Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 488
Filter
1.
J Pharm Biomed Anal ; 248: 116315, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38964166

ABSTRACT

Citri Reticulatae Pericarpium (CRP) is used as common health-care food and traditional Chinese medicine (TCM), which exerts pharmacological effects, such as anti-cardiovascular, anti-tumor, anti-oxidant, anti-inflammatory, anti-virus, hepatoprotective, blood pressure-lowering and neuroprotective. In this study, reliable, and sensitive ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) methods were developed and validated for the determination of eleven active components in rat plasma after oral administration of the CRP extract. The results of this method exhibited that the specificity, linearity (r > 0.999), precision and accuracy (the coefficient of variation (CV) < 11.5 %), recovery (52.9-107.9 %), matrix effects (63.8-107.5 %), and stability (CV < 10.8 %) met all requirements for the quantitation of plasma samples. The pharmacokinetic results showed that the Tmax of flavone glycosides was less than 0.7 h, and that of polymethoxyflavones and volatile components were within 1-7 h. Meanwhile, the area-under-the-curve (AUC) and concentration maximum (Cmax) of hesperidin, nobiletin, tangeretin, and D-limonene were higher than those of the other components, suggesting that the plasma exposure levels of these constituents were higher in CRP. The present research lays a foundation for elucidating the therapeutic material basis and provides a reference for further scientific research and clinical application of CRP.

2.
Biomed Chromatogr ; : e5949, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956820

ABSTRACT

α-Bisabolol (α-BIS) is a sesquiterpene alcohol present in chamomile essential oil [Chamomilla recutita (L.) Rauschert]. Despite its numerous pharmacological effects, its pharmacokinetics remain understudied. An analytical method capable of quantifying α-BIS in plasma is crucial to enable pharmacokinetic analysis. Presently, only one study has quantified it using mass spectrometry. Administering α-BIS requires a nanoemulsion for intravenous injection. This study aimed to develop and validate a bioanalytical method using high-performance liquid chromatography with an ultraviolet detector to quantify α-BIS in rat plasma. The method employed acetonitrile and ultrapure water (80:20, v/v) as the mobile phase, with a flow rate of 1 ml/min and concentrations ranging from 465 to 29.625 µg/ml. All US Food and Drug Administration-designated assays were successful, indicating the method's precision, accuracy, sensitivity and linearity in determining α-BIS in rat plasma. The developed nanoemulsion, assessed through dynamic light scattering analysis, the ensemble collection of particles and polydispersity index evaluation, proved safe and effective for intravenous administration. The pharmacokinetic parameters such as volume of distribution, clearance and half-life indicated that α-BIS tends to persist in the body. This study provides a foundation for further research to explore α-BIS's potential pharmaceutical applications in the future.

3.
Front Pharmacol ; 15: 1293464, 2024.
Article in English | MEDLINE | ID: mdl-38841366

ABSTRACT

Introduction: Pogostemon cablin (PC) is used in traditional Chinese medicine and food, as it exerts pharmacological effects, such as immune-modulatory, antibacterial, antioxidant, antitumor, and antiviral. Currently, the pharmacokinetics (PK) studies of PC mainly focus on individual components. However, research on these individual components cannot reflect the actual PK characteristics of PC after administration. Therefore, the simultaneous determination of multiple components in rat plasma using UPLC-MS/MS was used for the pharmacokinetic study after oral administration of PC extract in this study, providing reference value for the clinical application of PC. Methods: In the present study, a reliable and sensitive ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous determination of 15 prototype components (vanillic acid, vitexin, verbascoside, isoacteoside, hyperoside, cosmosiin, apigenin, ß-rhamnocitrin, acacetin, ombuin, pogostone, pachypodol, vicenin-2, retusin, and diosmetin-7-O-ß-D-glucopyranoside) in rat plasma after oral administration of the PC extract. Plasma samples were prepared via protein precipitation using acetonitrile, and icariin was used as the internal standard (IS). Results: The intra-day and inter-day accuracies ranged from -12.0 to 14.3%, and the precision of the analytes was less than 11.3%. The extraction recovery rate of the analytes ranged from 70.6-104.5%, and the matrix effects ranged from 67.4-104.8%. Stability studies proved that the analytes were stable under the tested conditions, with a relative standard deviation lower than 14.1%. Conclusion: The developed method can be applied to evaluate the PK of 15 prototype components in PC extracts of rats after oral administration using UPLC-MS/MS, providing valuable information for the development and clinical safe, effective, and rational use of PC.

