Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 960
Filter
1.
Sci Total Environ ; 947: 174545, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972399

ABSTRACT

Rain gardens are widely used for low impact development (LID) or as a nature-based solution (NbS). They help to reduce runoff, mitigate hot temperatures, create habitats for plants and insects, and beautify landscapes. Rain gardens are increasingly being established in urban areas. In Taiwan, the Ministry of Environment (MoE) initiated a rain garden project in Taipei city in 2018, and 15 rain gardens have since been constructed in different cities. These Taiwanese-style rain gardens contain an underground storage tank to collect the filtrated rainwater, which can be used for irrigation. Moreover, the 15 rain gardens are equipped with sensors to monitor temperature, rainfall, and underground water levels. The monitoring data were transmitted with Internet of Things (IoT) technology, enabling the capture and export of real-time values. The water retention, temperature mitigation, water quality, and ecological indices of the rain gardens were quantified using field data. The results from the young rain gardens (1-3 years) showed that nearly 100 % of the rainfall was retained onsite and did not flow out from the rain gardens; however, if the stored water was not used and the tanks were full, the rainwater from subsequent storms could not be stored, and the tanks overflowed. The surface temperatures of the rain garden and nearby impermeable pavement differed by an average of 2-4 °C. This difference exceeded 20 °C in summer at noon. The water in the underground storage tanks had very low levels of SS and BOD, with averages of 1.6 mg/L and 5.6 mg/L, respectively. However, the E. coli concentrations were high, and the average was 6283 CFU/100 mL; therefore, washing or drinking water is not recommended. The ecological indices, i.e., the Shannon and Simpson indices, demonstrated the good flora status of the rain gardens after one year. Although the weather differed by city, the performance of the rain gardens in terms of water retention, temperature mitigation, rainwater harvesting, and providing biological habitats was consistent. However, maintenance influences rain garden performance. If the stored water is not frequently used, the stored volume is reduced, and the stored water quality degrades.

2.
Tree Physiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982738

ABSTRACT

To understand the role of reactive oxygen species (ROS) in regulation of the plasma membrane (PM) H+-ATPase in acid-stressed Masson pine roots, different acidity (pH 6.6 as the control, pH 5.6, and pH 4.6) of simulated acid rain (SAR) added with and without external chemicals [H2O2, enzyme inhibitors, and ROS scavenger] was prepared. After 30 days of SAR exposure, the plant morphological phenotype attributes, levels of cellular ROS and lipid peroxidation, enzymatic activities of antioxidants, PM nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and PM H+-ATPase activity in pine seedlings were measured. Compared to the control, the growth of pine seedlings exposed to SAR in the presence or absence of H2O2 was well-maintained, but the application of Na3VO4, 1,3-Dimethyl-2-thiourea, N, N-dimethylthiourea (DMTU), and diphenyleneiodonium chloride (DPI) caused a substantial growth inhibition. In addition, SAR exposure, SAR with H2O2 treatment, and SAR with Na3VO4 treatment increased the cellular H2O2 content, O2·- content, and malondialdehyde (MDA) content, while the use of DMTU and DPI lead to relatively low levels. Similarly, the enzymatic activities of antioxidants, PM NADPH oxidase, and PM H+-ATPase in acid stressed pine seedlings elevated with the increasing acidity. A significant stimulation of these enzymatic activities obtained from SAR with H2O2 treatment was observed, whereas which decreased obviously with the addition of Na3VO4, DMTU, and DPI (P < 0.05). Moreover, a positive correlation was found between plant morphological attributes and the PM H+-ATPase activity (P < 0.05). Besides, the PM H+-ATPase activity positively correlated with the cellular ROS contents and the enzymatic activities of antioxidants and PM NADPH oxidase (P < 0.05). Therefore, the PM H+-ATPase is instrumental in the growth of pine seedlings resisting to acid stress by enhancing its activity. The process involves the signaling transduction of cellular ROS and coordination with PM NADPH oxidase.

