Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.424
Filter
1.
Indian J Nucl Med ; 39(2): 83-86, 2024.
Article in English | MEDLINE | ID: mdl-38989319

ABSTRACT

Background: Radioactive solid and liquid waste generated by patients after high-dose iodine therapy may lead to significant radiation exposure if not properly handled. Aims and Objectives: This study was conducted to monitor the radiation exposure along the sewerage drainage system of the high-dose iodine therapy ward and to rule out leakage if any, that might pose a potential radiation hazard to the general public (sewerage workers) and radiation health professional. Materials and Methods: The sewerage drainage system from isolation wards has multiple gate valves to regulate sewerage flow from the high-dose iodine therapy ward into delay and decay tanks (DDT) built, especially for the purpose. Radiation surveillance was done using a Geiger-Muller counter-based survey meter at 11 different locations on a weekly basis for 12 weeks. Results: A total of 26 patients underwent high-dose iodine ablation therapy during the study period in our department, with the highest recorded radiation exposure rate in the sewerage draining system in the 9th week of patient admission. This was at the common gate valve junction (location B) that directed sewerage waste from all four isolation rooms into the common pipeline leading to DDT. Minimal radiation exposure was recorded within Atomic Energy Regulatory Board -prescribed limits with no evidence of leakage. Conclusion: A routine radiation survey is an important component of overall radiation safety in the nuclear medicine department, including sewerage delay tank facilities, which helps keep the radiation exposure to acceptable levels by identifying timely leakage.

2.
Imaging Sci Dent ; 54(2): 159-169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948188

ABSTRACT

Purpose: The aim of this study was to evaluate the influence of different cone-beam computed tomography (CBCT) acquisition protocols on reducing the effective radiation dose while maintaining image quality. Materials and Methods: The effective dose emitted by a CBCT device was calculated using thermoluminescent dosimeters placed in a Rando Alderson phantom. Image quality was assessed by 3 experienced evaluators. The relationship between image quality and confidence was evaluated using the Fisher exact test, and the agreement among raters was assessed using the kappa test. Multiple linear regression analysis was performed to investigate whether the technical parameters could predict the effective dose. P-values<0.05 were considered to indicate statistical significance. Results: The optimized protocol (3 mA, 99 kVp, and 450 projection images) demonstrated good image quality and a lower effective dose for radiation-sensitive organs. Image quality and confidence had consistent values for all structures (P<0.05). Multiple linear regression analysis resulted in a statistically significant model. The milliamperage (b=0.504; t=3.406; P=0.027), kilovoltage peak (b=0.589; t=3.979; P=0.016) and number of projection images (b=0.557; t=3.762; P=0.020) were predictors of the effective dose. Conclusion: Optimized CBCT acquisition protocols can significantly reduce the effective radiation dose while maintaining acceptable image quality by adjusting the milliamperage and projection images.

3.
World J Exp Med ; 14(2): 90374, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38948415

ABSTRACT

BACKGROUND: ATP sensitive K+ (KATP) channels are ubiquitously distributed in various of cells and tissues, including the liver. They play a role in the pathogenesis of myocardial and liver ischemia. AIM: To evaluate the radiation-induced changes in the expression of KATP channel subunits in the mouse liver to understand the potential role of KATP channels in radiation injury. METHODS: Adult C57BL/6 mice were randomly exposed to γ-rays at 0 Gy (control, n = 2), 0.2 Gy (n = 6), 1 Gy (n = 6), or 5 Gy (n = 6). The livers were removed 3 and 24 h after radiation exposure. Hematoxylin and eosin staining was used for morphological observation; immunohistochemical staining was applied to determine the expression of KATP channel subunits in the liver tissue. RESULTS: Compared with the control group, the livers exposed to 0.2 Gy γ-ray showed an initial increase in the expression of Kir6.1 at 3 h, followed by recovery at 24 h after exposure. Exposure to a high dose of 5.0 Gy resulted in decreased expression of Kir6.1 and increased expression of SUR2B at 24 h. However, the expression of Kir6.2, SUR1, or SUR2A had no remarkable changes at 3 and 24 h after exposure to any of these doses. CONCLUSION: The expression levels of Kir6.1 and SUR2B in mouse liver changed differently in response to different radiation doses, suggesting a potential role for them in radiation-induced liver injury.