4.
Heliyon ; 10(11): e32444, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38933986

ABSTRACT

Pogostemon cablin (PC) is a traditional Chinese medicine (TCM) and food as well as an important essential oil plant in China. PC essential oil exerts pharmacological effects such as anti-inflammatory, anti-oxidant, anti-platelet, anti-thrombotic, and anti-depressant. This study established a reliable and sensitive gas chromatography-mass spectrometry (GC-MS) method for the simultaneous determination of the pharmacokinetics of patchouli alcohol, ß-elemene, ß-caryophyllene, caryophyllene oxide, and farnesol in the plasma of rats after oral administration of PC essential oil extract. Using ethyl acetate to prepare the plasma samples, and p-menthone was used as the internal standard (IS). An HP5-MS column (0.25 µm × 0.25 mm × 30 m) was used for chromatographic separation, and detection was performed in selected ion monitoring (SIM) mode. The accuracies of intra-day and inter-day for all analytes displayed a range of -6.7 %-9.2 %, with precision below 12.5 %. Extraction recoveries for analytes ranged from 74.0 to 106.4 % and matrix effects ranged from 92.4 to 106.9 %. Stability results have demonstrated that the relative standard deviations (RSD) of analytes were below 12.1 %. Therefore, the developed GC-MS method successfully evaluated the pharmacokinetics of five volatile components in PC essential oil extract administered orally to rats.

5.
Biomed Chromatogr ; : e5902, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38922974

ABSTRACT

Xiakucao Oral Liquid (XKCOL) has been widely used for treating mammary gland hyperplasia and goiter in China. However, its pharmacokinetic data have been missing to date. To conduct its pharmacokinetic study, we established an LC-tandem mass spectrometry method for the simultaneous determination of eight XKCOL-related compounds in rat plasma. Liquid-liquid extraction was used for the sampling process. Chromatographic separation was performed on a Phenomenon Luna C18 column with a mobile phase of methanol and 2 mM ammonium acetate, using gradient elution at a flow rate of 0.8 mL/min. Detection was performed in the multiple reaction monitoring mode using negative electrospray ionization (ESI-) with optimized MS parameters. Endogenous substances and carryover did not interfere in the detection of analytes. The calibration curves showed a good linear relationship within the linear ranges. The intra- and inter-batch accuracy and precision were 94.8%-110.0% and ≤11.2%, respectively. There was no significant matrix effect and the recovery was reproducible. The dilution of samples did not affect the accuracy and precision. The solution and plasma samples were stable under the various test conditions. The major components of XKCOL absorbed into the blood were salvianic acid A and rosmarinic acid. They demonstrated linear kinetics over the dose range used in this study.

6.
J Pharm Biomed Anal ; 246: 116221, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759324

ABSTRACT

Lumateperone is a novel agent approved by FDA for treatment of schizophrenia in adults. To elucidate the species differences in the of biotransformation of lumateperone and its pharmacokinetic (PK) characteristics in rats, the metabolite identification of lumateperone was carried out in rat, dog and human liver microsomes, and rat plasma after oral administration using UPLC-Q Exactive Orbitrap high-resolution mass spectrometry HRMS. Furtherly, the PK characteristics of lumateperone and its N-demethylated metabolite (M3) in rat plasma were investigated using a validated LC-MS/MS method following intravenous and oral administration. Fourteen phase I metabolites were found in liver microsomes and ten of them were observed in rat plasma. N-demethylation, carbonylation, dehydrogenation, and piperazine ring cleavage were main metabolic pathway of lumateperone. No unique metabolites were formed in human liver microsomes. After rapid absorption in rats, lumateperone was quickly metabolized and eliminated with bioavailability of less than 5%. The exposure level of M3 was about 1.5-fold higher than that of lumateperone in rat plasma. Lumatperone underwent extensive metabolism and was absorbed rapidly in rats. Metabolite M3 had equivalent or slightly higher exposure levels than lumateperone. This study provides essential PK information to facilitate further pharmacodynamic researches of lumateperone.