3.
HCA Healthc J Med ; 5(2): 181-182, 2024.
Article in English | MEDLINE | ID: mdl-38984224

ABSTRACT

Description Death does not thrill me anymore. I am a trauma surgeon extraordinaire! The patient had suffered a traumatic brain injury and has struggled for weeks. He is only 16. Today, the family decided to make him "comfort care." I was at the end of my call, exhausted, drained of all energy. I looked out of the ICU window and saw the fading rain and the city lights. It somehow reminded me of a precious life ebbing away, and I burst into a silent scream. I am still human.

4.
Sensors (Basel) ; 24(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38894118

ABSTRACT

The prediction and prevention of landslide hazard is a challenging topic involving the assessment and quantitative evaluation of several elements: geological and geomorphological setting, rainfalls, and ground motion. This paper presents the multi-approach investigation of the Nevissano landslide (Asti Province, Piedmont, NW Italy). It shows a continuous and slow movement, alongside few paroxysmal events, the last recorded in 2016. The geological and geomorphological models were defined through a field survey. An inventory of the landslide's movements and rainfall records in the period 2000-2016 was performed, respectively, through archive investigations and the application of "Moving Sum of Daily Rainfall" method, allowing for the definition of rain thresholds for the landslide activation (105 mm and 193 mm, respectively, in 3 and 30 days prior to the event). The displacements over the last 8 years (2016-2023) were monitored through an innovative in-continuum monitoring inclinometric system and Earth Observation (EO) data (i.e., relying on Interferometric Synthetic Aperture Radar, or InSAR data): it gave the opportunity to validate the rainfall thresholds previously defined. This study aims to provide information to public authorities for the appropriate management of the site. Moreover, the proposed workflow could be adopted as a guideline for investigating similar situations.

5.
Chemosphere ; 362: 142565, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871187

ABSTRACT

Compared to the particle-gas partition coefficients (KPG), the rain-gas (KRG) and snow-gas (KSG) partition coefficients are also essential in studying the environmental behavior and fate of chemicals in the atmosphere. While the temperature dependence for the KPG have been extensively studied, the study for KRG and KSG are still lacking. Adsorption coefficients between water surface-air (KIA) and snow surface-air (KJA), as well as partition coefficients between water-air (KWA) and octanol-air (KOA) are vital in calculating KRG and KSG. These four basic adsorption and partition coefficients are also temperature-dependent, given by the well-known two-parameters Antoine equation logKXY = AXY + BXY/T, where KXY is the adsorption or partition coefficients, AXY and BXY are Antoine parameters (XY stand for IA, JA, WA, and OA), and T is the temperature in Kelvin. In this study, the parameters AXY and BXY are calculated for 943 chemicals, and logKXY can be estimated at any ambient temperature for these chemicals using these Antoine parameters. The results are evaluated by comparing these data with published experimental and modeled data, and the results show reasonable accuracy. Based on these coefficients, temperature-dependence of logKRG and logKSG is studied. It is found that both logKRG and logKSG are linearly related to 1/T, and Antoine parameters for logKRG and logKSG are also estimated. Distributions of the 943 chemicals in the atmospheric phases (gas, particle, and rain/snow), are illustrated in a Chemical Space Map. The findings reveal that, at environmental temperatures and precipitation days, the dominant state for the majority of chemicals is the gaseous phase. All the AXY and BXY values for logKSG, logKRG, and basic adsorption and partition coefficients, both modeled by this study and collected from published work, are systematically organized into an accessible dataset for public utilization.