4.
Ann Vasc Surg ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986839

ABSTRACT

OBJECTIVE: Fusion imaging systems have proved to reduce radiation exposure mostly in hybrid rooms but reports with mobile C-arms are few. The aim of this study was to analyse the impact of the Endonaut® navigation system on radiation exposure in endovascular aneurysm repair (EVAR) performed with mobile C-arms. METHODS: All patients undergoing EVAR and/or iliac branched devices implantation between January 2016 and August 2022 were included. All procedures were performed with a mobile C-arm (Siemens Avantic® or GE Elite® until March 2018, Siemens Cios Alpha® thereafter). The Endonaut® navigation system has been used since January 2021. Two groups were therefore compared : before (control group) and after the use of Endonaut®. Radiation data including Dose Area Product (DAP) values, Air Kerma (AK) and fluoroscopy time (FT) were collected retrospectively. RESULTS: Overall, 153 patients were included: control group (CGr), n = 121; Endonaut® group (EnGr), n = 32. No significant difference was found between the two groups regarding demographic data. DAP values were significantly lower in the EnGr (38 Gy.cm2 ± 24) vs. the CGr (76 Gy.cm2 ± 51) (p<.05) despite a significantly higher number of complex procedures such as iliac branched devices (p<.05). AK values were not significantly different between the EnGr and the CGr (196 mGy ± 114 vs. 209 mGy ± 138) as well as FT (33 minutes ± 18 vs. 33 minutes ± 16). Technical success was 97% (31/32) in the EnGr vs. 96% (116/121) in the CGr (p=.79). The volume of contrast media was significantly lower in the EnGr (94 cc ± 41) vs. the CGr (143 cc ± 66) (p<.05). CONCLUSION: In this study, the use of the Endonaut® angio-navigation system when performing EVAR with mobile C-arms led to a radiation dose reduction without compromising technical success or procedural time.

5.
Neurospine ; 21(2): 432-439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38955520

ABSTRACT

OBJECTIVE: Spine surgeons are often at risk of radiation exposure due to intraoperative fluoroscopy, leading to health concerns such as carcinogenesis. This is due to the increasing use of percutaneous pedicle screw (PPS) in spinal surgeries, resulting from the widespread adoption of minimally invasive spine stabilization. This study aimed to elucidate the effectiveness of smart glasses (SG) in PPS insertion under fluoroscopy. METHODS: SG were used as an alternative screen for fluoroscopic images. Operators A (2-year experience in spine surgery) and B (9-year experience) inserted the PPS into the bilateral L1-5 pedicles of the lumbar model bone under fluoroscopic guidance, repeating this procedure twice with and without SG (groups SG and N-SG, respectively). Each vertebral body's insertion time, radiation dose, and radiation exposure time were measured, and the deviation in screw trajectories was evaluated. RESULTS: The groups SG and N-SG showed no significant difference in insertion time for the overall procedure and each operator. However, group SG had a significantly shorter radiation exposure time than group N-SG for the overall procedure (109.1 ± 43.5 seconds vs. 150.9 ± 38.7 seconds; p = 0.003) and operator A (100.0 ± 29.0 seconds vs. 157.9 ± 42.8 seconds; p = 0.003). The radiation dose was also significantly lower in group SG than in group N-SG for the overall procedure (1.3 ± 0.6 mGy vs. 1.7 ± 0.5 mGy; p = 0.023) and operator A (1.2 ± 0.4 mGy vs. 1.8 ± 0.5 mGy; p = 0.013). The 2 groups showed no significant difference in screw deviation. CONCLUSION: The application of SG in fluoroscopic imaging for PPS insertion holds potential as a useful method for reducing radiation exposure.

