Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.862
Filter
1.
Rev Cardiovasc Med ; 25(9): 346, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39355577

ABSTRACT

Rheumatic heart disease (RHD) is responsible for nearly 250,000 deaths annually and poses a significant health threat in developing areas. The unclear pathogenesis of RHD makes the development of cost-effective treatments challenging, particularly as current surgical options are expensive and technologically demanding, exacerbating the economic and quality-of-life burdens for patients. Given the risks associated with direct human experimentation due to the uncertain pathogenesis, using a rat model infected with Group A Streptococcus (GAS) has become a crucial experimental strategy for RHD research. The development of an RHD rat model, refined over 23 years, now stands as a pivotal approach in studies aiming to understand the disease's pathogenesis. This review summarizes the evolution, characteristics, advantages, and limitations of the RHD rat model, offering insights into potential areas for improvement. It aims to provide researchers with a comprehensive understanding of the model, supporting the advancement of research methodologies and the discovery of innovative treatments for RHD.

2.
J Orthop Res ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39385586

ABSTRACT

Osteoarthritis is a degenerative disease of synovial joints affecting all tissues, including articular cartilage and subchondral bone. Osteoarthritis animal models can recapitulate aspects of human disease progression and are used to test efficacy of drugs, biomaterials, and cell therapies. The rat medial meniscus transection (MMT) model is a surgically induced posttraumatic osteoarthritis model commonly used for preclinical therapeutic screening. We describe herein, the qualitative and quantitative changes to articular cartilage, subchondral bone, and formation of osteophytes at early-, mid-, and late-stages of osteoarthritis progression. Tibia of MMT-operated animals showed proteoglycan loss and fibrillation along articular cartilage surfaces as early as 3-weeks post-surgery. With contrast-enhanced micro-CT technique, quantitative, 3-dimensional analysis of the tibia showed that the articular cartilage thickened at 3- and 6-weeks post-surgery and decreased at 12-weeks post-surgery. This decreased cartilage thickness corresponded with increased lesions in the articular cartilage that led to its full degradation and exposing the subchondral bone layer. Further, subchondral bone thickening was significant at 6-weeks post-surgery and followed cartilage damage. Osteophytes were found as early as 3-weeks post-surgery and coincided with articular cartilage degradation. Cartilaginous osteophytes preceded mineralization, suggesting endochondral ossification. The rat MMT model has predominantly been used out to 3-weeks, and most studies determined the effect of therapies to delay or prevent the onset of osteoarthritis. We provide evidence that an extension of the rat MMT model out to 6- and 12-weeks more resembled severe phenotypes of human osteoarthritis. Thus, evaluating novel therapeutics at late-stage will be important for eventual clinical translation.

3.
Front Cell Neurosci ; 18: 1432359, 2024.
Article in English | MEDLINE | ID: mdl-39386180

ABSTRACT

Background: Beyond the signature amyloid-beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been shown to exhibit dysregulated metabolic signaling through insulin and insulin-like growth factor (IGF) networks that crosstalk with the mechanistic target of rapamycin (mTOR). Its broad impact on brain structure and function suggests that mTOR is likely an important therapeutic target for AD. Objective: This study characterizes temporal lobe (TL) mTOR signaling abnormalities in a rat model of sporadic AD neurodegeneration. Methods: Long Evans rats were given intracerebroventricular injections of streptozotocin (ic-STZ) or saline (control), and 4 weeks later, they were administered neurobehavioral tests followed by terminal harvesting of the TLs for histopathological study and measurement of AD biomarkers, neuroinflammatory/oxidative stress markers, and total and phosphorylated insulin/IGF-1-Akt-mTOR pathway signaling molecules. Results: Rats treated with ic-STZ exhibited significantly impaired performance on Rotarod (RR) and Morris Water Maze (MWM) tests, brain atrophy, TL and hippocampal neuronal and white matter degeneration, and elevated TL pTau, AßPP, Aß, AChE, 4-HNE, and GAPDH and reduced ubiquitin, IL-2, IL-6, and IFN-γ immunoreactivities. In addition, ic-STZ reduced TL pY1135/1136-IGF-1R, Akt, PTEN, pS380-PTEN, pS2448-mTOR, p70S6K, pT412-p70S6K, p/T-pT412-p70S6K, p/T-Rictor, and p/T-Raptor. Conclusion: Experimental ic-STZ-induced sporadic AD-type neurodegeneration with neurobehavioral dysfunctions associated with inhibition of mTOR signaling networks linked to energy metabolism, plasticity, and white matter integrity.