6.
Sci Total Environ ; 946: 174067, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908608

ABSTRACT

Heavy rainfall and flooding disasters are increasing due to global warming. A clear understanding of the mechanism of heavy rain and floods is the basic premise of disaster risk management. However, most previous studies emphasized more on the single anomalous signal from the average state in the whole season, which may neglect the combined influence of multiple signals in the ocean-atmosphere and differential characteristics of anomalous signals at different periods. Here, our study aimed to reveal the possible influence mechanism of heavy rain and floods in the middle and lower reaches of the Yangtze River Basin (MLRYRB) by systematically analyzing the monthly-scale and daily-scale ocean-atmosphere anomaly patterns in the preceding periods of heavy rainfall and flooding events. The results showed that heavy rainfall and flooding events were highly likely to occur in the region one month after El Niño decayed, with the flooding intensity in June having the negative correlation with the sea ice concentration anomaly in the Arctic with a lag of about 5 months (150 days). Besides, North Atlantic Oscillation, Western Pacific subtropical high, blocking, East Asian subtropical westerly jet, and the water vapor fluxes from the Arabian Sea and western Pacific Ocean could be used as the anomalous signals inducing heavy rain and floods. The daily-scale conceptual model inducing heavy rainfall and flooding events was built based on the patterns of all anomalous signals, which detailed the possible impact mechanism of heavy rain and floods in the region. By making targeted forecasts of anomalous signals and using this information in water resources planning and management based on climate mechanisms, it will have a significant impact on water management in the country.

7.
Chemosphere ; 362: 142543, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866339

ABSTRACT

Rain gardens, a type of green infrastructure (GI), have been recognized for mitigating flooding and improving water quality from minor storms by trapping stormwater pollutants. Yet, the capability of these systems to retain microplastics (MPs) from stormwater, especially in size <125 µm, remains inadequately understood. This study investigated the spatial and temporal distributions of MPs in three rain gardens located in Newark, New Jersey, USA. The rain gardens have been in operation for ∼7 years and located in different land uses: low-density residential (Site 1), commercial (Site 2), and high-density residential (Site 3). The sediment samples were collected during May 2022, August 2022, and February 2023 at various soil depths and horizontal distances of rain gardens. The MPs were quantified and characterized using Fourier transform infrared (FTIR) spectrometer and a Raman microscope. The overall mean concentration varied between sampling sites, with 469 ± 89.8 pkg-1 in Site 1, 604 ± 91.4 pkg-1 in Site 2, and 997 ± 64.3 pkg-1 in Site 3, with Polypropylene as the dominant polymer, followed by nylon and polyethylene. In the vertical direction, larger MPs (250 µm-5 mm) were effectively retained within the top 5 cm and their concentration declined exponentially with the increasing depths. Small-sized MPs (1-250 µm) were prevalent at deeper depths (≥ 10 cm), and no MPs were found below 15 cm. In the horizontal direction, the highest MP concentration was observed near the stormwater inlet, and the concentration decreased away from the inlet. Over the nine-month period, a notable increase in concentration was observed at all sites. These findings contribute valuable knowledge towards developing effective measures for retaining MPs from stormwater and monitoring GIs in urban environments.

8.
J Hazard Mater ; 476: 134994, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38909472

ABSTRACT

Chemical stabilization is one of the most widely used remediation strategies for chromium (Cr)-contaminated soils by reducing Cr(VI) to Cr(III), and its performance is affected by human and natural processes in a prolonged period, challenging long-term Cr stability. In this work, we established a method for evaluating the long-term effectiveness of remediation of Cr-contaminated soils, and developed an accelerated aging system to simultaneously simulate acid rain leaching and freeze-thaw cycles. The mechanisms and influencing factors of long-term (50-year) change in soil Cr speciation were unravelled after stabilization with Metafix®. Chemical stabilization remarkably decreased the contents of Cr(VI)soil, Crtotal-leach and Cr(VI)leach, among which the removal rate of Cr(VI) in soil was up to 89.70 %, but it also aggravated soil Cr instability. During the accelerated aging process, Crtotal-leach change rates in chemically stabilized soil samples were 0.0462-0.0587 mg/(L·a), and soil Cr became instable after 20-year accelerated aging. The proportion of Cr bound to organic matter and residual Cr increased in soil, and exchangeable Cr decreased. Linear combination fitting results of XANES also showed that Cr(VI) and Cr3+ were transformed into OM-Cr(III), Fh-Cr(III) and CrFeO3 after restoration. During the accelerated aging process, acid rain leaching activated Cr(III) and dissolved Cr(VI), whereas freeze-thaw cycle mainly affected OM-Cr. Chemical stabilization, acid rain leaching and aging time were the major factors influencing the stability of soil Cr, and the freeze-thaw cycle promoted the influence of acid rain leaching. This study provided a new way to explore the long-term effectiveness and instability mechanisms at Cr-contaminated site after chemical stabilization.