6.
Clin Imaging ; 113: 110223, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38889519

ABSTRACT

This article explores the practice of immobilization during fluoroscopy procedures for infants, discussing its advantages and disadvantages. The authors examine contrasting policies and thoughts on immobilization across different medical institutions. While some advocate for its routine use to minimize patient motion, enhance imaging quality, and decrease radiation exposure, others question its necessity and raise concerns about patient consent and parental distress. Ethical dilemmas are also discussed regarding patient autonomy and psychological impact on families. The authors advocate for a balanced approach, recognizing the utility of immobilization in certain clinical scenarios while still emphasizing patient-centered care. Ultimately, the article underscores the importance of institutional policies that prioritize both patient safety and ethical principles in pediatric radiology practices.

7.
J Nippon Med Sch ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897951

ABSTRACT

Simple radiography is the most frequently and widely available technology to examine bone pathologies. Computed tomography (CT) can evaluate pathologies more accurately in multiple planes and three dimensions; however, radiation exposure is much higher than with simple radiography. In addition, diagnostic ability is decreased for both technologies when metal devices are present. Tomosynthesis is a radiographic technology used to evaluate tissues quasi-three-dimensionally with less radiation exposure. Tomosynthesis technology was recently upgraded to reduce the effects of metal artifacts. This case report compares examination time, medical expense, image resolution, and radiation exposure for upgraded tomosynthesis, simple radiography, CT, and standard tomosynthesis in three patients with metal devices in the affected knees. Examination times were similar for the imaging technologies. Diagnostic performance was better for upgraded tomosynthesis than for simple radiography and standard tomosynthesis, and similar to that for CT. Moreover, radiation exposure and expense were higher for tomosynthesis than for simple radiography but lower than for CT. These findings suggest that upgraded tomosynthesis is the best method for evaluating bone pathology when metal devices are present and radiation exposure must be limited.

8.
Front Public Health ; 12: 1388783, 2024.
Article in English | MEDLINE | ID: mdl-38903588

ABSTRACT

Background: Although data on outdoor gamma radiation are available for many countries, they have generally been obtained with measurements performed in undisturbed environments instead of in urban areas where most of the population lives. Only one large national survey, with on-site measurements in urban areas, has been identified worldwide, probably due to high costs (e.g., personnel and instrumentation) and difficulties in selecting measuring points. Methods: A campaign of outdoor gamma radiation measurements has been carried out in the entire Italian territory. All measurement points were selected at the infrastructures of an Italian telecommunications company as representatives of all the possible situations of outdoor exposure to gamma radiation for population in urban areas. Ten replicates of portable gamma (X) detectors carried out all the measurements. Results: Approximately 4,000 measurements have been performed. They are distributed across 2,901 Italian municipalities, accounting for 75% of the Italian population. The national population-weighted mean of the gamma ambient dose equivalent rate (ADER) is 117 nSv h-1, and it ranges from 62 to 208 nSv h-1 and from 40 to 227 nSv h-1 for 21 regions and 107 provinces, respectively. The average variability at the municipal level, in terms of the coefficient of variation (CV) is 21%, ranging from 3 to 84%. The impact of land coverage and the distance from a building on the outdoor gamma radiation level was assessed with complementary measurements, leading to differences ranging from -40 to 50% and to 50%, respectively. Conclusion: A representative campaign of outdoor gamma dose rate measurements has been performed in Italy, only in urban areas, to assess the exposure effect due to outdoor gamma radiation on the population. It is the largest national campaign in urban areas worldwide, with a total of 3,876 on-site measurements. The land coverage and the distance from surrounding buildings were recognized to strongly affect outdoor gamma radiation levels, leading to high variability within small areas. The collaboration with a company that owns a network of facilities on a national territory as dense as the residing population made this survey feasible and affordable. Other countries might adopt this methodology to conduct national surveys in urban environments.