Subject(s)
Microsomes, Liver , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Microsomes, Liver/metabolism , Tandem Mass Spectrometry/methods , Dogs , Rats , Humans , Male , Chromatography, High Pressure Liquid/methods , Administration, Oral , Biological Availability , Chromatography, Liquid/methods , Antipsychotic Agents/pharmacokinetics , Antipsychotic Agents/blood , Antipsychotic Agents/administration & dosage , Biotransformation , Piperazines/pharmacokinetics , Piperazines/blood , Liquid Chromatography-Mass Spectrometry
7.
J Sep Sci ; 47(7): e2300763, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576331

ABSTRACT

Folic acid (FA) is easily photodegraded to yield 6-formylpterin and pterin-6-carboxylic acid, which can generate reactive oxygen species and result in the formation of oxidized guanine derivatives such as 8-hydroxy-2'-deoxyguanosine and 8-hydroxy-guanosine. In this study, we developed a simple, rapid, and sensitive liquid chromatography-tandem mass spectrometry strategy for the simultaneous determination of FA photolysis products and oxidized guanine derivatives in plasma samples. Chromatographic separation was performed on a Waters HSS T3 column (2.1 × 100 mm, 5.0 µm) with gradient elution at a flow rate of 0.25 mL/min. Plasma samples were first pretreated with 1% formic acid, followed by protein precipitation with methanol. The developed method showed good linear relationships between 1 and 2000 ng/mL (r2 > 0.99). The intra- and inter-day precisions ranged from 2.6% to 7.5% and from 2.5% to 6.5%, respectively. Recoveries of the analytes were between 75.4% and 112.4% with the relative standard deviation < 9.1%. Finally, the method was applied to quantify FA photolysis products and oxidized guanine derivatives in rats with light and non-light conditions.


Subject(s)
Folic Acid , Tandem Mass Spectrometry , Rats , Animals , Tandem Mass Spectrometry/methods , Rats, Sprague-Dawley , Photolysis , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods
8.
J Pharm Biomed Anal ; 245: 116149, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38678858

ABSTRACT

A precise, sensitive, accurate, and validated reverse-phase high-performance liquid chromatography (RP-HPLC) method with a bioanalytical approach was utilized to analyze Cabazitaxel (CBZ) in rat plasma. Comparative research on extraction recoveries was performed between traditional liquid-liquid extraction (LLE) and synthesized graphene oxide (GO) based magnetic solid phase extraction (GO@MSPE). The superparamagnetic hybrid nanosorbent was synthesized using the combination of iron oxide and GO and subsequently applied for extraction and bioanalytical quantification of CBZ from plasma by (HPLC-PDA) analysis. Fourier- transform infrared spectroscopy (FT-IR), particle size, scanning electron microscopy (SEM), and x-ray diffraction (XRD) analysis were employed in the characterization of synthesized GO@MSPE nanosorbent. The investigation was accomplished using a shim pack C18 column (150 mm×4.6 mm, 5 µm) with a binary gradient mobile phase consisting of formic acid: acetonitrile: water (0.1:75:25, v/v/v) at a 0.8 mL/min flow rate, and a λmax of 229 nm. The limits of detection (LOD) and quantitation (LOQ) have been determined to be 50 and 100 ng/mL for both LLE and SPE techniques. The linearity range of the approach encompassed from 100 to 5000 ng/mL and was found to be linear (coefficient of determination > 0.99) for CBZ. The proposed method showed extraction recovery of 76.8-88.4% for the synthesized GO@MSPE and 69.3-77.4% for LLE, suggesting that the proposed bioanalytical approach was robust and qualified for all validation parameters within the acceptable criteria. Furthermore, the developed hybrid GO@MSPE nanosorbent with the help of the proposed RP-HPLC method, showed a significant potential for the extraction of CBZ in bioanalysis.