4.
Neural Netw ; 180: 106746, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39357176

ABSTRACT

This study focuses on the use of a neural mass model to investigate potential relationships between functional connectivity and seizure frequency in epilepsy. We fitted a three-layer neural mass model of a cortical column to intracranial EEG (iEEG) data from a Tetanus Toxin rat model of epilepsy, which also included responses to periodic electrical stimulation. Our results show that some of the connectivity weights between different neural populations correlate significantly with the number of seizures each day, offering valuable insights into the dynamics of neural circuits during epileptogenesis. We also simulated single-pulse electrical stimulation of the neuronal populations to observe their responses after the connectivity weights were optimized to fit background (non-seizure) EEG data. The recovery time, defined as the time from stimulation until the membrane potential returns to baseline, was measured as a representation of the critical slowing down phenomenon observed in nonlinear systems operating near a bifurcation boundary. The results revealed that recovery times in the responses of the computational model fitted to the EEG data were longer during 5 min periods preceding seizures compared to 1 hr before seizures in four out of six rats. Analysis of the iEEG recorded in response to electrical stimulation revealed results similar to the computational model in four out of six rats. This study supports the potential use of this computational model as a model-based biomarker for seizure prediction when direct electrical stimulation to the brain is not feasible.

5.
Arch Toxicol ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361050

ABSTRACT

Thallium (Tl) is one of the most toxic heavy metals, associated with accidental poisoning and homicide. It causes acute and chronic systemic diseases, including gastrointestinal and cardiovascular diseases and kidney failure. However, few studies have investigated the mechanism by which Tl induces acute kidney injury (AKI). This study investigated the toxic effects of Tl on the histology and function of rat kidneys using biochemical and histopathological assays after intraperitoneal thallium sulfate administration (30 mg/kg). Five days post-administration, rats exhibited severely compromised kidney function. Low-vacuum scanning electron microscopy revealed excessive calcium (Ca) deposition in the outer medulla of Tl-loaded rats, particularly in the medullary thick ascending limb (mTAL) of the loop of Henle. Tl accumulated in the mTAL, accompanied by mitochondrial dysfunction in this segment. Tl-loaded rats showed reduced expression of kidney transporters and channels responsible for Ca2+ reabsorption in the mTAL. Pre-administration of the Na-K-Cl cotransporter 2 (NKCC2) inhibitor furosemide alleviated Tl accumulation and mitochondrial abnormalities in the mTAL. These findings suggest that Tl nephrotoxicity is associated with preferential Tl reabsorption in the mTAL via NKCC2, leading to mTAL mitochondrial dysfunction and disrupted Ca2+ reabsorption, culminating in mTAL-predominant Ca crystal deposition and AKI. These findings on the mechanism of Tl nephrotoxicity may contribute to the development of novel therapeutic approaches to counter Tl poisoning. Moreover, the observation of characteristic Ca crystal deposition in the outer medulla provides new insights into diagnostic challenges in Tl intoxication.

6.
Calcif Tissue Int ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375220

ABSTRACT

This study aimed to evaluate the correlation between BMAT and bone quality, describe the long-term effects of ovariectomy on bone, and investigate BMAT's spatial distribution. Fifteen-months-old female Sprague‒Dawley rats were studied, comparing ovariectomized (OVX, n = 22) and sham-operated (SHAM, n = 11) groups at 6 months. Tibias were analyzed for bone microarchitecture, BMAT (microcomputed tomography), mineral parameters (quantitative backscattered electron imaging), and bone composition (Raman microspectroscopy). The OVX tibias showed severe trabecular bone loss (lower bone volume/total volume, p < 0.001) with increased BMAT (higher adipose volume per marrow volume, p < 0.001), decreased mineral content (lower calcium concentration, p < 0.001), and altered organic components (lower mineral/matrix ratio in new bone, p = 0.03 trabecular surface, p < 0.001 trabecular core). When the data are pooled over both groups (SHAM and OVX), the adipose volume/marrow volume ratio was negatively correlated with bone volume/total volume (r = - 0.79, p < 0.001) and mineral/matrix ratio (r = - 0.37, p = 0.04 trabecular surface; r = - 0.65, p < 0.001 trabecular core) and positively correlated with crystallinity (r = 0.55, p = 0.001 trabecular surface; r = 0.49, p = 0.006 trabecular core). The mineral/matrix ratio of trabecular surface new bone was strongly negatively correlated with the adipose compartment nearest to the bone surface. These findings suggest mechanisms underlying BMAT's role in bone resorption.