Subject(s)
Gamma Rays , Italy , Humans , Urban Population/statistics & numerical data , Radiation Exposure/statistics & numerical data , Radiation Monitoring , Environmental Exposure/statistics & numerical data
9.
Abdom Radiol (NY) ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831076

ABSTRACT

PURPOSE: To provide detailed reports on radiation doses during transarterial chemoembolization (TACE) in the cone-beam computed tomography (CBCT) era and to identify the associated factors. METHODS: This retrospective study included 385 consecutive patients who underwent initial conventional TACE for hepatocellular carcinoma (HCC) between January 2016 and December 2017. In most cases, CBCT was performed at the common hepatic artery or celiac axis to confirm the location of the tumor and the three-dimensional hepatic artery anatomy. Superselective TACE was performed for all technically feasible cases. Information on total dose area product (DAP), total cumulative air kerma (CAK), fluoroscopy time, and DAP and CAK of each digital subtraction angiography (DSA) and CBCT scan was recorded. Multiple linear regression analysis was performed to identify the factors associated with increased DAP during TACE. RESULTS: The mean values of total DAP and CAK were 165.2 ± 81.2 (Gy·cm²) and 837.1 ± 571.0 (mGy), respectively. The mean fluoroscopy time was 19.1 ± 10.3 min. The mean DAP caused by fluoroscopy, DSA, and CBCT was 51.8 ± 43.9, 28.0 ± 24.1, and 83.9 ± 42.1 Gy·cm², respectively. Male sex, a high body mass index, largest tumor size > 3 cm, presence of aberrant right and left hepatic arteries, and superselective TACE were identified as independent predictors of increased total DAP during TACE. CONCLUSION: We were able to provide detailed reports on radiation doses during TACE and associated factors.

10.
J Thorac Dis ; 16(4): 2341-2352, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738257

ABSTRACT

Background: Intracardiac echocardiography (ICE) is a novel technology with certain advantages in treatment of atrial fibrillation (AF), yet there is limited research on the use of ICE in radiofrequency ablation for AF treatment in China. The aim of this study was to investigate the total fluoroscopy time and dose, safety, and effectiveness of ICE guided vs. traditional fluoroscopy (non-ICE) guided radiofrequency ablation for AF in China. Methods: We conducted a single-center retrospective analysis of patients who underwent ICE or traditional fluoroscopy-guided radiofrequency ablation for AF. The primary endpoint of this study was total fluoroscopy time, and the secondary endpoints included total fluoroscopy dose, acute surgery failure, transseptal puncture time, ablation time, total procedure time, and 6-month surgery success (no AF recurrence or atrial flutter). As an exploratory analysis, outcomes of interest by different types of AF were examined. Results: A total of 97 patients were included in the analysis. Forty-eight were in the ICE group and 49 were in the non-ICE group with comparable demographic and clinical characteristics at the baseline. None of patients experienced acute surgery failure with no major procedure-related complications occurred. The fluoroscopic time and dose were significantly lower in the ICE group compared to the non-ICE group (0.00 vs. 9.67±4.88 min, P<0.001; 0.00 vs. 77.10±44.28 mGy/cm2, P<0.001, respectively). There were no statistically significant differences in transseptal puncture time, ablation time and total procedure time between the two groups. There were two AF recurrences observed during the 6-month follow-up in each group (P>0.99). Conclusions: ICE significantly reduced the fluoroscopic time and dose for radiofrequency catheter ablation in AF patients. There were no significant differences in safety or effectiveness outcomes between the ICE and non-ICE groups.

11.
J Clin Med ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38792543

ABSTRACT

(1) Background. Digital subtraction angiography (DSA) is indispensable for diagnosing cerebral aneurysms due to its superior imaging precision. However, optimizing X-ray parameters is crucial for accurate diagnosis, with X-ray tube settings significantly influencing image quality. Understanding the relationship between skull dimensions and X-ray parameters is pivotal for tailoring imaging protocols to individual patients. (2) Methods. A retrospective analysis of DSA data from a single center was conducted, involving 251 patients. Cephalometric measurements and statistical analyses were performed to assess correlations between skull dimensions and X-ray tube parameters (voltage and current). (3) Results. The study revealed significant correlations between skull dimensions and X-ray tube parameters, highlighting the importance of considering individual anatomical variations. Gender-based differences in X-ray parameters were observed, emphasizing the need for personalized imaging protocols. (4) Conclusions. Personalized approaches to DSA imaging, integrating individual anatomical variations and gender-specific differences, are essential for optimizing diagnostic outcomes. While this study provides valuable insights, further research across multiple centers and diverse imaging equipment is warranted to validate these findings.