9.
Proc Natl Acad Sci U S A ; 121(27): e2319664121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917003

ABSTRACT

Rain formation is a critical factor governing the lifecycle and radiative forcing of clouds and therefore it is a key element of weather and climate. Cloud microphysics-turbulence interactions occur across a wide range of scales and are challenging to represent in atmospheric models with limited resolution. Based on past experiments and idealized numerical simulations, it has been postulated that cloud turbulence accelerates rain formation by enhancing drop collision-coalescence. We provide substantial evidence for significant impacts of turbulence on the evolution of cloud droplet size distributions and rain formation by comparing high-resolution observations of cumulus congestus clouds with state-of-the-art large-eddy simulations coupled with a Lagrangian particle-based microphysics scheme. Turbulent coalescence must be included in the model to accurately represent the observed drop size distributions, especially for drizzle drop sizes at lower heights in the cloud. Turbulence causes earlier rain formation and greater rain accumulation compared to simulations with gravitational coalescence only. The observed rain size distribution tail just above cloud base follows a power law scaling that deviates from theoretical scalings considering either a purely gravitation collision kernel or a turbulent kernel neglecting droplet inertial effects, providing additional evidence for turbulent coalescence in clouds. In contrast, large aerosols acting as cloud condensation nuclei ("giant CCN") do not significantly impact rain formation owing to their long timescale to reach equilibrium wet size relative to the lifetime of rising cumulus thermals. Overall, turbulent drop coalescence exerts a dominant influence on rain initiation in warm cumulus clouds, with limited impacts of giant CCN.

10.
Rev Infirm ; 73(302): 29-30, 2024.
Article in French | MEDLINE | ID: mdl-38901908

ABSTRACT

A great deal of work has been undertaken to ensure that certain swimming events (open water and triathlon) at the Olympic and Paralympic Games can be held in the Seine under sanitary conditions that respect the health of the athletes. They will be the first to take the plunge in this river, but the aim is to speed up the process of making it possible for the people of Ile-de-France to swim in it too, as well as in the Marne.


Subject(s)
Swimming , Humans , France , Water Quality , Athletes , History, 20th Century
11.
Sci Total Environ ; 945: 174132, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38908584

ABSTRACT

Green and grey roofs have emerged as promising and sustainable measures for effectively managing stormwater in urban catchments. However, there is a gap in the literature in understanding and modelling the hydrological performance of these roofs during winter and snow-covered periods in cold climate regions. The present study attempted to address this gap by validating the use of a snow module in simulating the dynamics of snow accumulation and melting of green and grey roofs. Then, the validated model was used to identify and separate the different events that occur in winter (melt only, rainfall only, rain-on-snow) to assess the hydrological performance of six different configurations of green and grey roofs in Trondheim, Norway. The snow module accurately simulated snow accumulation and melting of green and grey roofs. The results showed that rain-on-snow events in winter have longer duration compared to other events including rainfall events in summer. Consequently, rain-on-snow events yield a higher amount of inflow to the roofs compared to rainfall events in summer, despite summer events having higher intensities. The retention and detention performances of green and grey roofs were found to be lowest for rain-on-snow events compared to other types of events, but still yielding significantly lower peak runoffs when compared to standard black roofs. The decrease in retention and detention performances in winter were attributed to the long duration of events, accumulation effect of snow, freezing of roof surface layers, and reduction of evapotranspiration. The study highlights the importance of considering winter conditions in the design of green and grey roofs in cold climates to enhance stormwater management.

