Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.346
Filter
1.
J Environ Manage ; 365: 121633, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955044

ABSTRACT

The development of sustainable advanced energy conversion technologies and efficient pollutant treatment processes is a viable solution to the two global crises of the lack of non-renewable energy resources and environmental harm. In recent years, the interaction of biological and chemical oxidation units to utilize biomass has been extensively studied. Among these systems, bio-electro-Fenton (BEF) and photo-bio-electro-Fenton (PBEF) systems have shown prospects for application due to making rational and practical conversion and use of energy. This review compared and analyzed the electron transfer mechanisms in BEF and PBEF systems, and systematically summarized the techniques for enhancing system performance based on the generation, transfer, and utilization of electrons, including increasing the anode electron recovery efficiency, enhancing the generation of reactive oxygen species, and optimizing operational modes. This review compared the effects of different methods on the electron flow process and fully evaluated the benefits and drawbacks. This review may provide straightforward suggestions and methods to enhance the performance of BEF and PBEF systems and inspire the reader to explore the generation and utilization of sustainable energy more deeply.


Subject(s)
Oxidation-Reduction , Hydrogen Peroxide/chemistry , Iron/chemistry , Reactive Oxygen Species , Biomass
2.
Plant Cell Rep ; 43(8): 193, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008125

ABSTRACT

Soil salinity is a major constraint for sustainable agricultural productivity, which together with the incessant climate change may be transformed into a severe threat to the global food security. It is, therefore, a serious concern that needs to be addressed expeditiously. The overproduction and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the key events occurring during salt stress, consequently employing nitro-oxidative stress and programmed cell death in plants. However, very sporadic studies have been performed concerning different aspects of nitro-oxidative stress in plants under salinity stress. The ability of plants to tolerate salinity is associated with their ability to maintain the cellular redox equilibrium mediated by both non-enzymatic and enzymatic antioxidant defense mechanisms. The present review emphasizes the mechanisms of ROS and RNS generation in plants, providing a detailed evaluation of how redox homeostasis is conserved through their effective removal. The uniqueness of this article stems from its incorporation of expression analyses of candidate genes for different antioxidant enzymes involved in ROS and RNS detoxification across various developmental stages and tissues of rice, utilizing publicly available microarray data. It underscores the utilization of modern biotechnological methods to improve salinity tolerance in crops, employing different antioxidants as markers. The review also explores how various transcription factors contribute to plants' ability to tolerate salinity by either activating or repressing the expression of stress-responsive genes. In summary, the review offers a thorough insight into the nitro-oxidative homeostasis strategy for extenuating salinity stress in plants.


Subject(s)
Homeostasis , Reactive Nitrogen Species , Reactive Oxygen Species , Salt Tolerance , Reactive Oxygen Species/metabolism , Reactive Nitrogen Species/metabolism , Salt Tolerance/genetics , Gene Expression Regulation, Plant , Oxidative Stress , Antioxidants/metabolism , Oxidation-Reduction , Plants/metabolism , Salinity
3.
Redox Biol ; 75: 103257, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38955113

ABSTRACT

Ferroptosis, a lipid peroxidation-driven cell death program kept in check by glutathione peroxidase 4 and endogenous redox cycles, promises access to novel strategies for treating therapy-resistant cancers. Chlorido [N,N'-disalicylidene-1,2-phenylenediamine]iron (III) complexes (SCs) have potent anti-cancer properties by inducing ferroptosis, apoptosis, or necroptosis through still poorly understood molecular mechanisms. Here, we show that SCs preferentially induce ferroptosis over other cell death programs in triple-negative breast cancer cells (LC50 ≥ 0.07 µM) and are particularly effective against cell lines with acquired invasiveness, chemo- or radioresistance. Redox lipidomics reveals that initiation of cell death is associated with extensive (hydroper)oxidation of arachidonic acid and adrenic acid in membrane phospholipids, specifically phosphatidylethanolamines and phosphatidylinositols, with SCs outperforming established ferroptosis inducers. Mechanistically, SCs effectively catalyze one-electron transfer reactions, likely via a redox cycle involving the reduction of Fe(III) to Fe(II) species and reversible formation of oxo-bridged dimeric complexes, as supported by cyclic voltammetry. As a result, SCs can use hydrogen peroxide to generate organic radicals but not hydroxyl radicals and oxidize membrane phospholipids and (membrane-)protective factors such as NADPH, which is depleted from cells. We conclude that SCs catalyze specific redox reactions that drive membrane peroxidation while interfering with the ability of cells, including therapy-resistant cancer cells, to detoxify phospholipid hydroperoxides.