12.
Cureus ; 16(4): e58787, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38784365

ABSTRACT

BACKGROUND: The use of posterior lumber interbody fusion (PLIF) using cortical bone trajectory (CBT) with a patient-specific 3D template guide is increasingly widespread. To our knowledge, no studies have extensively evaluated the reduction of radiation exposure when using patient-specific drill template guides. The purpose of this study is to compare the intra-operative radiation dose and surgeon's exposure to radiation in CBT-PLIF when using a patient-specific drill guide with that in traditional minimally invasive (MIS)-PLIF. METHODS: In this observational study, we retrospectively compared data from five patients who were treated with single-level CBT-PLIF using a patient-specific drill guide (G group) and five patients who were treated with single-level traditional MIS-PLIF (M group). We compared the surgical time, surgeon's exposure to radiation, and intra-operative radiation time and dose between the two groups of patients. RESULTS: The mean age of the patients was 67.0 years in the M group and 74.2 years in the G group. The average surgical time was 242.8 min in the M group and 189.6 min in the G group (p = 0.020). The surgeon's exposure to radiation was 373.7 µSv in the M group and 81.75 µSv in the G group at chest level outside the protector (p = 0.00092); 42.0 µSv (M group) and 3.6 µSv (G group) at chest level inside the protector (p = 0.0000062); and 4.33 µSv (M group) and 1.20 µSv (G group) at the buttocks of the surgeon (p = 0.0013). Radiation time was 269.8 s (M group) and 56.6 s (G group) (p = 0.0097), and radiation dose was 153.7 mGy (M group) and 30.42 mGy (G group) (p = 0.00057). CONCLUSION: The patient-specific drill template guide is an invaluable tool that facilitates the safe insertion of CBT screws with a low radiation dose from the outset.

13.
Gels ; 10(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38786207

ABSTRACT

Ionizing radiation covers a broad spectrum of applications. Since radioactive/radiation pollution is directly related to radiation risk, radiation levels should be strictly controlled. Different detection methods can be applied for radiation registration and monitoring. In this paper, radiation-induced variations in the optical properties of silver-enriched PVA-based hydrogel films with and without azo dye (Toluidine blue O, TBO, and Methyl red, MR) additives were investigated, and the feasibility of these free-standing films to serve as radiation detectors/exposure indicators was assessed. AgNO3 admixed with PVA gel was used as a source for the radiation-induced synthesis of silver nanoparticles (AgNPs) in irradiated gel films. Three types of sensors were prepared: silver-enriched PVA films containing a small amount of glycerol (AgPVAGly); silver-enriched PVA films with toluidine blue adducts (AgPVAGlyTBO); and silver-enriched PVA films with methyl red additives (AgPVAGlyMR). The selection of TBO and MR was based on their sensitivity to irradiation. The irradiation of the samples was performed in TrueBeam2.1 (VARIAN) using 6 MeV photons. Different doses up to 10 Gy were delivered to the films. The sensitivity of the films was assessed by analyzing the characteristic UV-Vis absorbance peaks on the same day as irradiation and 7, 30, 45, 90, and 180 days after irradiation. It was found that the addition of azo dyes led to an enhanced radiation sensitivity of the AgNPs containing films (0.6 Gy-1 for AgPVAGlyTBO and 0.4 Gy-1 for AgPVAGlyMR) irradiated with <2 Gy doses, indicating their applicability as low-dose exposure indicators. The irradiated films were less sensitive to higher doses. Almost no dose fading was detected between the 7th and 45th day after irradiation. Based on the obtained results, competing AgNP formation and color-bleaching effects in the AgPVAGly films with dye additives are discussed.