7.
ACS Appl Bio Mater ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377525

ABSTRACT

Bacterial infections impede wound healing and pose significant challenges in clinical care. There is an immediate need for safe and targeted antivirulence agents to fight bacterial infections effectively. In this regard, bioderived nanovesicles have shown significant promise. This work demonstrated significant antibacterial properties of extracellular nanovesicles derived from plant (mint) leaf juice (MENV). A hydrogel (HG) was developed using oxidized alginate and chitosan and loaded with antibacterial MENVs (MENV-HG). This formulation was investigated for topical HG dressings to treat Gram-positive Micrococcus luteus and Gram-negative Escherichia coli-invasive wounds. The developed HG was injectable, biocompatible (>95% cell was viable), nonhemolytic (<5% hemolytic capacity), self-healing and exhibited strong physical and mechanical interactions with the bacteria cells (MENV-HG-treated bacteria were significantly more elastic compared to the control in both M. luteus (1.01 ± 0.3 MPa, p < 0.005 vs 5.03 ± 2.6) and E. coli (5.81 ± 2.1 MPa vs 10.81 ± 3.8, p < 0.005). MENV-HG was topically applied on wounds with a slow MENV release profile, ensuring effective healing. These in vivo results demonstrated decreased inflammation and expedited healing within 10 days of treatment (wound area closure was 99% with MENV-HG treatment and 87% for control). Taken together, MENV-HGs have the potential for a scalable and sustainable wound dressing strategy that works satisfactorily for bacteria-infected wound healing and to be validated in clinical trials.

8.
J Orthop Res ; 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39279043

ABSTRACT

Elbow trauma can lead to joint contracture and reduced range of motion (ROM). Nonsurgical interventions can improve ROM, but in some cases capsule release surgery is required. Although surgery can improve ROM, it often does not restore full ROM. Thus, alternatives are needed. One approach is to target activated myofibroblasts, which are commonly associated with fibrotic tissue. Mechanical and biochemical cues drive a feedback loop that can result in normal or pathological healing. We hypothesize that this feedback loop exists in joint contracture and can be manipulated so that myofibroblast activity is reduced, normal healing is achieved, and ROM is improved. We previously demonstrated that blebbistatin can inhibit myofibroblast contractile forces and reduce collagen synthesis in vitro. Thus, the purpose of this study was to assess the use of blebbistatin in an animal model of elbow contracture, which was induced in 7 groups of 4 rats each (n = 28). All elbows were mechanically and histologically tested. The uninjured contralateral elbows of each rat were used as a control group. Capsule release surgery significantly improved (p < 0.01) outcomes 1 week after surgery compared to injury alone and was not significantly different from uninjured elbows. Three weeks after surgery, outcomes worsened, indicating joint stiffening consistent with what is observed clinically. The addition of blebbistatin did not significantly improve outcomes. Future work will investigate relationships among treatment, fibrotic tissue deposition, myofibroblast activity, and biomechanics to determine if blebbistatin is a useful adjunctive therapy for treating joint contracture.

9.
Biomater Adv ; 166: 214042, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39293254

ABSTRACT

Bone tissue regeneration remains a significant challenge in clinical settings due to the complexity of replicating the mechanical and biological properties of bone environment. This study addresses this challenge by proposing a hybrid scaffold designed to enhance both bioactivity and physical stability for bone tissue regeneration. This research is the fisrt to develop a rigid 3D structure composed of polycaprolactone (PCL) and hydroxyapatite nanoparticles (nHA) integrated with a bioink containing human dental pulp stem/stromal cells (hDPSCs), alginate, nHA and collagen (Col). The biofabricated constructs were extensively characterized through cytocompatibility tests, osteogenic differentiation assessment, and biocompatibility evaluation in a rat model. In vitro results demontrated that the hybrid scaffolds presented significantly higher cell viability after 168 h compared to the control group. Furthermore, the hybrid scaffolds showed increased osteogenic differentiation relative to other groups. In vivo evaluation indicated good biocompatibility, characterized by minimal inflammatory response and successful tissue integration. These findings highlight the scaffold's potential to support bone tissue regeneration by combining the mechanical strength of PCL and nHA with the biological activity of the alginate-nHA-Col and hDPSCs bioink. The current study provides a promising foundation for the development of biomaterials aimed at improving clinical outcomes in bone repair and regeneration, particulary for the treatment of critical-size bone defects, targeted drug administration, and three-dimensional models for bone tissue engineering.