4.
J Cell Mol Med ; 28(13): e18508, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953556

ABSTRACT

Both osteoporosis and tendinopathy are widely prevalent disorders, encountered in diverse medical contexts. Whilst each condition has distinct pathophysiological characteristics, they share several risk factors and underlying causes. Notably, oxidative stress emerges as a crucial intersecting factor, playing a pivotal role in the onset and progression of both diseases. This imbalance arises from a dysregulation in generating and neutralising reactive oxygen species (ROS), leading to an abnormal oxidative environment. Elevated levels of ROS can induce multiple cellular disruptions, such as cytotoxicity, apoptosis activation and reduced cell function, contributing to tissue deterioration and weakening the structural integrity of bones and tendons. Antioxidants are substances that can prevent or slow down the oxidation process, including Vitamin C, melatonin, resveratrol, anthocyanins and so on, demonstrating potential in treating these overlapping disorders. This comprehensive review aims to elucidate the complex role of oxidative stress within the interlinked pathways of these comorbid conditions. By integrating contemporary research and empirical findings, our objective is to outline new conceptual models and innovative treatment strategies for effectively managing these prevalent diseases. This review underscores the importance of further in-depth research to validate the efficacy of antioxidants and traditional Chinese medicine in treatment plans, as well as to explore targeted interventions focused on oxidative stress as promising areas for future medical advancements.


Subject(s)
Antioxidants , Osteoporosis , Oxidative Stress , Reactive Oxygen Species , Tendinopathy , Humans , Osteoporosis/metabolism , Osteoporosis/therapy , Osteoporosis/drug therapy , Antioxidants/therapeutic use , Tendinopathy/metabolism , Tendinopathy/therapy , Tendinopathy/pathology , Reactive Oxygen Species/metabolism , Animals
5.
Biochim Biophys Acta Bioenerg ; 1865(4): 149490, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960078

ABSTRACT

Photosystem I (PSI) is an essential protein complex for oxygenic photosynthesis and is also known to be an important source of reactive oxygen species (ROS) in the light. When ROS are generated within PSI, the photosystem can be damaged. The so-called PSI photoinhibition is a lethal event for oxygenic phototrophs, and it is prevented by keeping the reaction center chlorophyll (P700) oxidized in excess light conditions. Whereas regulatory mechanisms for controlling P700 oxidation have been discovered already, the molecular mechanism of PSI photoinhibition is still unclear. Here, we characterized the damage mechanism of PSI photoinhibition by in vitro transient absorption and electron paramagnetic resonance (EPR) spectroscopy in isolated PSI from cucumber leaves that had been subjected to photoinhibition treatment. Photodamage to PSI was induced by two different light treatments: 1. continuous illumination with high light at low (chilling) temperature (C/LT) and 2. repetitive flashes at room temperature (F/RT). These samples were compared to samples that had been illuminated with high light at room temperature (C/RT). The [FeS] clusters FX and (FA FB) were destructed in C/LT but not in F/RT. Transient absorption spectroscopy indicated that half of the charge separation was impaired in F/RT, however, low-temperature EPR revealed the light-induced FX signal at a similar size as in the case of C/RT. This indicates that the two branches of electron transfer in PSI were affected differently. Electron transfer at the A-branch was inhibited in F/RT and also partially in C/LT, while the B-branch remained active.

6.
BMC Cardiovasc Disord ; 24(1): 333, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961333

ABSTRACT

BACKGROUND: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS: Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS: There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS: These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.


Subject(s)
Antioxidants , Apoptosis , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Ginsenosides , Myocytes, Cardiac , Oxidative Stress , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel , Streptozocin , Animals , Diabetes Mellitus, Experimental/drug therapy , Male , Oxidative Stress/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/drug effects , Ginsenosides/pharmacology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/etiology , Apoptosis/drug effects , Antioxidants/pharmacology , Phosphorylation , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocardium/pathology , Myocardium/metabolism , Insulin , Malondialdehyde/metabolism
7.
mSphere ; : e0034624, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995053

ABSTRACT

In the process of oxygen reduction, reactive oxygen species (ROS) are generated as intermediates, including superoxide anion (O2-), hydrogen peroxide (H2O2), and hydroxyl radicals (OH-). ROS can be destructive, and an imbalance between oxidants and antioxidants in the body can lead to pathological inflammation. Inappropriate ROS production can cause oxidative damage, disrupting the balance in the body and potentially leading to DNA damage in intestinal epithelial cells and beneficial bacteria. Microorganisms have evolved various enzymes to mitigate the harmful effects of ROS. Accurately predicting the types of ROS-scavenging enzymes (ROSes) is crucial for understanding the oxidative stress mechanisms and formulating strategies to combat diseases related to the "gut-organ axis." Currently, there are no available ROSes databases (DBs). In this study, we propose a systematic workflow comprising three modules and employ a hierarchical multi-task deep learning approach to collect, expand, and explore ROSes-related entries. Based on this, we have developed the human gut microbiota ROSes DB (http://39.101.72.186/), which includes 7,689 entries. This DB provides user-friendly browsing and search features to support various applications. With the assistance of ROSes DB, various communication-based microbial interactions can be explored, further enabling the construction and analysis of the evolutionary and complex networks of ROSes DB in human gut microbiota species.IMPORTANCEReactive oxygen species (ROS) is generated during the process of oxygen reduction, including superoxide anion, hydrogen peroxide, and hydroxyl radicals. ROS can potentially cause damage to cells and DNA, leading to pathological inflammation within the body. Microorganisms have evolved various enzymes to mitigate the harmful effects of ROS, thereby maintaining a balance of microorganisms within the host. The study highlights the current absence of a ROSes DB, emphasizing the crucial importance of accurately predicting the types of ROSes for understanding oxidative stress mechanisms and developing strategies for diseases related to the "gut-organ axis." This research proposes a systematic workflow and employs a multi-task deep learning approach to establish the human gut microbiota ROSes DB. This DB comprises 7,689 entries and serves as a valuable tool for researchers to delve into the role of ROSes in the human gut microbiota.