Subject(s)
Graphite , Limit of Detection , Liquid-Liquid Extraction , Solid Phase Extraction , Animals , Chromatography, High Pressure Liquid/methods , Rats , Liquid-Liquid Extraction/methods , Graphite/chemistry , Solid Phase Extraction/methods , Taxoids/blood , Taxoids/chemistry , Male , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared/methods
9.
AAPS PharmSciTech ; 25(2): 33, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332459

ABSTRACT

Margetuximab was approved for the treatment of advanced HER2+ breast cancer. A feasible analytical technique that can measure this drug was obligatory. In light of this, a novel and thoroughly validated liquid chromatographic (LC)-tandem mass spectrometric (MS/MS) approach was developed for the quantification of margetuximab in rat plasma. The liquid-liquid extraction method was used to extract the analyte from rat plasma. The analyte was separated using acetonitrile and formic acid buffer (30:70) as a mobile phase on Waters, alliance e-2695 model HPLC having Symmetry C18 column, 150 mm × 4.6 mm, 3.5-µm column. The overall runtime was 6 min at a flow rate of 1.0 ml/min. The method showed significant sensitivity and acceptable linearity over the concentration range of 6-120 ng/ml. Accuracy was within 98.51-99.92%. The intraday precision ranged between 0.41 and 8.98% CV. Also, the findings of pharmacokinetic parameters such as Cmax, tmax, AUC0-∞, AUC0-t, and half-life results of margetuximab showed that the technique was helpful for accurately measuring drug concentrations in rat plasma. The method that was developed was useful and effective for quantifying margetuximab.


Subject(s)
Antibodies, Monoclonal , Tandem Mass Spectrometry , Rats , Animals , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
10.
J Sep Sci ; 47(4): e2300803, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403460

ABSTRACT

Sanguisorba officinalis L. possesses detoxifying, analgesic, and hemostatic properties. After charred processing, S. officinalis exhibits significantly enhanced medicinal effects. Currently, most pharmacokinetic studies focus on the chemical constituents of unprocessed S. officinalis. There is limited research on the comparison of chemical constituents before and after processing. This study established a pharmacokinetic method using ultra-high-performance liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS) to simultaneously determine the levels of four tannin compounds in rat plasma. In negative ion mode, MS/MS detection was performed using an electrospray ionization source. Chromatographic separation was performed using WATERS ACQUITY HSS T3 column (2.1 × 100 mm, 1.8 µm) with a gradient elution of water and acetonitrile as the mobile phase. The pharmacokinetic results indicate that all four compounds reached peak concentrations within 2 h, demonstrating rapid absorption into the bloodstream within the gastrointestinal tract. Notably, the absorption was generally faster in the charred compound of S. officinalis after processing. These four compounds exhibited slower elimination in rat plasma, while in S. officinalis charcoal, the compounds were eliminated more rapidly. The pharmacokinetic results have revealed the pharmacokinetic characteristics of the four analytes in rat plasma which provides valuable reference information for further investigating the in vivo absorption process of S. officinalis after processing.