10.
J Orthop Res ; 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39306710

ABSTRACT

Co-administration of mirogabalin besylate and nonsteroidal anti-inflammatory drugs is effective for neuropathic pain; however, mechanism of its action remains unknown. We aimed to evaluate the mechanism of this synergistic effect of the concomitant administration for neuropathic pain using chronic constriction injury model rats. Fifty male Wister rats of 7-week-old were used. Right sciatic nerve ligation was performed in 40 rats and they were sub-divided into four groups: vehicle, mirogabalin, diclofenac sodium and co-administration of them. Ten rats underwent sham surgery. Fluorogold was attached to sciatic nerve during surgery. Von Frey filament and weight bearing tests were performed on postoperative Day 6 as behavioral assessments and drug was administrated intraperitoneally. Half rats in each group underwent behavioral assessment and perfusion fixation using 4% paraformaldehyde on postoperative Day 7 and remaining on postoperative Day 14. Subsequently, dorsal root ganglion at L4 to L6 was collected and examined immunohistochemistry for calcitonin gene-related peptide, and their immunoreactivity in fluorogold-labeled neurons was measured. Spinal cord at lumbar swelling was resected, immunostained for ionized-calcium-binding adapter molecule-1 and glial fibrillary acidic protein, and immunoreactive neurons in dorsal horn of spinal cords were calculated as the occupancy of them. Mirogabalin suppresses the neuropeptide-release from presynaptic afferent neuron directly and it resulted in suppressing glia cells activation. Diclofenac sodium inhibits cyclooxygenase-2 and prostaglandin production, related to allodynia. These effects of mirogabalin and diclofenac sodium, respectively, inhibited glia cells strongly, which is presumed to be one of the mechanisms for the effectiveness of their co-administration for neuropathic pain.

11.
J Cereb Blood Flow Metab ; : 271678X241281485, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39246100

ABSTRACT

Extracorporeal cardiopulmonary resuscitation (ECPR) facilitates resuscitation with immediate and precise temperature control. This study aimed to determine the optimal reperfusion temperature to minimize neurological damage after ventricular fibrillation cardiac arrest (VFCA). Twenty-four rats were randomized (n = 8 per group) to normothermia (NT = 37°C), mild hypothermia (MH = 33°C) or moderate hypothermia (MOD = 27°C). The rats were subjected to 10 minutes of VFCA, before 15 minutes of ECPR at their respective target temperature. After ECPR weaning, rats in the MOD group were rapidly rewarmed to 33°C, and temperature maintained at 33°C (MH/MOD) or 37°C (NT) for 12 hours before slow rewarming to normothermia (MH/MOD). The primary outcome was 30-day survival with overall performance category (OPC) 1 or 2 (1 = normal, 2 = slight disability, 3 = severe disability, 4 = comatose, 5 = dead). Secondary outcomes included awakening rate (OPC ≤ 3) and neurological deficit score (NDS, from 0 = normal to 100 = brain dead). The survival rate did not differ between reperfusion temperatures (NT = 25%, MH = 63%, MOD = 38%, p = 0.301). MH had the lowest NDS (NT = 4[IQR 3-4], MH = 2[1-2], MOD = 5[3-5], p = 0.044) and highest awakening rate (NT = 25%, MH = 88%, MOD = 75%, p = 0.024). In conclusion, ECPR with 33°C reperfusion did not statistically significantly improve survival after VFCA when compared with 37°C or 27°C reperfusion but was neuroprotective as measured by awakening rate and neurological function.

