%, respectively). Most G8 and G9 strains had no genetic differences over the surveillance period with very high nucleotide similarities of 99.2-99.9% and 99.1-99.7%, respectively. The G1 strains were not derived from the RVA vaccine. Changes in the genotype distribution and substantial diversity among circulating strains were detected throughout the surveillance period and differed between the two provinces. Determining vaccine effectiveness against circulating strains over time will be important to ensure that observed changes are due to natural secular variation and not from vaccine pressure.


Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus , Vaccines , Child , Animals , Humans , Cats , Horses/genetics , Rotavirus/genetics , Vietnam/epidemiology , Genome, Viral , Phylogeny , Gastroenteritis/epidemiology , Diarrhea/epidemiology , Genotype , Genetic Variation , Feces
8.
Food Res Int ; 177: 113877, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225140

ABSTRACT

This study investigated the physical modifications by high hydrostatic pressure (HHP) at 600 MPa for 30 min/30 °C, annealing (AN) at 50 °C/24 h and the combination of both (HHP + AN and AN + HHP) applied to yellow bean starch to verify changes in morphology, X-ray diffraction, molecular order, thermal properties and pasting properties of native (NS) and modified starches. Morphological analysis showed loss of sphericity and increase in diameter with the appearance of pores on the surface after application of treatments. The AN starch showed lower values of syneresis, degree of double helix (DD), order (DO), and viscosity of the paste obtained by RVA. It exhibited a Vh-type classification with the appearance of the amylose-lipid complex. However, the gelatinization temperatures, as well as the enthalpy of gelatinization, were significantly higher. On the other hand, the starch treated with HHP showed a higher Setback (SB) value. The greatest modifications were found for the starches subjected to the combined treatments (AN + HHP) and (HHP + AN), where the order of the treatments was significant for the morpho-structural changes of yellow bean starch. According to the micrographs, the surface aspect was altered, with AN + HHP showing greater irregularities and flat yet irregular faces, as well as a larger granule diameter (147.05). The X-ray diffractogram showed a reduction in crystallinity from 28.14 % (NS) to 18.09 % (AN + HHP) and classified the starch as type "A". The double modification (HHP + AN and AN + HHP) reduced the gelatinization temperature and the enthalpy of gelatinization but had no effect on the bands of the FT-IR spectrum. There was only a reduction in the degree of order and the double helix. Finally, the treatment with AN + HHP is more effective as the gelatinization with AN facilitates the application of HHP. Both methods used are classified as physical (thermal and non-thermal), aiming to minimize environmental impacts and achieve faster and safer morpho-structural modification without leaving chemical residues in the products.


Subject(s)
Amylose , Starch , Starch/chemistry , Hydrostatic Pressure , Spectroscopy, Fourier Transform Infrared , Amylose/chemistry , Temperature
9.
Vet Res Commun ; 48(2): 743-748, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37878188

ABSTRACT

Rotavirus (RV) outbreaks can cause significant economic losses in the livestock and poultry industries. Stool samples were collected from asymptomatic laying and broiler chickens from commercial poultry farms in the states of Rio de Janeiro and Espírito Santo in southeastern Brazil for detection of RV species A and D (RVA and RVD, respectively) by reverse transcription polymerase chain reaction. RV was detected in 10.5% (34/325) of samples: 22 (64.7%) were positive for RVA and nine (26.5%) for RVD, while three (8.8%) exhibited coinfections with both viruses. Sequence analysis of a VP6 fragment from seven RVA-positive samples identified the I11 genotype in all samples. Information regarding avian RV epidemiology is still scanty, despite the high prevalence of RV infections in several bird species and subsequent economic impact. Consequently, monitoring infections caused by avian RVs, especially in commercial birds, is essential not only to provide new and relevant information regarding the biology, epidemiology, and evolution of these viruses, but also to facilitate the implementation of preventive measures.