12.
Article in English | MEDLINE | ID: mdl-38829498

ABSTRACT

Urban areas constitute a major hotspot of litter, including plastic litter, that stormwater can wash off towards waterways. However, few studies quantified and characterized litter densities in urban areas and fluxes transported by stormwater networks. Moreover, little information is available on litter transport dynamics in stormwater, and on the factors driving this transport. This study aims at characterizing and quantifying litter amounts transported by stormwater of two nested French urban catchments (total surface area of 105 ha). Litter densities relative to land uses and rain events were investigated in the same catchments as in a compagnon paper (Ledieu et al., 2024). The present study explores the impact of rain events on the transport of urban litter in stormwater. Litter collection and characterization combined with a capture/recapture experiment using tagged litter placed in stormwater inlets show total litter fluxes of 29 kg/year, in which 14 kg/year are plastics, exported at the stormwater outlet. These fluxes confirm that stormwater runoff is a considerable pathway from urban surfaces to waterways, especially regarding small plastic litter (< 2.5 cm). Item transport dynamic is however not linear and only 0.3% of the urban litter appear remobilized. Litter transport dynamics depends on several factors (urban litter densities, hydrometeorological parameters, item composition and morphologies, and stormwater management systems) that should be considered in global models.

13.
J Hazard Mater ; 476: 134985, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908184

ABSTRACT

Hexavalent chromium, Cr(VI), is a ubiquitous toxic metal that can be reduced to Cr(III) by nano-zero-valent iron (nZVI). Finding out effects of continuous rainfall leaching on the Cr(VI) release and availability remains a problem, needing to be addressed. Whether the Cr(VI) reduction by nZVI and continuous rainfall leaching lead to localized heterogeneity in soil is unclear. Therefore, two in situ high-resolution (HR) techniques of the diffusive gradients in thin-films (DGT) and planar optode were combined with ex situ sampling experiments here. Results demonstrate that nZVI decreased Cr(VI) leaching by 5.60-8.50 % compared to control soils. DGT-measured concentrations of Cr(VI), CDGT-Cr(VI), ranged from 7.31 to 19.4 µg L-1 in the control soils, increasing with depth while CDGT-Cr(VI) in nZVI-treated soils (2.41-6.18 µg L-1) decreased or remained stable with depth. However, simulated acid-rain leaching increases CDGT-Cr(VI) by 1.61-fold in nZVI-treated soils, negatively affecting the remediation. DGT measurements in bulk soils using disc devices are better at capturing the change of Cr(VI) availability at different conditions, whereas 2D-HR DGT mappings did not characterize significant mobilization of Cr(VI) at the micro-scale. These findings emphasize the importance of monitoring Cr(VI) release and availability in remediated soil under acid-rain leaching conditions for effective environment management.

14.
Ecotoxicol Environ Saf ; 280: 116583, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38878333

ABSTRACT

The combined cadmium (Cd) and acid rain pollution poses a significant threat to the global ecological environment. Previous studies on the combined adverse effects have predominantly focused on the aboveground plant physiological responses, with limited reports on the microbial response in the rhizosphere soil. This study employed Populus beijingensis seedlings and potting experiments to simulate the impacts of combined mild acid rain (pH=4.5, MA) or highly strong acid rain (pH=3.0, HA), and soil Cd pollution on the composition and diversity of microbial communities, as well as the physiochemical properties in the rhizosphere soil. The results showed that Cd decreased the content of inorganic nitrogen, resulting in an overall decrease of 49.10 % and 46.67 % in ammonium nitrogen and nitrate nitrogen, respectively. Conversely, acid rain was found to elevate the content of total potassium and soil organic carbon by 4.68 %-6.18 % and 8.64-19.16 %, respectively. Additionally, simulated acid rain was observed to decrease the pH level by 0.29-0.35, while Cd increased the pH level by 0.11. Moreover, Cd alone reduced the rhizosphere bacterial diversity, however, when combined with acid rain, regardless of its intensity, Cd was observed to increase the diversity. Fungal diversity was not influenced by the acid rain, but Cd increased fungal diversity to some extend under HA as observed in bacterial diversity. In addition, composition of the rhizosphere bacterial community was primarily influenced by the inorganic nitrogen components, while the fungal community was driven mainly by soil pH. Furthermore, "Metabolism" was emerged as the most significant bacterial function, which was markedly affected by the combined pollution, while Cd pollution led to a shift from symbiotroph to other trophic types for fungi. These findings suggest that simulated acid rain has a mitigating effect on the diversity of rhizosphere bacteria affected by Cd pollution, and also alters the trophic type of these microorganisms. This can be attributed to the acid rain-induced direct acidic environment, as well as the indirect changes in the availability or sources of carbon, nitrogen, or potassium.