12.
Sci Rep ; 14(1): 20623, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39232106

ABSTRACT

Failure rate after chronic rotator cuff repair is considerably high. Moreover, diabetes mellitus is known as a compromising factor of rotator cuff tear. The effect of Polydeoxyribonucleotide (PDRN) and polynucleotide (PN) on tendon healing and fatty infiltration is unclear as tissue regeneration activator in diabetic state. Therefore, a diabetic rat model with chronic rotator cuff tear was made for mechanical, histologic and blood tests. In the animal study using a diabetic rat cuff repair model, the administration of PDRN and PN increased the load to failure of repaired cuffs and improved tendon healing and decreased fatty infiltration. Also, the plasma levels of vascular endothelial growth factor and fibroblast growth factor were elevated in PDRN and PN administrated groups. We concluded that PDRN and PN appear to boost tendon recovery and reduce the presence of fatty infiltration following cuff repair in diabetic state. Also, PN showed a later onset and a longer duration than PDRN associated with the mean plasma growth factors.


Subject(s)
Diabetes Mellitus, Experimental , Polydeoxyribonucleotides , Polynucleotides , Rotator Cuff Injuries , Wound Healing , Animals , Polydeoxyribonucleotides/pharmacology , Polydeoxyribonucleotides/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Rats , Wound Healing/drug effects , Rotator Cuff Injuries/drug therapy , Rotator Cuff Injuries/pathology , Rotator Cuff Injuries/metabolism , Male , Polynucleotides/pharmacology , Rotator Cuff/pathology , Rotator Cuff/drug effects , Disease Models, Animal , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/blood , Rats, Sprague-Dawley , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/pathology
13.
J Inflamm Res ; 17: 6645-6659, 2024.
Article in English | MEDLINE | ID: mdl-39345897

ABSTRACT

Purpose: Coronary microembolization (CME) can result in cardiac dysfunction, severe arrhythmias, and a reduced coronary flow reserve. Impairment of mitochondrial energy metabolism has been implicated in the progression and pathogenesis of CME; however, its role remains largely undetermined. This study aimed to explore alterations in mitochondria-related genes in CME. Methods: A rat model of CME was successfully established by injecting plastic microspheres into the left ventricle. The cardiac tissues of the two groups were sequenced and mitochondrial functions were assessed. Results: Using RNA-Seq, together with GO and KEGG enrichment analyses, we identified 3822 differentially expressed genes (DEGs) in CME rats compared to control rats, and 101 DEGs were mitochondria-related genes. Notably, 36 DEGs were up-regulated and 65 DEGs were down-regulated (CME vs control). In particular, the oxidative phosphorylation (OXPHOS) and mitochondrial electron transport were obviously down-regulated in the CME group. Functional analysis revealed that CME mice exhibited marked reductions in ATP and mitochondrial membrane potential (MMP), by contrast, the production of reactive oxygen species (ROS) was much higher in CME mice than in controls. Protein-protein interaction (PPI) and quantitative PCR (qPCR) validation suggested that eight hub genes including Cmpk2, Isg15, Acsl1, Etfb, Ndufa8, Adhfe1, Gabarapl1 and Acot13 were down-regulated in CME, whereas Aldh18a1 and Hspa5 were up-regulated. Conclusion: Our findings suggest that dysfunctions in mitochondrial activity and metabolism are important mechanisms for CME, and mitochondria-related DEGs may be potential therapeutic targets for CME.

14.
Biomedicines ; 12(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39335498

ABSTRACT

Glaucoma is the second leading cause of blindness worldwide and is, in most cases, a consequence of elevated intraocular pressure (IOP), ultimately resulting in the death of retinal ganglion cells (RGCs). Current treatments are mostly focused on normalizing IOP, but we propose the additional use of neuroprotective agents, including methylene blue (MB), to block the loss of RGCs. Wistar rats were subjected to episcleral vein cauterization (EVC) in the left eye while the right eye was sham-operated. One week later, they were divided into two groups, which were injected with either 2.0 mg/kg MB or phosphate-buffered saline (PBS), twice a day, for 7 days. Fifteen days after surgery, rats were tested with scotopic electroretinography (ERG) or pattern electroretinography (PERG). After sacrifice, the number of RGCs and the thickness of the inner retina (IR) were evaluated both in the peripheral and central areas of the retina. Scotopic ERG showed a marked reduction (p < 0.0001) on the a- and b-wave amplitude and oscillatory potential (OP) complexity of the eyes subjected to EVC. These parameters were significantly (p < 0.01) restored by the application of MB. PERG indicated that EVC was responsible for a very significant decrease in N2 amplitude (p < 0.0001) and prolongation of N2 implicit time (p < 0.0001). Treatment with MB significantly restored N2 amplitude (p < 0.0001). In parallel with the ERG results, morphological analysis showed a significant loss of RGCs (p < 0.0001) and IR thickness (p < 0.0001) in both the peripheral and central retinas subjected to EVC, which was significantly prevented (p < 0.0001) by MB treatment. We have shown that MB treatment can be effective in preventing physiological and morphological hallmarks of optic neuropathy in a model of ocular hypertension, which faithfully recapitulates human open-angle glaucoma. Due to its high safety profile, this drug could therefore represent a new pharmacologic strategy to prevent vision loss in glaucoma patients.