Subject(s)
Rotavirus Infections , Rotavirus , Animals , Rotavirus/genetics , Chickens , Brazil/epidemiology , Rotavirus Infections/epidemiology , Rotavirus Infections/veterinary , Phylogeny , Genotype
10.
Food Res Int ; 173(Pt 2): 113409, 2023 11.
Article in English | MEDLINE | ID: mdl-37803750

ABSTRACT

Phenolic compounds are known inhibitors of starch digestion through binding with α-amylase. However, a growing body of research shows that phenolic-starch interactions at the molecular level may interfere with this inhibition potential. In this study, we evaluated the effect of Gallic Acid (GA) as a model phenolic compound on starch digestion kinetics carried out in vitro in a Rapid ViscoAnalyzer (RVA). The results showed that when GA was added before cooking of starch in order to promote starch-GA complexation, the rate of digestion of starch was similar to that of starch alone, and faster than when GA was added after cooking of starch. The results demonstrated that when GA was introduced after cooking of starch, GA inhibited α-amylase strongly and that inhibition increased with starch paste viscosity only for potato and wheat starches. No correlation was found between starch molecular characteristics and the inhibiting capacity of GA at different starch concentrations. However, the apparent influence of starch chain length distribution suggested that physical effects (such as the absorption of GA at the surface of the starch paste) may play a role in the capacity of GA to inhibit α-amylase.


Subject(s)
Gallic Acid , Starch , Starch/chemistry , Gallic Acid/pharmacology , Digestion , alpha-Amylases/metabolism , Chemical Phenomena
11.
Pathogens ; 12(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37764899

ABSTRACT

Rotavirus A species (RVA), RVB, RVC, and RVH are four species of rotaviruses (RVs) that are prevalent in pig herds, and co-infections occur frequently. In this study, a quadruplex real-time quantitative RT-PCR (RT-qPCR) for the simultaneous detection of four porcine RVs was developed by designing specific primers and probes based on the VP6 gene of RVA, RVB, RVC, and RVH, respectively. The method showed high specificity and could only detect RVA, RVB, RVC, and RVH, without cross-reaction with other porcine viruses; showed excellent sensitivity, with a limit of detection (LOD) of 1.5 copies/µL for each virus; showed good repeatability, with intra-assay coefficients of variation (CVs) of 0.15-1.14% and inter-assay CVs of 0.07-0.96%. A total of 1447 clinical fecal samples from Guangxi province in China were tested using the developed quadruplex RT-qPCR. The results showed that RVA (42.71%, 618/1447), RVB (26.95%, 390/1447), RVC (42.92%, 621/1447), and RVH (13.68%, 198/1447) were simultaneously circulating in the pig herds, and the co-infection rate of different species of rotaviruses was found to be up to 44.01% (579/1447). The clinical samples were also detected using one previously reported method, and the coincidence rate of the detection results using two methods was more than 99.65%. The phylogenetic tree based on the VP6 gene sequences of RVH revealed that the porcine RVH strains from Guangxi province belonged to the genotype I5, which was closely related to Japanese and Vietnamese strains. In summary, an efficient, sensitive, and accurate method for the detection and differentiation of RVA, RVB, RVC, and RVH was developed and applied to investigate the prevalence of porcine RVs in Guangxi province, China. This study is the first to report the prevalence of porcine RVH in China.

12.
Food Res Int ; 171: 113002, 2023 09.
Article in English | MEDLINE | ID: mdl-37330845

ABSTRACT

The pasting and retrogradation behaviors of starch are altered by the presence of sugars and are important in dictating the storage stability and texture of starch-containing foods. The use of oligosaccharides (OS) and allulose in reduced-sugar formulations is being explored. The objectives of this study were to determine the impacts of different types and concentrations (0% to 60% w/w) of OS (fructo-OS, gluco-OS, isomalto-OS, gluco-dextrin, and xylo-OS) and allulose on the pasting and retrogradation attributes of wheat starch compared to starch in water (control) or sucrose solutions using DSC and rheometry. Physicochemical properties of the additives and their effects on amylose leaching were also considered. Significant differences in starch pasting, retrogradation, and amylose leaching were found between the control and additive solutions, influenced by additive type and concentration. Allulose increased starch paste viscosity and promoted retrogradation over time (60% conc. PV = 7628 cP; ΔHret, 14 = 3.18 J/g) compared to the control (PV = 1473 cP; ΔHret, 14 = 2.66 J/g) and all OS (PV = 14 to 1834 cP; ΔHret,14 = 0.34 to 3.08 J/g). In the allulose, sucrose, and xylo-OS solutions, compared to the other OS types, the gelatinization and pasting temperatures of starch were lower, more amylose leaching occurred, and pasting viscosities were higher. Increasing OS concentrations elevated gelatinization and pasting temperatures. In most 60% OS solutions these temperatures exceeded 95 °C thereby preventing starch gelatinization and pasting in the rheological analysis, and in conditions relevant for inhibiting starch gelatinization in low moisture-sweetened products. Fructose-analog additives (allulose and fructo-OS) promoted starch retrogradation more than the other additives, while xylo-OS was the only additive that limited retrogradation across all OS concentrations. The correlations and quantitative findings from this study will assist product developers in selecting health-promoting sugar replacer ingredients that impart desirable texture and shelf-life properties in starch-containing foods.