Subject(s)
Acid Rain , Cadmium , Nitrogen , Populus , Rhizosphere , Seedlings , Soil Microbiology , Soil Pollutants , Cadmium/toxicity , Cadmium/analysis , Populus/drug effects , Populus/microbiology , Populus/growth & development , Soil Pollutants/toxicity , Soil Pollutants/analysis , Seedlings/drug effects , Seedlings/growth & development , Seedlings/microbiology , Nitrogen/analysis , Soil/chemistry , Microbiota/drug effects , Hydrogen-Ion Concentration , Bacteria/drug effects , Fungi/drug effects
15.
Ying Yong Sheng Tai Xue Bao ; 35(4): 951-960, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884230

ABSTRACT

Precipitation in the plum rain period accounts for 40%-50% of annual precipitation in the monsoon region. To clarify the temporal variability of the isotopic composition of precipitation during the plum rain period from event to interannual time scale and identify the influencing factors, we analyzed the isotopic composition of precipitation and its influencing factors in Nanjing from 2015 to 2022. By using the Hybrid Single-particle Lagran-gian Integrated Trajectory (HYSPLIT) model with specific humidity analysis, we investigated the water vapor source and influencing factors. The results showed that 1) the isotopic abundance of atmospheric precipitation was depleted in the summer and enriched in winter. dx was lower in summer and higher in winter. The isotopic abundance of precipitation from the plum rain was depleted compared to mean value of the whole-year. 2) There was no significant correlation between δ2H and δ18O of the plum rain (precipitation) with local meteorological factors. However, dx was lower in light rain, reflecting the effect of sub-cloud evaporation. The average dx was higher during plum rain period in years with more total plum rain precipitation. 3) The low-latitude South China Sea and the western Pacific Ocean source area provided water vapor for the plum rain. The shift of moisture source region led to abrupt changes in precipitation isotopes. Our results could provide data support for studies on precipitation isotopes in the monsoon region, as well as a reference point for further understanding the precipitation mechanism of the plum rain and stu-dying the seasonal variability of atmospheric circulation in the East Asian monsoon region.


Subject(s)
Rain , Seasons , Rain/chemistry , China , Oxygen Isotopes/analysis , Environmental Monitoring/methods , Deuterium/analysis , Isotopes/analysis , Prunus domestica/chemistry , Prunus domestica/growth & development
16.
Adv Sci (Weinh) ; 11(26): e2401016, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696594

ABSTRACT

Despite attractive cost-effectiveness, scalability, and superior stability, carbon-based printable perovskite solar cells (CPSCs) still face moisture-induced degradation that limits their lifespan and commercial potential. Here, the moisture-preventing mechanisms of thin nanostructured super-repellent coating (advancing contact angle >167° and contact angle hysteresis 7°) integrated into CPSCs are investigated for different moisture forms (falling water droplets vs water vapor vs condensed water droplets). It is shown that unencapsulated super-repellent CPSCs have superior performance under continuous droplet impact for 12 h (rain falling experiments) compared to unencapsulated pristine (uncoated) CPSCs that degrade within seconds. Contrary to falling water droplets, where super-repellent coating serves as a shield, water vapor is found to physisorb through porous super-repellent coating (room temperature and relative humidity, RH 65% and 85%) that increase the CPSCs performance for 21% during ≈43 d similarly to pristine CPSCs. It is further shown that water condensation forms within or below the super-repellent coating (40 °C and RH 85%), followed by chemisorption and degradation of CPSCs. Because different forms of water have distinct effects on CPSC, it is suggested that future standard tests for repellent CPSCs should include rain falling and condensate formation tests. The findings will thus inspire the development of super-repellent coatings for moisture prevention.