Subject(s)
Drugs, Chinese Herbal , Sanguisorba , Rats , Animals , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Tannins/analysis , Rats, Sprague-Dawley , Drugs, Chinese Herbal/analysis
11.
Article in English | MEDLINE | ID: mdl-38213152

ABSTRACT

BACKGROUND: Levo-tetrahydropalmatine and low-dose naltrexone are used in association with reducing cocaine-related cravings, but there are no analytical methods for the quantitative simultaneous analysis of this drug combination. OBJECTIVE: A highly selective and sensitive LC-MS/MS assay was developed and validated to simultaneously quantify l-THP and naltrexone. The analytical method for l-THP offers improved sensitivity compared to previously published methods. METHODS: The product ion transitions of l-THP and naltrexone were 357.0→193.0 and 342.2→324.1, respectively. Chromatographic separations were performed using a BEH-C18 column by an isocratic elution mode with acetonitrile and 0.1% formic acid in water containing 3 mM ammonium acetate. L-THP and naltrexone were extracted from rat plasma using a liquidliquid extraction method. RESULTS: For l-THP and naltrexone, the assay displayed good linear response over a concentration range of 0.5-1000 ng/mL and 0.25-500 ng/mL, respectively. The intra-day accuracy of the method for l-THP and naltrexone was 93.8-101% with a precision (%CV) of 2.43-8.15% and 93.4-108% with a precision of 3.47-8.22%. The inter-day accuracy for l-THP and naltrexone was 91.2-102% with a CV of 2.46-8.06% and 91.5-97.8% with a CV of 3.29-8.92%, respectively. CONCLUSION: The assay has been used for pharmacokinetic studies of l-THP and naltrexone in the rat.

12.
J Chromatogr Sci ; 62(3): 287-294, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-37158185

ABSTRACT

Amiodarone-induced thyrotoxicosis (AIT) is a common condition in patients who are receiving amiodarone for cardiac arrhythmia. This risk is elevated in iodine-deficient regions. Levothyroxine is the standard treatment for patients with hypothyroidism. This investigation is concerned with the evaluation of the possible pharmacokinetic interaction between amiodarone and levothyroxine upon co-therapy in rats and to investigate the cause of thyrotoxicosis. A selective, sensitive and precise RP-HPLC method was developed for the simultaneous determination of levothyroxine and amiodarone in rat plasma. A stationary phase of C18 Xterra RP column and a mobile phase consisting of acetonitrile: acidified water with 0.1% trifluoracetic acid (pH = 4.8) with gradient elution were used. The experiment was conducted at ambient temperature with flow rate of 1.5 mL/min for the chromatographic separation and quantitation of the investigated drugs. Protein precipitation with methanol was applied for the analysis of the two drugs in rat plasma. The method was linear over concentration range of 5-200 µg/mL for both levothyroxine and amiodarone. The European Medicines Agency guideline was applied for the validation of the developed bioanalytical method. The method was successfully applied to in vivo pharmacokinetic study in which levothyroxine and amiodarone were quantified in plasma of rats after receiving an oral dose of levothyroxine and amiodarone. After the calculation of the pharmacokinetic parameters, a statistical analysis was performed to elucidate the existence of significant difference between test and control groups in rats. The combination of levothyroxine and amiodarone significantly decreased levothyroxine bioavailability in rats, making the therapeutic drug monitoring mandatory in patients receiving levothyroxine and amiodarone. In addition, the increased clearance of levothyroxine upon the co-administration with amiodarone may explain the reported hypothyroidism.


Subject(s)
Amiodarone , Hypothyroidism , Thyrotoxicosis , Humans , Rats , Animals , Amiodarone/pharmacokinetics , Thyroxine/adverse effects , Drug Monitoring , Chromatography, High Pressure Liquid/methods , Hypothyroidism/drug therapy , Hypothyroidism/chemically induced , Thyrotoxicosis/chemically induced , Thyrotoxicosis/therapy
13.
Luminescence ; 39(1): e4609, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37880857

ABSTRACT

The new drug linagliptin belongs to the class of dipeptidyl peptidase-4 enzyme inhibitors. Linagliptin is used to treat type 2 diabetes and is taken orally either alone or in combination with other drugs. In this instance, a new, simple, and economical technique for analyzing linagliptin was developed by the effective use of a pyrrolidone derivative. The primary amine group of linagliptin permits its condensation with ninhydrin (0.14% w/v) to produce a fluorescent product in the presence of phenylacetaldehyde (0.02% v/v). All experimental parameters were carefully examined and adjusted in order to monitor the generation of the pyrrolidone derivative at excitation and emission wavelengths of 385 and 475 nm, respectively. The calibration graph was made by plotting the intensity of the fluorescence in relation to linagliptin concentration. A significant linearity was found for values ranging from 20 to 460 ng/mL. The process's validity has been verified by a thorough assessment of the instructions provided by the International Conference on Harmonization (ICH). The results indicate excellent uniformity with a reference method, showing that there is no substantial difference in precision and accuracy. The proposed approach was utilized for determining linagliptin in real rat plasma successfully owing to its high sensitivity. Additionally, the proposed approach was evaluated using the Eco-Scale evaluation tool and showed a high degree of eco-friendliness (86/100).


Subject(s)
Acetaldehyde/analogs & derivatives , Diabetes Mellitus, Type 2 , Linagliptin , Animals , Rats , Diabetes Mellitus, Type 2/drug therapy , Ninhydrin/chemistry , Pyrrolidinones
14.
Biomed Chromatogr ; 38(1): e5764, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37937528

ABSTRACT

A bioanalytical method was developed and validated for determining lurasidone (LUR) in rat plasma. The analyte and internal standard were extracted from rat plasma using a liquid-liquid extraction method. The mobile phase consisted of methanol, acetonitrile and water, with an ion pairing agent, 0.1% heptafluorobutyric acid, added to minimise the matrix effect. The detection was achieved using a tandem mass spectrometer (API 2000) in positive ion multiple reaction monitoring mode. All parameters were validated, including selectivity, specificity, carry-over effect, linearity, precision, accuracy, matrix effect, sensitivity and stability. The linearity range was from 5.0 to 1200.0 ng/mL with a correlation coefficient of >0.99. The accuracy ranged from 100.00% to 110.22% across the quality control range. The mean absolute recovery from matrix samples for LUR and the internal standard was found to be 68.46% and 67.25%, respectively, and the relative recovery was found to be 73.89% and 77.44%, respectively. This method can determine LUR concentrations in rat plasma samples up to 12 h after oral administration, aiding in LUR pharmacokinetic (PK) investigations in rats. The method's reproducibility on a conventional LC-MS/MS system and a shorter run time of 3.0 min make it an appealing bioanalytical method for quantifying LUR in PK studies.


Subject(s)
Lurasidone Hydrochloride , Tandem Mass Spectrometry , Rats , Animals , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
15.
Fitoterapia ; 172: 105758, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042507

ABSTRACT

The Chinese herb Qianghuo is an antiphlogistic herb with many effects and complex components. In this study, the chemical composition of Qianghuo and its components in rat plasma after oral administration were investigated using ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). The extracts, blank plasma, and plasma containing the drug were analyzed by mass spectrometry, and data collected in both positive and negative ion modes were analyzed using Masslynx software, and the structures were confirmed by combining the compound fragment ions and mass spectrometry cleavage pathways. A total of 62 in vitro chemical components were identified, including 27 coumarins, 18 organic acids, 5 amino acids, 5 glycosides, 2 flavonoids, 4 nucleotides, and 1 ester, which were summarized from the obtained compounds in terms of their possible cleavage patterns. Among the identified 31 compounds in rat plasma, 21 were prototypes, mostly coumarins, organic acids, and flavonoids, and 10 were metabolites, which were mainly generated via hydroxylation and methylation pathways. Based on these, this study provides a theoretical foundation for quality control and basic research on Qianghuo medicinal substances.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Rats , Animals , Tandem Mass Spectrometry/methods , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Molecular Structure , Flavonoids/analysis , Acids , Coumarins/analysis
16.
Biomed Chromatogr ; 38(4): e5816, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38128129

ABSTRACT

Favipiravir is an antiviral drug used for the treatment of virus-based diseases such as influenza. In this context, the development of a reliable liquid chromatography-tandem mass spectrometry method for the quantification of the drug and its impurities is necessary, particularly following the COVID-19 pandemic. Chromatographic separation was achieved on an inertial ODS column using gradient elution with a buffer containing triethylamine in high-performance liquid chromatography water and adjusting its pH with formic acid. The mixture of buffer and acetonitrile was used as a mobile phase with a flow rate of 1 ml/min at ambient temperature. The separation of favipiravir and its related impurities from remdesivir as an internal standard was achieved. The results indicated that all the variables, like precision, accuracy, linearity, matrix effect and stability, were successfully achieved within the limits of US Food and Drug Administration guidelines. This study could provide a new protocol for the development of new analytical methods for the detection of favipiravir and its impurities.


Subject(s)
Amides , Pandemics , Pyrazines , Tandem Mass Spectrometry , United States , Animals , Rats , Humans , Pharmaceutical Preparations , Chromatography, Liquid
17.
Methods Appl Fluoresc ; 12(1)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38052071

ABSTRACT

Duvelisib (DUV) is a potent anticancer drug whereas Moxifloxacin (MOX) is an antimicrobial drug with anti-proliferative potency against cancerous cells, which is empirically administered in cancer treatment. DUV and MOX combination is commonly prescribed to combat infections in patients while they are under chemotherapy treatment. This study describes, for the first time, the development of a simple and green synchronous spectrofluorimetric (SSF) method for the simultaneous estimation of DUV and MOX in plasma. DUV and MOX were quantified at 273 and 362 nm, respectively without interference between each other at Δλof 120 nm. The experimental variables influencing fluorescence intensities were thoroughly investigated and the optimum conditions were established. At pH 3.5, the optimum synchronous fluorescence intensity (SFI) was achieved in water solvent by using sodium acetate buffer solution. Calibration curves for DUV and MOX, correlating the SFI with the corresponding drug concentration, were linear in the range of 50-1000 ng mL-1for both drugs, with good correlation coefficients. The method was extremely sensitive, with limits of detection of 24 and 22 ng mL-1, and limits of quantitation of 40 and 45 ngmL-1for DUV and MOX, respectively. The SSF method was validated according to the Food and Drug Administration (FDA) guidelines for validation of analytical procedures, and the validation parameters were acceptable. The proposed SSF method was applied to the pharmacokinetic and bioavailability studies in rats' plasma after single concurrent oral administration of both drugs. The results of the study revealed that caution should be taken with DUV dose when concurrently administered with MOX. The greenness of SSF method was assessed by three different metric tools namely Analytical Eco-scale, Green Analytical Procedure Index, and Analytical Greenness Calculator. The results confirmed that SSF method is an eco-friendly and green analytical approach. In conclusion, the proposed SSF method is a valuable tool for pharmacokinetic/bioavailability studies and therapeutic drug monitoring of simultaneously administered DUV and MOX.


Subject(s)
Isoquinolines , Humans , United States , Animals , Rats , Moxifloxacin , Spectrometry, Fluorescence , Calibration
18.
Curr Med Chem ; 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37888816

ABSTRACT

BACKGROUND: Vericiguat, as a new stimulator of soluble guanylate cyclase (sGC), was recently approved as a first-in-class treatment for reducing risks in patients with ejection fraction less than 45 percent and heart failure (HF) in the USA. OBJECTIVE: The main aim of the present experiment was to establish an acceptable, sensitive assay based on ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for quantitatively analyzing the plasma concentration levels of vericiguat in rats, and to further evaluate the effect of apigenin on the metabolism of vericiguat in vivo. METHOD: In sample processes, acetonitrile was finally chosen for quickly precipitating protein. The levels of vericiguat in plasma were analyzed by a Xevo TQ-S triple quadrupole tandem mass spectrometry (Milford, MA, USA) in a positive ion mode. RESULTS: The scope of the calibration standard for vericiguat ranged from 0.5 to 1000 ng/mL, where a great linearity was acceptable. The lower limit of quantification (also called LLOQ) of vericiguat presented the sensitivity of this assay was evaluated as low as 0.5 ng/mL. Additionally, selectivity, accuracy and precision, extraction recovery, matrix effect, and stability were all verified. Subsequently, this approach also supported to assess the plasmatic concentrations of vericiguat from an interaction survey on herb-- drug, in which oral administration of apigenin (20 mg/kg) obviously increased the plasmatic levels of vericiguat and altered the pharmacokinetics of vericiguat in rats. CONCLUSION: These results would help us to further understand the pharmacokinetic properties of vericiguat when co-administration with apigenin, and to avoid unexpected clinical risks in the future.

19.
J Sep Sci ; 46(22): e2300282, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37863814

ABSTRACT

A selective and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the determination of three triterpenoid saponins isolated from Astragalus membranaceus leaf extract. In this article, a method for simultaneous determination of Huangqiyenin A, Huangqiyenin E, and Huangqiyenin K was established for the first time. The method was successfully applied to the pharmacokinetic study of Astragalus membranaceus leaf extract after oral administration. Liquid-liquid extraction was applied to plasma sample preparation. Multiple reaction monitoring mode with an electrospray ion source in positive electrospray ionization was chosen to quantify the analytes. Chromatographic separation was performed on a Waters HSS T3 column, using gradient elution with a mobile phase composed of acetonitrile and 5 mM ammonium acetate/water. The pharmacokinetic results showed that all three compounds had the characteristics of rapid absorption-slow metabolism trend. The time of maximum plasma concentration of Huangqiyenin A is higher than Huangqiyenin E and Huangqiyenin K. And the maximum plasma concentration of Huangqiyenin A is higher as well. The pharmacokinetic results revealed the pharmacokinetic characteristics of the three analytes in rat plasma, which could provide a helpful reference for the further study of Astragalus membranaceus leaf extract.


Subject(s)
Drugs, Chinese Herbal , Saponins , Triterpenes , Rats , Animals , Chromatography, High Pressure Liquid/methods , Rats, Sprague-Dawley , Astragalus propinquus/metabolism , Tandem Mass Spectrometry/methods , Administration, Oral , Plant Extracts/chemistry , Saponins/chemistry , Drugs, Chinese Herbal/metabolism
20.
Saudi Pharm J ; 31(9): 101693, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37559870

ABSTRACT

This study developed a novel, sensitive and selective LC-MS/MS method for the concurrent determination of DCB and VTX in rat plasma using encorafenib as internal standard (IS). To identify DCB, VTX, and IS, the positive multiple reaction monitoring (MRM) mode was used. Chromatographic separation was carried out using a reversed-phase Agilent Eclipse plus C18 column (100 mm × 2.1 mm, 3.5 µm) and an isocratic mobile phase made up of water with 0.1% formic acid and acetonitrile (50:50, v/v, pH 3.2) at a flow rate of 0.30 mL/min for 3.0 min. Prior to analysis, the DCB and VTX with the IS were extracted from plasma using the solid-phase extraction (SPE) method. High recovery rates for DCB, VTX and IS were achieved using the C18 cartridge without interference from plasma endogenous. The developed method was validated as per the FDA guidelines over a linear concentration range in rat plasma from 5-3000 and 5-1000 ng/mL for DCB and VTX, respectively with r2 ≥ 0.998. For both drugs, the lower limits of detection (LLOD) were 2.0 ng/mL. After the HLOQ sample was injected, less than 20% of the LLOQ of DCB, VTX, and less than 5% of the IS carry-over in the blank sample was attained. The overall recoveries of DCB and VTX from rat plasma were in the range of 90.68-97.56%, and the mean RSD of accuracy and precision results was ≤6.84%. For the first time, the newly developed approach was effectively used in a pharmacokinetic study on the simultaneous oral administration of DCB and VTX in rats that received 15.0 mg/kg of DCB and 100.0 mg/kg of VTX.

SELECTION OF CITATIONS
SEARCH DETAIL
...