Subject(s)
Amylose , Starch , Starch/chemistry , Amylose/chemistry , Triticum/chemistry , Sucrose , Fructose , Oligosaccharides/chemistry
13.
J Appl Microbiol ; 134(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36725209

ABSTRACT

AIMS: We aimed to investigate the prevalence of rotavirus and coronavirus in dipterans that commonly inhabit the environment of dairy farms. METHODS AND RESULTS: We collected 217 insect specimens from nine dairy farms, which were examined through hemi-nested RT-PCR followed by Sanger sequencing in search of VP1 and N genes for rotavirus and bovine coronavirus-BCoV, respectively. With a predominance of Muscidae (152/217 = 70%) 11 families of Diptera were identified. Rotavirus A (RVA) and betacoronavirus (BCoV) were detected in 14.7% (32/217) and 4.6% (10/217) of the dipterans, respectively. Sequencing of the amplicons was possible for 11.5% (25/217) of RVA and 0.5% (1/217) of BCoV, confirming the presence of these pathogens. CONCLUSIONS: Our findings highlight the role of dipterans as carriers of RVA and BCoV of great relevance for public and animal health.


Subject(s)
Cattle Diseases , Diptera , Rotavirus Infections , Rotavirus , Animals , Cattle , Rotavirus/genetics , Betacoronavirus , Farms , Insecta , Feces , Cattle Diseases/epidemiology , Diarrhea/epidemiology , Phylogeny , Genotype
14.
Aust Vet J ; 101(4): 153-163, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36651680

ABSTRACT

Rotaviruses (RV) have a high prevalence in piggeries worldwide and are one of the major pathogens causing severe diarrhoea in young pigs. RV species A, B, and C have been linked to piglet diarrhoea in Australian pig herds, but their genetic diversity has not been studied in detail. Based on sequencing of the structural viral protein 7 (VP7) RVA G genotypes G3, G4 and G5, and RVC types G1, G3, G5, and G6 have been identified in Australian piggeries in previous studies. Although occurrence of RVB was reported in Australia in 1988, no further genetic analysis has been conducted. To improve health management decisions in Australian pig herds, more information on RV prevalence and genetic diversity is needed. Here, 243 enteric samples collected from 20 pig farms within Eastern Australia were analysed for the presence of RV in different age groups using a novel PCR-based multiplex assay (Pork MultiPath™ enteric panel). RVA, RVB, and RVC were detected in 10, 14, and 14 farms, respectively. Further sequencing of VP7 in selected RV-positive samples revealed G genotypes G2, G5, G9 (RVA), G6, G8, G14, G16, G20 (RVB), and G1, G3, G5, G6 (RVC) present. RVA was only detected in young (<10 weeks old) pigs whereas RVB and RVC were also detected in older animals (>11 weeks old). Interestingly, RVB and RVC G-type occurrence differed between age groups. In conclusion, this study provides new insights on the prevalence and diversity of different RV species in pig herds of Eastern Australia whilst demonstrating the ability of the Pork MultiPath™ technology to accurately differentiate between these RV species.


Subject(s)
Rotavirus Infections , Rotavirus , Swine Diseases , Animals , Swine , Rotavirus/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/veterinary , Swine Diseases/epidemiology , Australia/epidemiology , Diarrhea/veterinary , Genotype , Genetic Variation , Phylogeny
15.
J Food Sci ; 88(1): 133-146, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36527317

ABSTRACT

Rice's yield, cooking, and sensory quality are primary considerations in selecting new breeding rice varieties, which are determined by the rice eating quality such as processing and flavor characteristics. Thus, in this study, to advance the breed of new superior japonica rice varieties, the differences in the rice quality, processing characteristics, and flavor characteristics between 12 newly-bred varieties (H2-36, H2-42, H2-53, H2-59, H2-63, H2-73, H2-74, H2-79, H2-81, H2-82, H2-89, and H2-91) and 1 commercial variety (Kenyu38) were analyzed. The results indicated that H2-42 has a reasonable length-to-width ratio (1.51), high rice yield, good color, reasonable amylose, protein content, excellent water existence index, accessible storage, and the highest taste value. Electronic nose results showed significant differences in aldehydes, ketones, and alcohols among 13 rice varieties. Aroma analysis results showed that H2-42 had the highest n-hexanal (14.63 µg/kg), (E,E)-2,4-nonadienal (37.24 µg/kg), nonanal (19.93 µg/kg), and decanal (4.81 µg/kg); those were important aroma components in cooked rice. The Pearson correlation analysis showed that hardness, springiness, cohesiveness, trough viscosity, peak time, and pasting temperature were the crucial factors that affected rice quality. According to partial least squares regression analysis, total color change, final viscosity, setback, (E)-2-heptenal, and 2-methyl-undecanol were the most important factors that distinguished the rice quality. In conclusion, H2-42 rice was better apparent quality, processing characteristics, and aroma compounds. Therefore, H2-42 has the potential for identification and promotion. PRACTICAL APPLICATION: The results from this study will provide data support for the cultivation, application, and quality improvement of high-quality rice varieties. In addition, it gives new ideas and methods for studying rice eating quality.