17.
Ecol Appl ; 34(5): e2984, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753679

ABSTRACT

Seed rain and the soil seed bank represent the dispersal of seeds in space and time, respectively, and can be important sources of recruitment of new individuals during plant community regeneration. However, the temporal dynamics of seed rain and the mechanisms by which the seed rain and soil seed bank may play a role in plant community regeneration with increased grazing disturbance remain unclear. Seed rain, soil seed bank, aboveground vegetation, and rodent density were sampled along a grazing gradient in an alpine marsh on the eastern Tibetan Plateau. We described the temporal dynamics of seed dispersal using Bayesian generalized mixed models, and nonmetric multidimensional scaling and the structural equation model were used to examine the effects of grazing disturbance on the relative role of seed rain and soil seed bank on aboveground plant community regeneration. The temporal dynamics of seed rain changed from a unimodal to a bimodal pattern with increased grazing disturbance. Both species diversity and seed density of the seed rain and seed bank increased significantly with increased grazing disturbance. Increased grazing disturbance indirectly increased the similarity of composition between seed rain, seed bank, and aboveground plant community by directly increasing species diversity and abundance of aboveground plant community. However, increased grazing disturbance also indirectly decreased the similarity of seed rain, soil seed bank, and aboveground plant community by directly increasing rodent density. The similarity between seed rain and aboveground plant community was greater than that of the soil seed bank and aboveground plant community with increased grazing disturbance. Grazing disturbance spreads the risk of seed germination and seedling establishment by changing the temporal dynamics of seed dispersal. Plants (positive) and rodents (negative) mediated the role of seed rain and soil seed bank in plant community regeneration. The role of seed rain in plant community regeneration is higher than the seed bank in disturbed alpine marshes. Our findings increase our understanding of the regeneration process of the plant community, and they provide valuable information for the conservation and restoration of alpine marsh ecosystems.


Subject(s)
Herbivory , Rodentia , Seeds , Animals , Rodentia/physiology , Seeds/physiology , Seed Bank , Plants/classification , Tibet , Seed Dispersal
18.
Sci Total Environ ; 933: 173101, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38734114

ABSTRACT

Rain use efficiency (RUE) quantifies the ecosystem's capacity to use precipitation water to assimilate atmospheric CO2. The spatial distribution of RUE and its drivers across the Australian continent is largely unknown. This knowledge gap limits our understanding of the possible contribution of Australian ecosystems to global carbon assimilation. This study investigates the spatial distribution of RUE across diverse terrestrial ecosystems in Australia. The results show that RUE ranges from 0.43 (1st percentile) to 3.10 (99th percentile) g C m-2 mm-1 with a continental mean of 1.19 g C m-2 mm-1. About 68 % of the spatiotemporal variability of RUE can be explained by a multiple linear regression model primarily contributed by climatic predictors. Benchmarked by the model estimation, drainage-diverging/converging landscapes tend to have reduced/increased RUE. The model also revealed the impact of increasing atmospheric CO2 concentration on RUE. The continental mean RUE would increase by between 29.3 and 64.8 % by the end of this century under the SSP5-8.5 scenario in which the CO2 concentration is projected to double from the present level. This increase in projected RUE is attributed to the assumed greening effect of increasing CO2 concentration, which does not consider the saturation of CO2 fertilisation effect and the warming effect on increasing wildfire occurrence. Under the SSP1-2.6 scenario, RUE would decrease by about 7 %. This study provides baseline RUEs of various ecosystems in Australia for investigating the impacts of human interferences and climate change on the capacity of Australian vegetation to assimilate atmospheric CO2 under given precipitation.