15.
Molecules ; 29(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39339313

ABSTRACT

The use of phosphodiesterase inhibitors in the treatment of Parkinson's disease is currently widely discussed. The study aimed to investigate the impact of acute and chronic treatment with the phosphodiesterase 5 inhibitor, sildenafil, at low and moderate doses of 2 mg/kg and 6 mg/kg, and L-DOPA (12.5 mg/kg), alone or in combination, on asymmetric behavior and dopamine (DA) and serotonin metabolism in the striatum and substantia nigra of unilaterally 6-OHDA-lesioned rats. Acute administration of sildenafil at both tested doses jointly with L-DOPA significantly increased the number of contralateral rotations during a 2 h measurement compared to L-DOPA alone. The effect of a lower dose of sildenafil combined with L-DOPA was much greater in the second hour of measurement. However, the acute combined administration of a higher dose of sildenafil with L-DOPA resulted in an immediate and much stronger increase in the number of contralateral rotations compared to L-DOPA alone, already visible in the first hour of measurement. Interestingly, the chronic combined administration of 2 mg/kg of sildenafil and L-DOPA significantly reduced the number of contralateral rotations, especially during the first hour of measurement, compared to the long-term treatment with L-DOPA alone. Such an effect was not observed after the long-term combined treatment of a higher dose of sildenafil and L-DOPA compared to L-DOPA alone. The concentration of DA in the ipsilateral striatum and substantia nigra after the last combined chronic dose of sildenafil (2 or 6 mg/kg) and L-DOPA (12.5 mg/kg) was significantly higher than after L-DOPA alone. In spite of much stronger increases in the DA concentration in the ipsilateral striatum and substantia nigra, the number of contralateral rotations was reduced in the group of rats treated with the combination of 2 mg/kg sildenafil and L-DOPA compared to the group receiving L-DOPA alone. Moreover, the combined treatment with a low dose of sildenafil and L-DOPA had an opposite effect on DA catabolism, as assessed by DOPAC/DA and HVA/DA indexes, and these indexes were reduced in the ipsilateral striatum but increased in the contralateral striatum and substantia nigra compared to the treatment with L-DOPA alone. The results of the present study show that the addition of a low dose of a PDE5 inhibitor to the standard L-DOPA therapy differently modulates rotational behavior, the tissue DA concentration and its catabolism in the striatum and substantia nigra.


Subject(s)
Corpus Striatum , Levodopa , Oxidopamine , Phosphodiesterase 5 Inhibitors , Sildenafil Citrate , Substantia Nigra , Animals , Sildenafil Citrate/pharmacology , Levodopa/pharmacology , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Rats , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Male , Phosphodiesterase 5 Inhibitors/pharmacology , Dopamine/metabolism , Behavior, Animal/drug effects , Drug Therapy, Combination , Serotonin/metabolism , Disease Models, Animal , Biogenic Monoamines/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism
16.
Article in English | MEDLINE | ID: mdl-39325129