Subject(s)
Odorants , Oryza , Plant Breeding , Amylose
16.
Environ Sci Pollut Res Int ; 30(13): 37821-37844, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36576634

ABSTRACT

In the last century, thousands of dams and diversions have been built to regulate the streamflow, resulting in water impoundment in the upstream and frequent drought conditions in the downstream. It has pressured researchers to study flow regime change and its complication on the downstream biota. The present study planned to develop a framework for trend analyzing of river flow and detecting flow regime change after the inception of Isapur and Arunavati dams, situated on the upstream side of Penganga bridge. Mann-Kendall (MK) and Sen's slope estimator for trend analysis and Indicators of Hydrologic Alteration (IHA) for flow regime alteration analysis were utilized. A total 26 parameters showed negatively altered flow regime with a magnitude varying from - 5.56 to - 100%. Fourteen altered parameters were modified drastically (more than 50% decrease) with the highest modification in 30-day maximum (100%) post-single dam inception. a total of 13 parameters were negatively altered with alteration value - 9.09 to - 86.36% post-double dam inception, out of which, three parameters were severely altered, with the highest alteration in the month of June. The period (1983-1994) was more altered than 1995-2016. This shows that Isapur dam has higher impact on flow regime change than Arunavati dam. Information about alteration of hydrological parameters will be helpful to improve the water flow regulation at Isapur and Arunavati dams for restoring river ecology on the downstream side.


Subject(s)
Ecology , Water Movements , Hydrology , Biota , Rivers
17.
Anim Biotechnol ; 34(9): 4658-4666, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38347693

ABSTRACT

The enteric viruses in animals are responsible for severe and devastating losses to the livestock owners with a profound negative impact on animal, health, welfare, and productivity. These viruses are usually transmitted via the feco-oral route and primarily infect the digestive tract of the humans, bovines and different mammals as well as birds. Some of the important enteric viruses in ruminants are: Rotavirus A (RVA), Peste des petits virus (PPRV), Norovirus (NV), Bovine corona virus (BoCV) and Bluetongue virus (BTV). In the present study, sensitive, specific and reliable TaqMan probe-based RT-qPCRs were developed and standardized for the rapid detection and quantification of enteric viruses from fecal samples. The assays result in efficient amplification of the RVA, BTV and BoCV RNA with a limit of detection (LoD) of 5, 5 and 4 copies, respectively, which is 1000 times more sensitive than the traditional gel-based RT-PCR. The reproducibility of each assay was satisfactory, thus allowing for a sensitive and accurate measurement of the viral RNA load in clinical samples. In conclusion, real time PCR developed for these viruses are highly specific and sensitive technique for the detection of diarrheic viral pathogens of cattle and buffalo.


Subject(s)
Cattle Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Humans , Cattle , Animals , Peste-des-Petits-Ruminants/diagnosis , Reverse Transcriptase Polymerase Chain Reaction , Reproducibility of Results , Goats/genetics , Sensitivity and Specificity , Antigens, Viral , Cattle Diseases/diagnosis
18.
Int J Biol Macromol ; 223(Pt A): 511-523, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36368359