14.
Diagnostics (Basel) ; 14(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786308

ABSTRACT

INTRODUCTION: The biokinetics of radioiodine (RAI) in thyroid cancer patients are complex. This study aims to develop a practical approach for assessing RAI biokinetics to predict patient discharge time and estimate radiation exposure to caregivers. METHODS: We retrospectively reviewed data from patients with differentiated thyroid carcinoma undergoing RAI treatment. Serial radiation dose rates were dynamically collected during hospitalization and fitted to a biexponential model to assess the biokinetic features: RAI uptake fraction of thyroid tissue (Ft) and effective half-life of extra-thyroid tissue (Tet). Correlations with 99mTc thyroid uptake ratio (TcUR), radiation retention ratio (RR), renal function, and body mass index (BMI) were analyzed. RESULTS: Thirty-five patients were enrolled. The derived Ft was 0.08 ± 0.06 and Tet was 7.57 ± 1.45 h. Pearson's correlation analysis revealed a significant association between Ft and both TcUR and RR (p < 0.05), while Tet correlated with renal function and BMI (p < 0.05). CONCLUSION: This novel and practical method assessing RAI biokinetics demonstrates consistency with other parameters and related studies, enhancing the model reliability. It shows promise in predicting an appropriate discharge time and estimating radiation exposure to caregivers, allowing for modifications to radiation protection precautions to follow ALARA principle and minimize the potential risks from radiation exposure.

15.
J Radiol Prot ; 44(2)2024 May 28.
Article in English | MEDLINE | ID: mdl-38754384

ABSTRACT

To address points arising from the recent study of nuclear workers in the USA and the International Nuclear Workers Study (INWORKS), concerning the difference in solid cancer risk estimates between those first hired in earlier and later calendar years, subsidiary analyses were conducted on a cohort of 172 452 workers in the National Registry for Radiation Workers (NRRW) from the UK. A total of 18 310 incident first primary solid cancer cases were registered in the period from 1955 until 2011 in the NRRW cohort and workers accrued 5.25 million person-years of follow-up. Incidences rates of all solid cancers combined, lung cancer and solid cancer excluding lung cancer were examined in terms of external radiation doses in the full cohort and in a sub-cohort of workers who had no record of internal exposure monitoring and were defined by the periods of first hire before and after the beginning of the years 1960, 1965 and 1970. All analyses were carried out using Poisson Regression. These analyses demonstrated that only for lung cancer between the pre-1965 and post-1964 periods is there strong evidence for a difference in the risks using the NRRW full cohort. In the other calendar period breakdowns and for the other cancer groups, there is no clear evidence of differences in the risks. The NRRW estimation of risks between recent and early workers is not generally consistent with the US workers cohort or the INWORKS evaluations that later hired workers are at much higher solid cancer risk than earlier hired workers, although INWORKS contains a significant part of the latest updated NRRW cohort as well as the US data. The conclusion that the INWORKS and US study data demonstrate a real difference in excess solid cancer risk from external radiation exposure between earlier and later workers is premature. The results presented here should also be treated with caution because of the limited corroborating evidence from other published studies. Information on internal doses, neutron doses as well as non-radiation factors such as smoking and asbestos exposure would be needed to make definitive inferences.


Subject(s)
Neoplasms, Radiation-Induced , Occupational Diseases , Occupational Exposure , Humans , United Kingdom/epidemiology , Neoplasms, Radiation-Induced/epidemiology , Incidence , Occupational Exposure/history , Male , Occupational Diseases/epidemiology , Occupational Diseases/history , Female , Middle Aged , Adult , Neoplasms/epidemiology , Registries , Lung Neoplasms/epidemiology
16.
BMC Gastroenterol ; 24(1): 173, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762503