Subject(s)
Carbon Dioxide , Climate Change , Ecosystem , Rain , Australia , Carbon Dioxide/analysis , Environmental Monitoring
19.
BMC Emerg Med ; 24(1): 94, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816720

ABSTRACT

BACKGROUND: Rainfall-induced floods represented 70% of the disasters in Japan from 1985 to 2018 and caused various health problems. To improve preparedness and preventive measures, more information is needed on the health problems caused by heavy rain. However, it has proven challenging to collect health data surrounding disasters due to various inhibiting factors such as environmental hazards and logistical constraints. In response to the Kumamoto Heavy Rain 2020, Emergency Medical Teams (EMTs) used J-SPEED (Japan-Surveillance in Post Extreme Emergencies and Disasters) as a daily reporting tool, collecting patient data and sending it to an EMTCC (EMT Coordination Cell) during the response. We performed a descriptive epidemiological analysis using J-SPEED data to better understand the health problems arising from the Kumamoto Heavy Rain 2020 in Japan. METHODS: During the Kumamoto Heavy Rain 2020 from July 5 to July 31, 2020, 79 EMTs used the J-SPEED form to submit daily reports to the EMTCC on the number and types of health problems they treated. We analyzed the 207 daily reports, categorizing the data by age, gender, and time period. RESULTS: Among the 816 reported consultations, women accounted for 51% and men accounted for 49%. The majority of patients were elderly (62.1%), followed by adults (32.8%), and children (5%). The most common health issues included treatment interruption (12.4%), hypertension (12.0%), wounds (10.8%), minor trauma (9.6%), and disaster-related stress symptoms (7.4%). Consultations followed six phases during the disaster response, with the highest occurrence during the hyperacute and acute phases. Directly disaster-related events comprised 13.9% of consultations, indirectly related events comprised 52.0%, and unrelated events comprised 34.0%. As the response phases progressed, the proportions of directly and indirectly related events decreased while that of unrelated events increased. CONCLUSION: By harnessing data captured by J-SPEED, this research demonstrates the feasibility of collecting, quantifying, and analyzing data using a uniform format. Comparison of the present findings with those of two previous analyses of J-SPEED data from other disaster scenarios that varied in time, location, and/or disaster type showcases the potential to use analysis of past experiences to advancing knowledge on disaster medicine and disaster public health.


Subject(s)
Rain , Humans , Female , Male , Japan , Adult , Middle Aged , Aged , Child , Adolescent , Child, Preschool , Infant , Young Adult , Disasters , Aged, 80 and over , Emergency Medical Services/statistics & numerical data , Floods , Disaster Planning , Health Services Needs and Demand , Infant, Newborn
20.
Sensors (Basel) ; 24(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793852

ABSTRACT

With the emergence of autonomous functions in road vehicles, there has been increased use of Advanced Driver Assistance Systems comprising various sensors to perform automated tasks. Light Detection and Ranging (LiDAR) is one of the most important types of optical sensor, detecting the positions of obstacles by representing them as clusters of points in three-dimensional space. LiDAR performance degrades significantly when a vehicle is driving in the rain as raindrops adhere to the outer surface of the sensor assembly. Performance degradation behaviors include missing points and reduced reflectivity of the points. It was found that the extent of degradation is highly dependent on the interface material properties. This subsequently affects the shapes of the adherent droplets, causing different perturbations to the optical rays. A fundamental investigation is performed on the protective polycarbonate cover of a LiDAR assembly coated with four classes of material-hydrophilic, almost-hydrophobic, hydrophobic, and superhydrophobic. Water droplets are controllably dispensed onto the cover to quantify the signal alteration due to the different droplets of various sizes and shapes. To further understand the effects of droplet motion on LiDAR signals, sliding droplet conditions are simulated using numerical analysis. The results are validated with physical optical tests, using a 905 nm laser source and receiver to mimic the LiDAR detection mechanism. Comprehensive explanations of LiDAR performance degradation in rain are presented from both material and optical perspectives. These can aid component selection and the development of signal-enhancing strategies for the integration of LiDARs into vehicle designs to minimize the impact of rain.

SELECTION OF CITATIONS
SEARCH DETAIL
...