Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015745

ABSTRACT

The purpose of this paper is to share some practical learning materials with teachers engagedin biochemistry teaching. Students studying biochemistry can also use them directly. The materials includemultimedia such as the song “Biochemistry” and the video “The working principle of ATP synthase”, websites such as RCSB PDB protein structure database, software such as molecular imaging softwareRasmol, etc. Physical models such as the paper model of DNA double helix and the primary, secondaryand tertiary structures of tRNA are also introduced. The practicability of the materials is emphasized. Theapplication scenarios and the anticipated results of the materials are briefly described. Therecommendation levels are also denoted as stars.

2.
J Mol Recognit ; 32(12): e2809, 2019 12.
Article in English | MEDLINE | ID: mdl-31418487

ABSTRACT

Several molecular modeling programs including Pep-Fold 3, Vienna RNA, RNA Composer, Avogadro, PatchDock, RasMol, and VMD were used to define the three-dimensional and basic binding characteristics of an extant sandwich DNA aptamer assay complex for human brain natriuretic peptide (BNP). In particular, the theoretical question of demonstrating likely binding of 72 base capture and reporter aptamers to at least two separate "epitopes" or binding sites on the small 32-amino acid BNP target was addressed, and the data support the existence of separate aptamer binding sites on BNP. The binding model was based on first docking BNP to the capture aptamer based on shape complementarity with PatchDock, followed by docking the capture aptamer-BNP complex with the reporter aptamer in PatchDock. Although, shape complementarity clearly dominated this binding model and aptamers are known to be somewhat flexible, the model demonstrates hydrogen bond stabilization within each of the two different aptamers and between the aptamers and the BNP target, thus suggesting a strong binding and high affinity sandwich assay that matches the author's former published assay results (Bruno et al., Microchem. J. 2014;115:32-38) with subpicogram per milliliter sensitivity and good specificity. Other aspects such as capture and reporter aptamer interactions in the absence of BNP are illustrated and suggest means for potentially improving the existing assay by truncating the capture and reporter aptamers where they overlap to further decrease background signal levels.


Subject(s)
Aptamers, Nucleotide/chemistry , Computer Simulation , Natriuretic Peptide, Brain/chemistry , Software , Humans , Hydrogen Bonding , Imaging, Three-Dimensional , Molecular Docking Simulation
3.
Bioinformation ; 5(4): 146-9, 2010 Sep 20.
Article in English | MEDLINE | ID: mdl-21364776

ABSTRACT

Plants synthesize a great variety of isoprenoid products that are required not only for normal growth and development but also for their adaptive responses to environmental challenges. However, despite the remarkable diversity in the structure and function of plant isoprenoids, they all originate from a single metabolic precursor, mevalonic acid. The synthesis of mevalonic acid is catalysed by the enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG- CoA reductase). The analysis of the amino acid sequence of HMG-CoA reductase from Artemisia annua L. plant showed that it belongs to class I HMG-CoA reductase family. The three dimensional structure of HMG-CoA reductase of Artemisia annua has been generated from amino acid sequence using homology modelling with backbone structure of human HMG-CoA reductase as template. The model was generated using the SWISS MODEL SERVER. The generated 3-D structure of HMG-CoA reductase was evaluated at various web interfaced servers to checks the stereo interfaced quality of the structure in terms of bonds, bond angles, dihedral angles and non-bonded atom-atom distances, structural as well as functional domains etc. The generated model was visualized using the RASMOL. Structural analysis of HMG-CoA reductase from Artemisia annua L. plant hypothesize that the N and C-terminals are positioned in cytosol by the two membrane spanning helices and the C-terminals domain shows similarity to the human HMG-CoA reductase enzyme indicating that they both had potential catalytic similarities.

SELECTION OF CITATIONS
SEARCH DETAIL
...