ABSTRACT

Starch in native form has limited application due to functional and physicochemical characteristics. To overcome these limitations, starch can be modified by non-thermal technologies such as high hydrostatic pressure (HHP). This study investigates high-pressure-induced gelatinization and the effect of this process on the structural, functional, morphological, pasting, thermal, physical and rheological properties of millet starch. The suspension of millet starch and water was pressurized at 200, 400 and 600 MPa for 10, 20 and 30 min to modify the starch in terms of structure, morphology, some physicochemical and rheological properties. Swelling strength and starch solubility decreased as a result of treatment with HHP. All treatments caused to increase in water holding capacity of the starch (from 0.66 % for native starch to 2.19 % for 600 MPa-30 min). Thermal analysis showed a decrease in gelatinization temperature and enthalpy of gelatinization and the pasting properties showed a decrease in the peak viscosity after HHP treatment. In addition, HHP treatment caused to increase in the hydration ability of starch by creating porosity and gaps in the granule surface and increasing the specific surface area. HHP application resulted in an increase in the peak time and pasting temperature and a decrease in breakdown and peak viscosities, final viscosity and setback viscosity in comparison with native starch of millet. The starch sample treated with 600 MPa for 30 min had the lowest syneresis and retrogradation ability. Increasing pressure and the time led to an increase in the elastic nature of the starch samples. According to the results, it is possible to increase usage area of starches in the food industry by improving its technological with HHP. This green physical technology can influence the quality parameters of starch, which can provide benefits for product machining and economic purposes.


Subject(s)
Pennisetum , Starch , Starch/chemistry , Pennisetum/chemistry , Viscosity , Rheology , Water
19.
Antiviral Res ; 207: 105407, 2022 11.
Article in English | MEDLINE | ID: mdl-36152816

ABSTRACT

Human rotaviruses (RVs) are the leading cause of severe diarrhea in infants and young children worldwide. Among the structural proteins, as a spike protein, rotavirus VP4 plays a key role in both viral attachment and penetration. Currently, studies on monoclonal antibodies (mAbs) against VP4 are limited. In this study, mice were immunized with truncated VP4* to produce murine mAbs. In total, 50 mAbs were produced and characterized. Twenty-four mAbs were genotype-specific and 20 mAbs recognized the common VP4 epitopes shared by P[8], P[4], and P[6] viruses. Thirty-five of the 50 mAbs were neutralizing mAbs, among which nine mAbs could neutralize all three P-genotype RVs, and 10 neutralizing mAbs exhibited conformational sensitivity. Ten mAbs recognized dominant neutralizing epitopes, including the broadly neutralizing mAb 9C4 recognized conformational epitope. Further investigation shows that S376 and S464 are key amino acids for 9C4 binding, however, the exact binding sites of 9C4 remain to be fully defined. Overall, this panel of mAbs has demonstrated utility as immunodiagnostic and research reagents, and could potentially serve as crucial tools for exploring the neutralizing mechanisms and quality control of VP4* protein-based RV subunit vaccines. Further evaluation of cross-neutralizing mAbs could not only improve the understanding of the heterotypic protection conferred by RV vaccines, but also facilitate the development of broadly protective RV vaccines.


Subject(s)
Rotavirus , Amino Acids , Animals , Antibodies, Monoclonal , Antibodies, Viral , Capsid Proteins/genetics , Child , Child, Preschool , Epitopes , Humans , Immunosuppressive Agents , Mice , Neutralization Tests , Spike Glycoprotein, Coronavirus
20.
Viruses ; 14(8)2022 08 15.
Article in English | MEDLINE | ID: mdl-36016397

ABSTRACT

Before the introduction of vaccines, group A rotaviruses (RVA) were the leading cause of acute gastroenteritis in children worldwide. The National Rotavirus Strain Surveillance System (NRSSS) was established in 1996 by the Centers for Disease Control and Prevention (CDC) to perform passive RVA surveillance in the USA. We report the distribution of RVA genotypes collected through NRSSS during the 2009-2016 RVA seasons and retrospectively examine the genotypes detected through the NRSSS since 1996. During the 2009-2016 RVA seasons, 2134 RVA-positive fecal specimens were sent to the CDC for analysis of the VP7 and VP4 genes by RT-PCR genotyping assays and sequencing. During 2009-2011, RVA genotype G3P[8] dominated, while G12P[8] was the dominant genotype during 2012-2016. Vaccine strains were detected in 1.7% of specimens and uncommon/unusual strains, including equine-like G3P[8] strains, were found in 1.9%. Phylogenetic analyses showed limited VP7 and VP4 sequence variation within the common genotypes with 1-3 alleles/lineages identified per genotype. A review of 20 years of NRSSS surveillance showed two changes in genotype dominance, from G1P[8] to G3P[8] and then G3P[8] to G12P[8]. A better understanding of the long-term effects of vaccine use on epidemiological and evolutionary dynamics of circulating RVA strains requires continued surveillance.


Subject(s)
Rotavirus Infections , Rotavirus , Antigens, Viral , Feces , Genotype , Phylogeny , Retrospective Studies , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...