Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(19): 23958-23974, 2021 May.
Article in English | MEDLINE | ID: mdl-33398734

ABSTRACT

Contaminants of emerging concern (CECs) are released daily into surface water, and their recalcitrant properties often require tertiary treatment. Electrochemical oxidation (EO) is often used as an alternative way to eliminate these compounds from water, although the literature barely addresses the neurotoxic effects of residual by-products. Therefore, this study investigated the performance of EO in the removal of five CECs (alprazolam, clonazepam, diazepam, lorazepam, and carbamazepine) and performed neurotoxicity evaluations of residual EO by-products in Wistar rat brain hippocampal slices. Platinum-coated titanium (Ti/Pt) and boron-doped diamond (BDD) electrodes were studied as anodes. Different current densities (13-75 A m-2), pH values (3-10), electrolyte dosages (NaCl), and matrix effects were assessed using municipal wastewater (MWW). The drugs were successfully degraded after 5 min of reaction for both the Ti/Pt and BDD electrodes when a current density of 75 A m-2 was applied. For Ti/Pt and BDD, neutral and acidic pH demonstrated better CEC removal performance, respectively. Compound degradation using MWW achieved 40% removal after 120 min for Ti/Pt and ranged between 33 and 52% for the BDD anode. For Ti/Pt, neurotoxicity studies using MWW indicated a decrease in reactive oxygen species (ROS) signals. However, when an artificial cerebrospinal fluid (ACSF) medium was reapplied, the signal recovered and increased to a value above the baseline, indicating that cells recovered part of their normal activity but remained in a different condition. For the BDD anode, the treated MWW did not cause significant ROS production variations, suggesting that he EO was effective in eliminating the toxicity of the treated solution.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Animals , Diamond , Electrodes , Oxidation-Reduction , Rats , Rats, Wistar , Wastewater , Water Pollutants, Chemical/analysis
2.
Eur J Neurosci ; 47(11): 1401-1413, 2018 06.
Article in English | MEDLINE | ID: mdl-29779233

ABSTRACT

Afferent neurotransmission to hippocampal pyramidal cells can lead to long-term changes to their intrinsic membrane properties and affect many ion currents. One of the most plastic neuronal currents is the hyperpolarization-activated cationic current (Ih ), which changes in CA1 pyramidal cells in response to many types of physiological and pathological processes, including auditory stimulation. Recently, we demonstrated that long-term potentiation (LTP) in rat hippocampal Schaffer-CA1 synapses is depressed by high-intensity sound stimulation. Here, we investigated whether a long-term high-intensity sound stimulation could affect intrinsic membrane properties of rat CA1 pyramidal neurons. Our results showed that Ih is depressed by long-term high-intensity sound exposure (1 min of 110 dB sound, applied two times per day for 10 days). This resulted in a decreased resting membrane potential, increased membrane input resistance and time constant, and decreased action potential threshold. In addition, CA1 pyramidal neurons from sound-exposed animals fired more action potentials than neurons from control animals; however, this effect was not caused by a decreased Ih . On the other hand, a single episode (1 min) of 110 dB sound stimulation which also inhibits hippocampal LTP did not affect Ih and firing in pyramidal neurons, suggesting that effects on Ih are long-term responses to high-intensity sound exposure. Our results show that prolonged exposure to high-intensity sound affects intrinsic membrane properties of hippocampal pyramidal neurons, mainly by decreasing the amplitude of Ih .


Subject(s)
Auditory Perception/physiology , CA1 Region, Hippocampal/physiology , Membrane Potentials/physiology , Neural Inhibition/physiology , Pyramidal Cells/physiology , Acoustic Stimulation , Action Potentials/physiology , Animals , Male , Rats , Rats, Wistar , Time Factors
3.
Neuropeptides ; 67: 1-8, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29157865