ABSTRACT

BACKGROUND: There have been previous studies and earlier systematic review on the relationship between inflammatory bowel disease (IBD) and radiation exposure. With the diversification of current test methods, this study intended to conduct a meta-analysis to evaluate the IBD radiation exposure in recent years. METHODS: Three databases (PUBMED, EMBASE, and MEDICINE) for relevant literature up to May 1, 2023 were searched. The statistical data meeting requirements were collated and extracted. RESULTS: 20 papers were enrolled. The overall high radiation exposure rate was 15% (95% CI = [12%, 19%]) for CD and 5% (95% CI = [3%, 7%]) for UC. The pooled result found that high radiation exposure rate was 3.44 times higher in CD than in UC (OR = 3.44, 95% CI = [2.35, 5.02]). Moreover, the average radiation exposure level in CD was 12.77 mSv higher than that in UC (WMD = 12.77, 95% CI = [9.93, 15.62] mSv). Furthermore, radiation exposure level of CD after 2012 was higher than those before 2012 (26.42 ± 39.61vs. 23.76 ± 38.46 mSv, P = 0.016), while UC did not show similar result (11.99 ± 27.66 vs. 10.01 ± 30.76 mSv, P = 0.1). Through subgroup analysis, it was found that disease duration (WMD = 2.75, 95% CI = [0.10, 5.40] mSv), complications (OR = 5.09, 95% CI = [1.50, 17.29]), and surgical history (OR = 5.46, 95% CI = [1.51, 19.69]) significantly increased the proportion of high radiation exposure. CONCLUSION: This study found that radiation exposure level of IBD patients was high, which revealed the radiation risk in the process of diagnosis and treatment of IBD patients. In the future, longer follow-up and prospective studies are needed to reveal the relationship between high radiation exposure and solid tumorigenesis.


Subject(s)
Radiation Exposure , Humans , Radiation Exposure/adverse effects , Colitis, Ulcerative , Inflammatory Bowel Diseases , Crohn Disease , Radiation Dosage
17.
Respirology ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806394

ABSTRACT

BACKGROUND AND OBJECTIVE: Robotic-assisted bronchoscopy (RAB) is an emerging modality to sample pulmonary lesions. Cone-beam computed tomography (CBCT) can be incorporated into RAB. We investigated the magnitude and predictors of patient and staff radiation exposure during mobile CBCT-guided shape-sensing RAB. METHODS: Patient radiation dose was estimated by cumulative dose area product (cDAP) and cumulative reference air kerma (cRAK). Staff equivalent dose was calculated based on isokerma maps and a phantom simulation. Patient, lesion and procedure-related factors associated with higher radiation doses were identified by logistic regression models. RESULTS: A total of 198 RAB cases were included in the analysis. The median patient cDAP and cRAK were 10.86 Gy cm2 (IQR: 4.62-20.84) and 76.20 mGy (IQR: 38.96-148.38), respectively. Among staff members, the bronchoscopist was exposed to the highest median equivalent dose of 1.48 µSv (IQR: 0.85-2.69). Both patient and staff radiation doses increased with the number of CBCT spins and targeted lesions (p < 0.001 for all comparisons). Patient obesity, negative bronchus sign, lesion size <2.0 cm and inadequate sampling by on-site evaluation were associated with a higher patient dose, while patient obesity and inadequate sampling by on-site evaluation were associated with a higher bronchoscopist equivalent dose. CONCLUSION: The magnitude of patient and staff radiation exposure during CBCT-RAB is aligned with safety thresholds recommended by regulatory authorities. Factors associated with a higher radiation exposure during CBCT-RAB can be identified pre-operatively and solicit procedural optimization by reinforcing radiation protective measures. Future studies are needed to confirm these findings across multiple institutions and practices.

18.
J Gastroenterol ; 59(6): 437-441, 2024 06.
Article in English | MEDLINE | ID: mdl-38703187

ABSTRACT

Fluoroscopy-guided gastrointestinal procedures, including gastrointestinal stenting, balloon-assisted endoscopy (BAE), endoscopic retrograde cholangiopancreatography (ERCP), and endoscopic ultrasound (EUS), are essential for diagnosis and treatment in gastroenterology. Such procedures involve radiation exposure that necessitates strict safety measures to protect patients, doctors, and medical staff. The April 2020 update to Japan's Ionizing Radiation Injury Prevention Regulations for occupational exposure reduced the lens exposure dose limit to approximately one-seventh of its previous level. This change highlights the need for improved safety protocols. Without adaptation, the sustainability of fluoroscopy-based endoscopic techniques could be at risk due to the potential to exceed these new limits. This review examines the current state of medical radiation exposure in the field of gastroenterology in Japan and discusses the findings of the REX-GI study.