ABSTRACT

Exposure to pesticide residues during the first 1000 days of life can disrupt body homeostasis and contribute to chronic metabolic diseases. Perinatal chlorpyrifos (CPF) exposure alters gut microbiota (GM) balance, potentially affecting offspring's health. Given the GM influence on brain function, the primary aim is to determine if pesticide-induced dysbiosis (microbial imbalance) affects indirectly other organs, such as the blood-brain barrier (BBB). The secondary objective is to evaluate the prebiotics protective effects, particularly inulin in promoting microbial balance (symbiosis), in both mothers and offspring. A total of 15 or more female rats were divided in 4 groups: control, oral CPF-exposed (1 mg/kg/day), exposed to inulin (10 g/L), and co-exposed to CPF and inulin from pre-gestation until weaning of pups. Samples from intestines, spleen, liver, and brain microvessels underwent microbiological and biomolecular analyses. Bacterial culture assessed GM composition of living bacteria and their translocation to non-intestinal organs. RT qPCR and Western blotting detected gene expression and protein levels of tight junction markers in brain microvessels. CPF exposure caused gut dysbiosis in offspring, with decreased Lactobacillus and Bifidobacterium and increased Escherichia coli (p < 0.01) leading to bacterial translocation to the spleen and liver. CPF also decreased tight junction's gene expression levels (50 to 60% decrease of CLDN3, p < 0.05). In contrast, inulin partially mitigated these adverse effects and restored gene expression to control levels. Our findings demonstrate a causal link between GM alterations and BBB integrity disruptions. The protective effects of inulin suggest potential therapeutic strategies to counteract pesticide-induced dysbiosis.

17.
Biol Trace Elem Res ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331325

ABSTRACT

Iron deficiency anemia (IDA) is a prevalent issue in pregnant women and children. However, the causal relationship between IDA in pregnancy and caries susceptivity in offspring remains unclear. This study aimed to explore the role of iron level during pregnancy on caries susceptivity of offsprings. Here, low-iron (LI) and high-iron (HI) models were established in maternal rats, and iron-related characteristics were examined in maternal rats and their offsprings. After induction of caries in rat offsprings, the carious lesions were evaluated by the Keyes scores, and microstructural damages in molars were observed by scanning electron microscopy. The results showed that LI in maternal rats induced IDA in rat offsprings, and HI only increased serum ferritin in offsprings. LI and HI in maternal rats had no effect on the morphological structure of salivary glands in rat offsprings. After inducing caries, rat offsprings in the LI group exhibited significant increase in enamel lesions at the smooth surface, and on enamel, slight dentinal, and moderate dentinal lesions at the sulcal surface. Only enamel lesions at the sulcal surface were significantly weakened in the HI group. Additionally, visible enamel damages were observed in the LI group. To sum up, iron deficiency during pregnancy enhances caries susceptibility in rat offsprings.

18.
Stem Cell Res Ther ; 15(1): 325, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334434

ABSTRACT

BACKGROUND: The uncultured adipose-derived stromal vascular fraction (SVF), consisting of adipose-derived stromal cells (ADSCs), M2 macrophages (M2Φ) and others, has shown therapeutic potential against osteoarthritis (OA), however, the mechanisms underlying its therapeutic effects remain unclear. Therefore, this study investigated the effects of the SVF on OA in a human-immunodeficient rat xenotransplantation model. METHODS: OA model was induced in the knees of female immunodeficient rats by destabilization of the medial meniscus. Immediately after the surgery, human SVF (1 × 105), ADSCs (1 × 104), or phosphate buffered saline as a control group were transplanted into the knees. At 4 and 8 weeks postoperatively, OA progression and synovitis were analyzed by macroscopic and histological analyses, and the expression of collagen II, SOX9, MMP-13, ADAMTS-5, F4/80, CD86 (M1), CD163 (M2), and human nuclear antigen (hNA) were evaluated immunohistochemically. In vitro, flow cytometry was performed to collect CD163-positive cells as M2Φ from the SVF. Chondrocyte pellets (1 × 105) were co-cultured with SVF (1 × 105), M2Φ (1 × 104), and ADSCs (1 × 104) or alone as a control group, and the pellet size was compared. TGF-ß, IL-10 and MMP-13 concentrations in the medium were evaluated using enzyme-linked immunosorbent assay. RESULTS: In comparison with the control and ADSC groups, the SVF group showed significantly slower OA progression and less synovitis with higher expression of collagen II and SOX9, lower expression of MMP-13 and ADAMTS-5, and lower F4/80 and M1/M2 ratio in the synovium. Only the SVF group showed partial expression of hNA-, CD163-, and F4/80-positive cells in the rat synovium. In vitro, the SVF, M2Φ, ADSC and control groups, in that order, showed larger pellet sizes, higher TGF-ß and IL-10, and lower MMP-13 concentrations. CONCLUSIONS: The M2Φ in the transplanted SVF directly affected recipient tissue, enhancing the secretion of growth factors and chondrocyte-protecting cytokines, and partially improving chondrocytes and joint homeostasis. These findings indicate that the SVF is as an effective option for regenerative therapy for OA, with mechanisms different from those of ADSCs.