ABSTRACT

Peptide YY (PYY) belongs to the neuropeptide Y (NPY) family, which also includes the pancreatic polypeptide (PP) and NPY. PYY is secreted by the intestinal L cells, being present in the blood stream in two active forms capable of crossing the blood brain barrier, PYY (1-36) and its cleavage product, PYY (3-36). PYY is a selective agonist for the Y2 receptor (Y2R) and these receptors are abundant in the hippocampus. Here we investigated the mechanisms by which PYY (3-36) regulates intracellular Ca2+ concentrations ([Ca2+]i) in hippocampal neurons by employing a calcium imaging technique in hippocampal cultures. Alterations in [Ca2+]i were detected by changes in the Fluo-4 AM reagent emission. PYY (3-36) significantly increased [Ca2+] from the concentration of 10-11M as compared to the controls (infusion of HEPES-buffered solution (HBS) solution alone). The PYY (3-36)-increase in [Ca2+]i remained unchanged even in Ca2+-free extracellular solutions. Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase pump (SERCA pump) inhibition partially prevent the PYY (3-36)-increase of [Ca2+]i and inositol 1,4,5-triphosphate receptor (IP3R) inhibition also decreased the PYY (3-36)-increase of [Ca2+]i. Taken together, our data strongly suggest that PYY (3-36) mobilizes calcium from the neuronal endoplasmic reticulum (ER) stores towards the cytoplasm. Next, we showed that PYY (3-36) inhibited high K+-induced increases of [Ca2+]i, suggesting that PYY (3-36) could also act by activating G-protein coupled inwardly rectifying potassium K+ channels. Finally, the co-infusion of the Y2 receptor (Y2R) antagonist BIIE0246 with PYY (3-36) abolished the [Ca2+]i increase induced by the peptide, suggesting that PYY (3-36)-induced [Ca2+]i increase in hippocampal neurons occurs via Y2Rs.


Subject(s)
Calcium/metabolism , Hippocampus/metabolism , Neurons/metabolism , Peptide Fragments/metabolism , Peptide YY/metabolism , Phosphatidylinositols/metabolism , Animals , Arginine/analogs & derivatives , Arginine/pharmacology , Benzazepines/pharmacology , Cytoplasm/metabolism , Female , Male , Neuropeptide Y/metabolism , Pancreatic Polypeptide/metabolism , Rats, Wistar , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide Y/metabolism
4.
Neurochem Res ; 41(5): 1160-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26700434

ABSTRACT

Mitogen-activated protein kinases (MAPKs) are a group of serine-threonine kinases, including p38(MAPK), ERK 1/2 and JNK p54/p46, activated by phosphorylation in response to extracellular stimuli. The early postnatal period is characterized by significant changes in brain structure as well as intracellular signaling. In the hippocampus MAPKs have been involved in the modulation of development and neural plasticity. However, the temporal profile of MAPK activation throughout the early postnatal development is incomplete. An understanding of this profile is important since slight changes in the activity of these enzymes, in response to environmental stress in specific developmental windows, might alter the course of development. The present study was undertaken to investigate the hippocampal differential activation of MAPK during postnatal period. MAPK activation and total content were evaluated by Western blotting of hippocampal tissue obtained from male Wistar rats at postnatal days (P) 1, 4, 7, 10, 14, 21, 30 and 60. The total content and phosphorylation of each MAPK was expressed as mean ± SEM and then calculates as a percentile compared to P1 (set at 100 %). The results showed: (1) phosphorylation peaks of p38(MAPK) at PN4 (p = 0.036) and PN10 to PN60; (2) phosphorylation of ERK1 and ERK2 were increased with age (ERK1 p = 0.0000005 and ERK2 p = 0.003); (3) phosphorylation profile of JNK p54/p46 was not changed during the period analyzed (JNKp56 p = 0.716 and JNKp46 p = 0.192). Therefore, the activity profile of ERK 1/2 and p38(MAPK) during postnatal development of rat hippocampus are differentially regulated. Our results demonstrate that ERK 1/2 and p38(MAPK) are dynamically regulated during postnatal neurodevelopment, suggesting temporal correlation of MAPK activity with critical periods when programmed cell death and synaptogenesis are occurring. This suggests an important role for these MAPKs in postnatal development of rat hippocampus.


Subject(s)
Hippocampus/enzymology , JNK Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Animals, Newborn , Enzyme Activation , Hippocampus/growth & development , Isoenzymes/metabolism , Male , Phosphorylation , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL