Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 572
Filter
1.
Nutrients ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931217

ABSTRACT

Fermented foods, including cheeses, have garnered increased interest in recent years for their potential health benefits. This study explores the biological properties of eight French raw-milk cheeses-goat cheese, Saint-Nectaire, Cantal, Bleu d'Auvergne, Roquefort, Comté, Brie de Meaux, and Epoisses-on oxidative processes using both in vivo (Caenorhabditis elegans) and in vitro (human leukocytes) models. A cheese fractionation protocol was adapted to study four fractions for each cheese: a freeze-dried fraction (FDC) corresponding to whole cheese, an apolar (ApE), and two polar extracts (W40 and W70). We showed that all cheese fractions significantly improved Caenorhabditis elegans (C. elegans) survival rates when exposed to oxidative conditions by up to five times compared to the control, regardless of the fractionation protocol and the cheese type. They were also all able to reduce the in vivo accumulation of reactive oxygen species (ROS) by up to 70% under oxidative conditions, thereby safeguarding C. elegans from oxidative damage. These beneficial effects were explained by a reduction in ROS production up to 50% in vitro in human leukocytes and overexpression of antioxidant factor-encoding genes (daf-16, skn-1, ctl-2, and sod-3) in C. elegans.


Subject(s)
Caenorhabditis elegans , Cheese , Leukocytes , Oxidative Stress , Reactive Oxygen Species , Animals , Cheese/analysis , Humans , Oxidative Stress/drug effects , Leukocytes/metabolism , Leukocytes/drug effects , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Milk/chemistry , Oxidation-Reduction , France
2.
Vet Sci ; 11(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38922012

ABSTRACT

Raw milk and dairy products can serve as potential vectors for transmissible bacterial, viral and protozoal diseases, alongside harboring antimicrobial-resistance genes. This study monitors the changes in the antimicrobial-resistance gene pool in raw milk and cheese, from farm to consumer, utilizing next-generation sequencing. Five parallel sampling runs were conducted to assess the resistance gene pool, as well as phage or plasmid carriage and potential mobility. In terms of taxonomic composition, in raw milk the Firmicutes phylum made up 41%, while the Proteobacteria phylum accounted for 58%. In fresh cheese, this ratio shifted to 93% Firmicutes and 7% Proteobacteria. In matured cheese, the composition was 79% Firmicutes and 21% Proteobacteria. In total, 112 antimicrobial-resistance genes were identified. While a notable reduction in the resistance gene pool was observed in the freshly made raw cheese compared to the raw milk samples, a significant growth in the resistance gene pool occurred after one month of maturation, surpassing the initial gene frequency. Notably, the presence of extended-spectrum beta-lactamase (ESBL) genes, such as OXA-662 (100% coverage, 99.3% identity) and OXA-309 (97.1% coverage, 96.2% identity), raised concerns; these genes have a major public health relevance. In total, nineteen such genes belonging to nine gene families (ACT, CMY, EC, ORN, OXA, OXY, PLA, RAHN, TER) have been identified. The largest number of resistance genes were identified against fluoroquinolone drugs, which determined efflux pumps predominantly. Our findings underscore the importance of monitoring gene pool variations throughout the product pathway and the potential for horizontal gene transfer in raw products. We advocate the adoption of a new approach to food safety investigations, incorporating next-generation sequencing techniques.

3.
Foods ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928862

ABSTRACT

Even low levels of dairy propionic acid bacteria (dPAB) can cause cheese defects, resulting in severe economic losses for the producers of selected raw milk cheeses. Therefore, routine quality control of raw cheese milk for dPAB contamination is essential if propionic acid fermentation is undesired. Although knowledge of dPAB contamination of raw milk is important to understand cheese spoilage, long-term dPAB screening data are outdated, and studies taking into account different farm management parameters and their potential influence on dPAB levels are scarce. This study aims to provide insight into the dPAB levels of raw milk over time, to identify farm management factors that potentially influence dPAB levels, and to compare a cultural yeast extract lactate agar (YELA) and lithium glycerol agar (LGA) and a culture-independent method (qPCR) for dPAB quantification with respect to their applicability in routine quality control for the dairy industry. For this purpose, bulk tank milk from 25 dairy farms was screened for dPAB contamination over a one-year period. We were able to identify significant differences in the dPAB contamination levels in raw milk depending on selected farm-specific factors and observed relationships between the different types of milking systems and dPAB contamination levels in raw milk. When dPAB were quantified by cultivation on YELA, strong overgrowth of commensal microbiota impeded counting. Therefore, we conclude that quantification on LGA or by qPCR is preferable. Both methods, colony counting on LGA as well as quantification of dPAB using qPCR, have advantages for the application in (routine) quality control of raw milk, one being low-tech and inexpensive, the other being fast and highly specific, but the detection of (low level) dPAB contamination in raw milk remains a challenge.

4.
J Dairy Sci ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908712

ABSTRACT

High quality raw milk is an important prerequisite for the production of long ripened raw milk cheeses. This implies not only the absence of pathogenic microorganisms in raw milk, but also low levels of spoilage bacteria, including dairy propionic acid bacteria (dPAB), that can cause blowing and sensory defects in cheese, resulting in severe economic losses for producers. Raw milk contamination with dPAB has been primarily associated with improperly cleaned milking systems, but they have been detected in feed, soil, feces and on the teat skin. The objective of this study was to identify potential sources of raw milk contamination with dPAB in the barn and milking parlor environments. We also wanted to know more about the prevalence of the dPAB species in these environments and the levels of contamination. For this purpose, 16 small scale Alpine dairy farms were visited in August 2022: samples were taken from the barn environment (e.g., swab samples, air, feed, bedding), the milking system (swab samples, residual cleaning water, cleaning sponges, milk filters) and milk samples were collected at various sampling points along the milking system. Samples were analyzed for dPAB contamination, and results showed contamination at multiple sampling locations. We observed potential adverse effects of improperly set cleaning parameters of the milking system, as well as of farm specific practices. In addition, we identified cleaning water residues as an important source of contamination. Based on these findings, we propose potential mitigation strategies to reduce the risk of raw milk contamination with cheese spoilage bacteria, thereby contributing to a more sustainable food production.

5.
Vet Med Sci ; 10(4): e1477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38896036

ABSTRACT

Tick-borne encephalitis virus (TBEV) is a significant cause of flaviviral infections affecting the human central nervous system, primarily transmitted through tick bites and the consumption of unpasteurized milk. This study aimed to assess the prevalence of TBEV and identify new natural foci of TBEV in livestock milk. In this cross-sectional study, unpasteurized milk samples were collected from livestock reared on farms and analysed for the presence and subtyping of TBEV using nested reverse transcription-polymerase chain reaction , alongside the detection of anti-TBEV total IgG antibodies using ELISA. The findings revealed that the highest prevalence of TBEV was observed in goat and sheep milk combined, whereas no TBEV was detected in cow milk samples. All identified strains were of the Siberian subtype. Moreover, the highest prevalence of anti-TBEV antibodies was detected in sheep milk. These results uncover new foci of TBEV in Iran, underscoring the importance of thermal processing (pasteurization) of milk prior to consumption to mitigate the risk of TBEV infection.


Subject(s)
Encephalitis Viruses, Tick-Borne , Goats , Milk , Animals , Milk/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Iran/epidemiology , Sheep , Cross-Sectional Studies , Cattle , Encephalitis, Tick-Borne/veterinary , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Sheep Diseases/virology , Sheep Diseases/epidemiology , Goat Diseases/virology , Goat Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Prevalence , Female , Sheep, Domestic
6.
Sci Total Environ ; 944: 173902, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38871322

ABSTRACT

The widespread presence of per- and polyfluoroalkyl substances (PFAS) in various environmental matrices and their adverse health effects have gained worldwide attention. Therefore, numerous studies have focused on human exposure to PFAS through different pathways, such as fish and drinking water, and little attention has been paid to milk consumption. This study aimed to explore the transfer of PFAS by investigating the occurrence of PFAS in cow feed, drinking water, and raw milk from 20 regions of China and to assess the risk of human exposure to PFAS from raw milk. In total, 13, 15, and 7 PFAS were detected in cow feed, drinking water, and raw milk with total concentrations (∑PFAS) of 5.59 ± 2.91 ng/g (mean ± standard deviation), 11.91 ± 23.12 ng/L, and 0.15 ± 0.13 ng/mL, respectively. Perfluoropentanoic acid (PFPeA) was dominant with a concentration of 2.28 ± 1.75 ng/g, approximately 40.7 % of ∑PFAS in feed. Perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA) were the dominant compounds found in drinking water at 4.80 ± 14.37 and 3.01 ± 6.06 ng/L, respectively. Additionally, PFOA (0.08 ± 0.09 ng/mL) was the most significant compound in raw milk, contributing 51.5 % of ∑PFAS. Moreover, the results of the carry-over rate (COR) were as follows: perfluorooctanesulfonic acid (PFOS, 29.58 %) > PFOA (15.78 %) > perfluorobutanesulfonic acid (PFBS, 9.45 %). According to the reference dose (RfD) established by the European Food Safety Authority (EFSA) in 2018, there is a potential toxicological hazard of PFOA exposure for preschool children through milk consumption. Notably, the health risk from PFOS for 1-year-old children in Central China exceeded that observed for humans in other regions and age groups. Our results showed that PFOS and PFOA were more likely to accumulate in cows and to be constantly transferred to milk, thus increasing the human health risk, especially in children.


Subject(s)
Fluorocarbons , Milk , China , Animals , Milk/chemistry , Fluorocarbons/analysis , Humans , Risk Assessment , Environmental Exposure/statistics & numerical data , Environmental Pollutants/analysis , Environmental Monitoring , Caprylates/analysis , Drinking Water/chemistry , Alkanesulfonic Acids/analysis , Dietary Exposure/statistics & numerical data , Dietary Exposure/analysis , Food Contamination/analysis , Food Contamination/statistics & numerical data
7.
Toxics ; 12(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38787087

ABSTRACT

This study investigated lead (Pb) and cadmium (Cd) transfer in three dairy farming areas in the Mantaro river headwaters in the central Peruvian Andes and at varying distances from the mining complex at La Oroya. At each of these sites, the transfer of trace metals from the soil to raw milk was estimated, and a hazard assessment for lead and cadmium was carried out in scenarios of minimum, average, and maximum milk consumption in a Peruvian population aged 2-85. Pb and Cd were quantified by flame atomic absorption spectrometry. Significantly, the concentrations of lead and cadmium were found to exceed the maximum limits recommended by the World Health Organization, with a positive geospatial trend correlated with the distance from mining activity. Both Pb and Cd were found to be transferred through the soil-pasture-milk pathway, with the primary source of Cd being phosphate-based fertilizers used in pasture improvement. Pb was found to be the most significant contributor to the Hazard Index (HI) with those under 19 years of age and over 60 recording an HI of >1, with infants being the most vulnerable group due to their greater milk consumption in relation to their body weight. A marginal increase in contamination was observed in the dry season, indicating the need for studies to be expanded over several annual cycles.

8.
Foods ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731735

ABSTRACT

Traditional and regional foods have been increasing in popularity among consumers in Poland for many years. The observed trend of searching for natural and authentic taste encourages many producers to craft products from raw milk, including Korycinski cheeses. The aim of this study was to assess the microbiological hazards resulting from the presence of pathogenic bacteria in Korycinski cheeses available in retail trade. The tests were carried out using accredited methods, including the detection of the presence of Salmonella spp., the enumeration of Listeria monocytogenes, the enumeration of coagulase-positive staphylococci, and the detection of staphylococcal enterotoxins in food when the number of coagulase-positive staphylococci in the sample exceeded the limit of 105 cfu/g. The research material consisted of 45 Korycinski cheeses. The tests conducted revealed that Salmonella spp. was not detected in any of the examined cheeses. However, coagulase-positive staphylococci were present in 68.9% of the samples. In as many as 15 tested cheeses, the level of S. aureus contamination was above 105 cfu/g; therefore, these samples were tested for the presence of staphylococcal enterotoxins. The presence of staphylococcal enterotoxins was found in one Korycinski cheese. In four cheeses, the number of L. monocytogenes exceeded the level of 102 cfu/g, the limit specified in Regulation 2073/2005 on microbiological criteria for foodstuffs. The obtained research results confirm the validity of monitoring the microbiological quality of Korycinski cheeses and the need to increase awareness of ensuring proper hygienic conditions of production, including the increased risk associated with unpasteurized milk products.

9.
Heliyon ; 10(9): e30454, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38742056

ABSTRACT

In this study, activity concentrations of natural radionuclides in 28 raw milk samples collected from different dairy farms in Dhaka city of Bangladesh were measured using a high-purity germanium (HPGe) detector for the first time. The activity concentration of 226Ra, 232Th, and 40K in the investigated fresh milk samples ranged from BDL (Below detection level) to 26 ± 1.6 Bq/kg, BDL to 11.7 ± 3.3 Bq/kg and 101 ± 17 to 384 ± 32 Bq/kg, respectively. No artificial radionuclides were found in the investigated samples. Present results show inline within the range of available data in the literature. Annual committed effective doses were estimated following the consumption characteristics of raw milk by city population, values are found within the limiting range recommended by international organizations due to consumption of foodstuffs. Additionally, real-time gamma-ray dose rate in the farms/sampling locations was found in the range of 0.12 ± 0.01-0.20 ± 0.01 µSv/h by using a digital gamma survey meter (Gamma Scout) and the calculated maximum annual effective dose due to outdoor absorbed dose was found to be 0.25 mSv/y, which shows lower than the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) recommended limit of 2.4 mSv/y. This study indicates that the concentration of radionuclides in the farm fresh milk of Dhaka city does not pose any unwanted risk to public health, and it is safe to consume by both children and adults with the current intake level.

10.
Food Saf Risk ; 11(1): 2, 2024.
Article in English | MEDLINE | ID: mdl-38737868

ABSTRACT

Seasonal fluctuations influence foodborne illness transmission and affect patterns of microbial contamination of food. Previous investigations on the seasonality of Salmonella enterica prevalence in dairy products in Ethiopia have been minimal. However, such data are needed to inform strategic development of effective interventions to improve food safety, as seasonal differences may affect intervention strategies. This study was conducted to identify differences in the prevalence of Salmonella in milk and cheese samples between wet and dry seasons. A longitudinal study design was utilized with a random sampling occurring during both dry and wet seasons. A total of 448 milk and cottage cheese samples were collected from Oromia, Sidama, and Amhara regions. Samples were tested for Salmonella using the ISO 6579-1: 2008 method, followed by PCR confirmation. A chi-square test was conducted to assess the significance of differences in the prevalence of Salmonella in the samples between the two seasons. Results from this study showed a higher prevalence of Salmonella in all sample types during the dry season (P < 0.05). Moreover, when comparing raw milk, pasteurized milk, and cottage cheese samples, a significant difference was observed in Salmonella prevalence from raw milk samples (27.08%) collected in the Oromia region. Additionally, data showed a significantly higher prevalence of Salmonella in samples collected from raw milk producers (29.17%) during the wet season (P < 0.05). This study indicates that in order to enhance the safety of dairy products in Ethiopia, comprehensive, long-term awareness building on hygienic milk production and handling that consider seasonal influence is warranted. Supplementary Information: The online version contains supplementary material available at 10.1186/s40550-024-00108-4.

11.
J Food Prot ; 87(6): 100285, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697483

ABSTRACT

Staphylococcus aureus is one of the primary pathogenic agents found in cheeses produced with raw milk. Some strains of S. aureus are enterotoxigenic, possessing the ability to produce toxins responsible for staphylococcal food poisoning when present in contaminated foods. This study aimed to genotypically characterize, assess the antimicrobial resistance profile, and examine the enterotoxigenic potential of strains of S. aureus isolated from artisanal colonial cheese. Additionally, a bacterial diversity assessment in the cheeses was conducted by sequencing the 16S rRNA gene. The metataxomic profile revealed the presence of 68 distinct species in the cheese samples. Fifty-seven isolates of S. aureus were identified, with highlighted resistance to penicillin in 33% of the isolates, followed by clindamycin (28%), erythromycin (26%), and tetracycline (23%). The evaluated strains also exhibited inducible resistance to clindamycin, with nine isolates considered multidrug-resistant (MDR). The agr type I was the most prevalent (62%) among the isolates, followed by agr type II (24%). Additionally, ten spa types were identified. Although no enterotoxins and their associated genes were detected in the samples and isolates, respectively, the Panton-Valentine leukocidin gene (lukS-lukF) was found in 39% of the isolates. The presence of MDR pathogens in the artisanal raw milk cheese production chain underscores the need for quality management to prevent the contamination and dissemination of S. aureus strains.


Subject(s)
Anti-Bacterial Agents , Cheese , Milk , Staphylococcus aureus , Cheese/microbiology , Brazil , Milk/microbiology , Animals , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Virulence , Food Microbiology , Humans , Drug Resistance, Bacterial , Food Contamination/analysis , Enterotoxins/genetics
12.
Food Sci Anim Resour ; 44(2): 372-389, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38764508

ABSTRACT

This study investigated the efficacy of ultraviolet-C (UV-C) irradiation in enhancing the quality of raw bovine milk by targeting microbial populations and lipid peroxidation, both of which are key factors in milk spoilage. We categorized the raw milk samples into three groups based on initial bacterial load: low (<3 Log 10 CFU/mL), medium (3-4 Log 10 CFU/mL), and high (>4 Log 10 CFU/mL). Using a 144 W thin-film UV-C reactor, we treated the milk with a flow rate of 3 L/min. We measured the bacterial count including standard plate count, coliform count, coagulase-negative staphylococci count, and lactic acid bacteria count and lipid peroxidation (via thiobarbituric acid reactive substances assay) pre- and post-treatment. Our results show that UV-C treatment significantly reduced bacterial counts, with the most notable reductions observed in high and medium initial load samples (>4 and 3-4 Log 10 CFU/mL, respectively). The treatment was particularly effective against coliforms, showing higher reduction efficiency compared to coagulase-negative staphylococci and lactic acid bacteria. Notably, lipid peroxidation in UV-C treated milk was significantly lower than in pasteurized or untreated milk, even after 72 hours. These findings demonstrate the potential of UV-C irradiation as a pre-treatment method for raw milk, offering substantial reduction in microbial content and prevention of lipid peroxidation, thereby enhancing milk quality.

13.
Int J Food Microbiol ; 418: 110712, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38723541

ABSTRACT

Different Savoyard cheeses are granted with PDO (Protected Designation or Origin) and PGI (Protected Geographical Indication) which guarantees consumers compliance with strict specifications. The use of raw milk is known to be crucial for specific flavor development. To unravel the factors influencing microbial ecosystems across cheese making steps, according to the seasonality (winter and summer) and the mode of production (farmhouse and dairy factory ones), gene targeting on bacteria and fungus was used to have a full picture of 3 cheese making technologies, from the raw milk to the end of the ripening. Our results revealed that Savoyard raw milks are a plenteous source of biodiversity together with the brines used during the process, that may support the development of specific features for each cheese. It was shown that rinds and curds have very contrasted ecosystem diversity, composition, and evolution. Ripening stage was selective for some bacterial species, whereas fungus were mainly ubiquitous in dairy samples. All ripening stages are impacted by the type of cheese technologies, with a higher impact on bacterial communities, except for fungal rind communities, for which the technology is the more discriminant. The specific microorganism's abundance for each technology allow to see a real bar-code, with more or less differences regarding bacterial or fungal communities. Bacterial structuration is shaped mainly by matrices, differently regarding technologies while the influence of technology is higher for fungi. Production types showed 10 differential bacterial species, farmhouses showed more ripening taxa, while dairy factory products showing more lactic acid bacteria. Meanwhile, seasonality looks to be a minor element for the comprehension of both microbial ecosystems, but the uniqueness of each dairy plant is a key explicative feature, more for bacteria than for fungus communities.


Subject(s)
Bacteria , Cheese , Food Microbiology , Fungi , Microbiota , Milk , Cheese/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/growth & development , Milk/microbiology , Biodiversity , Food Handling/methods
14.
Foods ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38790756

ABSTRACT

The microbiological quality of dairy products from small-scale producers in Serbia was analysed. A total of 302 dairy products [raw (n = 111) and pasteurized milk cheeses (n = 79) and kajmak (n = 112)], were collected and tested for the presence of pathogens, Listeria monocytogenes and Salmonella spp., and enumerated for Coagulase-positive staphylococci (CPS), Escherichia coli, and yeasts and moulds. None of the samples tested positive for Salmonella spp., while L. monocytogenes was recovered from one raw milk cheese and five kajmak samples. Raw milk cheese and kajmak also had higher levels of indicator microorganisms, namely E. coli and yeast and moulds. Molecular serotyping grouped L. monocytogenes isolates into serogroups 1 (1/2a and 3a) and 3 (1/2b, 3b, and 7). When exposed to eight antibiotics, L. monocytogenes isolates were mostly sensitive, with the exception of oxacillin and reduced susceptibility to clindamycin, penicillin G, and trimethoprim/sulfamethoxazole, emphasizing the importance of continuous surveillance for antimicrobial resistance. Samples that tested positive for Listeria spp. also had higher loads of indicator microorganisms, namely E. coli and yeast and moulds, suggesting lapses in hygiene practices during production. Collectively, these data emphasize the need for improved food safety and hygiene practices among small-scale dairy producers. This is crucial to reduce the microbial contamination and improve both the quality and safety of dairy products in the Serbian market.

15.
Braz J Microbiol ; 55(2): 1759-1772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622468

ABSTRACT

Due to specific bacterial microbiota, raw milk cheeses have appreciated sensory properties. However, they may pose a threat to consumer safety due to potential pathogens presence. This study evaluated the microbiological contamination of 98 raw milk cheeses from Beira Baixa, Portugal. Presence and enumeration of Coagulase Positive Staphylococci (CPS), Listeria monocytogenes, Salmonella spp., pathogenic Escherichia coli, and indicator microorganisms (non-pathogenic E. coli and Listeria spp.) was attained. E. coli antimicrobial resistance (AMR) was also evaluated. PCR and/or Whole genome sequencing (WGS) was used to characterize E. coli, Salmonella spp. and L. monocytogenes isolates. Sixteen cheeses (16.3%) were classified as Satisfactory, 59 (60.2%) as Borderline and 23 (23.5%) as Unsatisfactory/Potential Injurious to Health. L. monocytogenes, CPS > 104 cfu g-1, Extraintestinal pathogenic E. coli (ExPEC) and Salmonella spp. were detected in 4.1%, 6.1%, 3.1% and 1.0% of the samples, respectively. Listeria innocua (4.1%) and E. coli > 104 cfu g-1 (16.3%) were also detected. AMR E. coli was detected in 23/98 (23.5%) of the cheese samples, of which two were multidrug resistant. WGS identified genotypes already associated to human disease and Listeria spp. cluster analysis indicated that cheese contamination might be related with noncompliance with Good Hygiene Practices during cheese production.


Subject(s)
Cheese , Food Microbiology , Milk , Cheese/microbiology , Portugal , Animals , Milk/microbiology , Food Safety , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Listeria monocytogenes/classification , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Hygiene , Escherichia coli/genetics , Escherichia coli/isolation & purification , Food Contamination/analysis , Drug Resistance, Bacterial , Humans
16.
Crit Rev Food Sci Nutr ; : 1-16, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38595109

ABSTRACT

Raw milk is the foundation of quality and safety in the dairy industry, and improving milk source management is the fundamental guarantee. Milk-derived exosomes (MDEs) are nanoscale information transfer molecules secreted by mammary cells with unique content and high stability, which can be used not only as potential markers to analyze key traits of lactation, reproduction, nutrition and health of animals, but also help farm managers to take timely interventions to improve animal welfare, milk quality, and functional traits. Our review first outlines the latest advances in MDEs isolation and purification, compositional analysis and characterization tools. We then provide a comprehensive summary of recent applications of MDEs liquid biopsy in breed selection, disease prevention and control, and feeding management. Finally, we evaluate the impact of processing on the stability of MDEs to offer guidance for dairy production and storage. The limitations and challenges in the development and use of MDEs markers are also discussed. As a noninvasive marker with high sensitivity and specificity, the MDEs-mediated assay technology is expected to be a powerful tool for measuring cow health and raw milk quality, enabling dynamic and precise regulation of dairy cows and full traceability of raw milk.

17.
Food Microbiol ; 121: 104531, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637091

ABSTRACT

The present study aimed to assess the occurrence and counts of Staphylococcus aureus in Brazilian artisanal cheeses (BAC) produced in five regions of Brazil: Coalho and Manteiga (Northeast region); Colonial and Serrano (South); Caipira (Central-West); Marajó (North); and Minas Artisanal cheeses, from Araxá, Campos das Vertentes, Cerrado, Serro and Canastra microregions (Southeast). The resistance to chlorine-based sanitizers, ability to attach to stainless steel surfaces, and antibiogram profile of a large set of S. aureus strains (n = 585) were assessed. Further, a total of 42 isolates were evaluated for the presence of enterotoxigenic genes (sea, seb, sec, sed, see, seg, sei, sej, and ser) and submitted to typing using pulsed-field gel electrophoresis (PFGE). BAC presented high counts of S. aureus (3.4-6.4 log CFU/g), varying from 25 to 62.5%. From the S. aureus strains (n = 585) assessed, 16% could resist 200 ppm of sodium hypochlorite, whereas 87.6% produced strong ability to attach to stainless steel surfaces, corroborating with S. aureus ability to persist and spread in the environment. Furthermore, the relatively high frequency (80.5%) of multidrug-resistant S. aureus and the presence of enterotoxin genes in 92.6% of the strains is of utmost attention. It reveals the lurking threat of SFP that can survive when conditions are favorable. The presence of enterotoxigenic and antimicrobial-resistant strains of S. aureus in cheese constitutes a potential risk to public health. This result calls for better control of cheese contamination sources, and taking hygienic measures is necessary for food safety. More attention should be paid to animal welfare and hygiene practices in some dairy farms during manufacturing to enhance the microbiological quality of traditional cheese products.


Subject(s)
Cheese , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Staphylococcus aureus/genetics , Cheese/microbiology , Brazil , Food Microbiology , Stainless Steel/analysis , Enterotoxins/genetics , Milk/microbiology
18.
Foods ; 13(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38672944

ABSTRACT

Lactoperoxidase systems (LPSs) can enhance the microbiological quality of raw milk when there is lack of cooling facilities. In this study, a total of 250 milk samples were collected from farmers, collectors, and factories. Experimental samples were both LPS-activated morning and overnight milk. The samples were tested with several chemical and microbiological tests, such as total bacterial count (TBC), total coliform count (TCC), and Escherichia coli count (EC). Results indicated that all LPS-activated milk samples had a higher quality than all the control samples. For instance, both the morning and overnight farm milk samples had mean TBCs of 5.79 log and 6.55 log cfu/mL, which is significantly (p < 0.05) lower than the control samples' mean TBC of 6.73 log and 7.31 log cfu/mL, respectively. When this was compared with the Ethiopian Standard, 51.4% of morning and 39.5% of overnight farm milk with LPS activation met the acceptable quality, while only 28% of morning and 15.7% of overnight control milk met the standard. Moreover, LPS activation has also significantly improved the shelf life of collectors' raw milk and pasteurized milk at the factories. Therefore, a better hygienic practice with LPS application can be practiced in conditions that lack cooling infrastructure and electricity.

19.
Vet World ; 17(3): 577-584, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38680137

ABSTRACT

Background and Aim: Bovine tuberculosis (TB) is a zoonotic disease of great public health importance, particularly in Indonesia, where control measures are limited or are not implemented. This study aimed to detect the presence of Mycobacterium pathogens in milk samples from dairy cattle in Pasuruan regency and Surabaya City, East Java, using Ziehl-Neelsen acid-fast staining and polymerase chain reaction (PCR). Materials and Methods: Milk samples were aseptically collected from 50 cattle in the Lekok Subdistrict, Pasuruan Regency, and 44 from dairy farms in the Lakarsantri Subdistrict, Wonocolo Subdistrict, Mulyorejo Subdistrict, and Kenjeran Subdistrict, Surabaya, East Java. To detect Mycobacteria at the species level, each sample was assessed by Ziehl-Neelsen staining and PCR using the RD1 and RD4 genes. Results: The results of PCR assay from 50 samples in Lekok Subdistrict, Pasuruan Regency showed that 30 samples (60%) were positive for Mycobacterium tuberculosis and two samples (4%) were positive for Mycobacterium bovis, although Ziehl-Neelsen staining did not show the presence of Mycobacterium spp. In the Surabaya region, 31 samples (70.45%) were positive for M. tuberculosis and three samples (6.8%) were positive for M. bovis. Six samples (13.63%) from all PCR-positive samples could be detected microscopically with Ziehl-Neelsen. Conclusion: The presence of bovine TB in this study supports the importance of using a molecular tool alongside routine surveillance for a better understanding of the epidemiology of bovine TB in East Java.

20.
Food Environ Virol ; 16(2): 188-199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38441780

ABSTRACT

This study aimed to assess two homogenization methods to recover norovirus from Minas artisanal cheese (MAC) made with raw bovine milk obtained from four microregions of the Minas Gerais state, Brazil, with different ripening times and geographical and abiotic characteristics. For this purpose, 33 fiscal samples were artificially contaminated with norovirus GI and GII, and Mengovirus (MgV), used as an internal process control (IPC). TRIzol® reagent and Proteinase K homogenization methods were evaluated for all samples were then subjected to RNA extraction using viral magnetic beads and RT-qPCR Taqman® for viral detection/quantification. Proteinase K method showed better efficiency results for both norovirus GI and GII, with means recovery efficiency of 45.7% (95% CI 34.3-57.2%) and 41.4% (95% CI 29.1-53.6%), respectively, when compared to TRIzol method (16.6% GI, 95% CI 8.4-24.9%, and 12.3% GII, 95% CI 7.0-17.6%). The limits of detection for norovirus GI and GII for this method were 101GC/g and 103GC/g, respectively, independent of cheese origin. MgV was detected and revealed in 100% success rate in all types of cheese, with mean recovery efficiency of 25.6% for Proteinase K, and 3.8% for the TRIzol method. According to cheese origin, Triangulo Mineiro MAC had the highest mean recovery rates for the three viral targets surveyed (89% GI, 87% GII, and 51% MgV), while Serro MAC showed the lowest rates (p < 0.001). Those results indicate that the proteinase K adapted method is suitable for norovirus GI and GII detection in MAC and corroborated MgV as an applicable IPC to be used during the process.


Subject(s)
Cheese , Food Contamination , Milk , Norovirus , Cheese/virology , Norovirus/isolation & purification , Norovirus/genetics , Norovirus/classification , Animals , Milk/virology , Cattle , Brazil , Food Contamination/analysis , RNA, Viral/isolation & purification , RNA, Viral/genetics , RNA, Viral/analysis , Fast Foods/virology , Fast Foods/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...