Subject(s)
Adipose Tissue , Macrophages , Osteoarthritis , Animals , Humans , Rats , Female , Osteoarthritis/therapy , Osteoarthritis/pathology , Macrophages/metabolism , Adipose Tissue/cytology , Chondrocytes/metabolism , Chondrocytes/cytology , Stromal Vascular Fraction/metabolism , Disease Models, Animal
19.
J Alzheimers Dis Rep ; 8(1): 1211-1228, 2024.
Article in English | MEDLINE | ID: mdl-39247872

ABSTRACT

Background: Alzheimer's disease (AD), one of the most prevalent causes of dementia, is mainly sporadic in occurrence but driven by aging and other cofactors. Studies suggest that excessive alcohol consumption may increase AD risk. Objective: Our study examined the degree to which short-term moderate ethanol exposure leads to molecular pathological changes of AD-type neurodegeneration. Methods: Long Evans male and female rats were fed for 2 weeks with isocaloric liquid diets containing 24% or 0% caloric ethanol (n = 8/group). The frontal lobes were used to measure immunoreactivity to AD biomarkers, insulin-related endocrine metabolic molecules, and proinflammatory cytokines/chemokines by duplex or multiplex enzyme-linked immunosorbent assays (ELISAs). Results: Ethanol significantly increased frontal lobe levels of phospho-tau, but reduced Aß, ghrelin, glucagon, leptin, PAI, IL-2, and IFN-γ. Conclusions: Short-term effects of chronic ethanol feeding produced neuroendocrine molecular pathologic changes reflective of metabolic dysregulation, together with abnormalities that likely contribute to impairments in neuroplasticity. The findings suggest that chronic alcohol consumption rapidly establishes a platform for impairments in energy metabolism that occur in both the early stages of AD and alcohol-related brain degeneration.

20.
Front Neurol ; 15: 1441529, 2024.
Article in English | MEDLINE | ID: mdl-39296960

ABSTRACT

Introduction: Tongue weakness and atrophy can lead to deficits in the vital functions of breathing and swallowing in patients with motor neuron diseases (MNDs; e.g., amyotrophic lateral sclerosis (ALS) and pseudobulbar palsy), often resulting in aspiration pneumonia, respiratory failure, and death. Available treatments for patients with MNDs are largely palliative; thus, there is a critical need for therapies targeting preservation of upper airway function and suggesting a role for tongue exercise in patients with MNDs. Here, we leveraged our inducible rodent model of hypoglossal (XII) motor neuron degeneration to investigate the effects of a strength endurance tongue exercise program on upper airway structure and function. Our model was created through intralingual injection of cholera toxin B conjugated to saporin (CTB-SAP) into the genioglossus muscle of the tongue to induce targeted death of XII motor neurons. Methods: Rats in this study were allocated to 4 experimental groups that received intralingual injection of either CTB-SAP or unconjugated CTB + SAP (i.e., control) +/- tongue exercise. Following tongue exercise exposure, we evaluated the effect on respiratory function (via plethysmography), macrostructure [via magnetic resonance imaging (MRI) of the upper airway and tongue], and ultrafine structure [via ex vivo magnetic resonance spectroscopy (MRS) of the tongue] with a focus on lipid profiles. Results: Results showed that sham exercise-treated CTB-SAP rats have evidence of upper airway restriction (i.e., reduced airflow) and structural changes present in the upper airway (i.e., airway compression) when compared to CTB-SAP + exercise rats and control rats +/- tongue exercise, which was ameliorated with tongue exercise. Additionally, CTB-SAP + sham exercise rats have evidence of increased lipid expression in the tongue consistent with previously observed tongue hypertrophy when compared to CTB-SAP + exercise rats or control rats +/- tongue exercise. Conclusion: These findings provide further evidence that a strength endurance tongue exercise program may be a viable therapeutic treatment option in patients with XII motor neuron degeneration in MNDs such as ALS. Future directions will focus on investigating the underlying mechanism responsible for tongue exercise-induced plasticity in the hypoglossal-tongue axis, particularly inflammatory associated factors such as BDNF.

SELECTION OF CITATIONS
SEARCH DETAIL