Subject(s)
Gastroenterology , Occupational Exposure , Radiation Exposure , Radiation Protection , Humans , Japan , Gastroenterology/methods , Gastroenterology/standards , Occupational Exposure/prevention & control , Occupational Exposure/adverse effects , Radiation Protection/methods , Radiation Exposure/prevention & control , Radiation Exposure/adverse effects , Fluoroscopy/adverse effects , Fluoroscopy/methods , Radiation Injuries/prevention & control , Radiation Dosage
19.
Regen Ther ; 27: 398-407, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38694446

ABSTRACT

Background: Ionizing radiation-induced lung injury is caused by the initial inflammatory reaction and leads to advanced fibrosis of lung tissue. Adipose-derived stem cells (ASCs) are a type of mesenchymal stem cell that can differentiate into various functional cell types with broad application prospects in the treatment of tissue damage. The purpose of this study was to explore the protective effect of ASCs against radiation-induced lung injury and to provide a novel basis for prevention and treatment of radiation-induced lung injury. Materials and methods: Fifty mice were randomly divided into a control group (Ctrl), radiation exposure group (IR), radiation exposure plus ASC treatment group (IR + ASC), radiation exposure plus L-257 group (IR + L-257), and radiation exposure plus ASC treatment and L-257 group (IR + ASC + L-257). Mice in IR, IR + ASC, and IR + ASC + L-257 groups were exposed to a single whole-body dose of 5 Gy X-rays (160 kV/25 mA, 1.25 Gy/min). Within 2 h after irradiation, mice in IR + ASC and IR + ASC + L-257 groups were injected with 5 × 106 ASCs via the tail vein. Mice in IR + L-257 and IR + ASC + L-257 groups were intraperitoneally injected with 30 mg/kg L-257 in 0.5 mL saline. Results: The mice in the IR group exhibited lung hemorrhage, edema, pulmonary fibrosis, and inflammatory cell infiltration, increased release of proinflammatory cytokines, elevation of oxidative stress and apoptosis, and inhibition of the dimethylarginine dimethylamino hydratase 1 (DDAH1)/ADMA/eNOS signaling pathway. ASC treatment alleviated radiation-induced oxidative stress, apoptosis, and inflammation, and restored the DDAH1/ADMA/eNOS signaling pathway. However, L-257 pretreatment offset the protective effect of ASCs against lung inflammation, oxidative stress, and apoptosis. Conclusions: These data suggest that ASCs ameliorate radiation-induced lung injury, and the mechanism may be mediated through the DDAH1/ADMA/eNOS signaling pathway.

20.
Risk Manag Healthc Policy ; 17: 1093-1100, 2024.
Article in English | MEDLINE | ID: mdl-38707521

ABSTRACT

Introduction: This research seeks to evaluate the occupational radiation dose, quantified as the whole-body Annual Mean Effective Dose (AMED), received by anesthesia personnel in interventional cardiology. Methods: Thermoluminescent dosimetry data was collected over five years (2019-2023) for a total of 175 anesthesia staff. Technologists comprised approximately 72.4% of the participants (55% male and 45% female), while consultants accounted for 27.6% (70% male and 30% female). Statistical tests, including Independent Samples T-Test and One-Way ANOVA, compared AMED across genders, job titles, and years. Results: The study's findings on AMED across all staff from 2019 to 2023 showed marked variability in AMED. There was a significant rise in AMED from 0.72 mSv in 2019 to 0.92 mSv in 2020, then a decline to 0.82 mSv in 2021, with further decreases to 0.67 mSv in 2022 and finally to 0.65 mSv in 2023 (p < 0.001). The average AMED over the five-year span (2019-2023) was 0.76 ± 0.4 mSv. In terms of gender, the overall AMED for males was 0.73 ± 0.36 mSv and for females 0.79 ± 0.45 mSv, showing no significant statistical difference (p = 0.272). Significant differences in exposure were observed between the technologists who experienced a higher overall AMED (0.8 ± 0.43 mSv) compared to consultants (0.63 ± 0.29 mSv, p = 0.008). Discussion: Despite these variations, AMED values remained lower than the annual occupational dose limit of 20 mSv, indicating generally low radiation exposure for anesthesia staff. This study emphasizes the importance of ongoing monitoring and enhanced protective measures to safeguard the health of medical professionals working with radiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...