8.
Ecotoxicol Environ Saf ; 282: 116708, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018736

ABSTRACT

Previous studies reported that hemoprotein CYP450 catalyzed triclosan coupling is an "uncommon" metabolic pathway that may enhance toxicity, raising concerns about its environmental and health impacts. Hemoglobin, a notable hemoprotein, can catalyze endogenous phenolic amino acid tyrosine coupling reactions. Our study explored the feasibility of these coupling reactions for exogenous phenolic pollutants in plasma. Both hemoglobin and hemin were found to catalyze triclosan coupling in the presence of H2O2. This resulted in the formation of five diTCS-2 H, two diTCS-Cl-3 H, and twelve triTCS-4 H in phosphate buffer, with a total of nineteen triclosan coupling products monitored using LC-QTOF. In plasma, five diTCS-2 H, two diTCS-Cl-3 H, and two triTCS-4 H were detected in hemoglobin-catalyzed reactions. Hemin showed a weaker catalytic effect on triclosan transformation compared to hemoglobin, likely due to hemin dimerization and oxidative degradation by H2O2, which limits its catalytic efficiency. Triclosan transformation in the human plasma-like medium still occurs with high H2O2, despite the presence of antioxidant proteins that typically inhibit such transformations. In plasma, free H2O2 was depleted within 40 minutes when 800 µM H2O2 was added, suggesting a rapid consumption of H2O2 in these reactions. Antioxidative species, or hemoglobin/hemin scavengers such as bovine serum albumin, may inhibit but not completely terminate the triclosan coupling reactions. Previous studies reported that diTCS-2 H showed higher hydrophobicity and greater endocrine-disrupting effects compared to triclosan, which further underscores the potential health risks. This study indicates that hemoglobin and heme in human plasma might significantly contribute to phenolic coupling reactions, potentially increasing health risks.

9.
Redox Biol ; 75: 103269, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018798

ABSTRACT

The ataxia telangiectasia mutated (ATM) protein kinase is best known as a master regulator of the DNA damage response. However, accumulating evidence has unveiled an equally vital function for ATM in sensing oxidative stress and orchestrating cellular antioxidant defenses to maintain redox homeostasis. ATM can be activated through a non-canonical pathway involving intermolecular disulfide crosslinking of the kinase dimers, distinct from its canonical activation by DNA double-strand breaks. Structural studies have elucidated the conformational changes that allow ATM to switch into an active redox-sensing state upon oxidation. Notably, loss of ATM function results in elevated reactive oxygen species (ROS) levels, altered antioxidant profiles, and mitochondrial dysfunction across multiple cell types and tissues. This oxidative stress arising from ATM deficiency has been implicated as a central driver of the neurodegenerative phenotypes in ataxia-telangiectasia (A-T) patients, potentially through mechanisms involving oxidative DNA damage, PARP hyperactivation, and widespread protein aggregation. Moreover, defective ATM oxidation sensing disrupts transcriptional programs and RNA metabolism, with detrimental impacts on neuronal homeostasis. Significantly, antioxidant therapy can ameliorate cellular and organismal abnormalities in various ATM-deficient models. This review synthesizes recent advances illuminating the multifaceted roles of ATM in preserving redox balance and mitigating oxidative insults, providing a unifying paradigm for understanding the complex pathogenesis of A-T disease.

10.
ACS Biomater Sci Eng ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39022808

ABSTRACT

Acute kidney injury (AKI) is a critical medical condition characterized by high morbidity and mortality rates. The pathogenesis of AKI potentially involves bursts of reactive oxygen species (ROS) bursts and elevated levels of inflammatory mediators. Developing nanoparticles (NPs) that downregulate ROS and inflammatory mediators is a promising approach to treat AKI. However, such NPs would be affected by the glomerular filtration barrier (GFB). Typically, NPs are too large to penetrate the glomerular system and reach the renal tubules─the primary site of AKI injury. Herein, we report the development of ultrasmall carbon dots-gallic acid (CDs-GA) NPs (∼5 nm). These NPs exhibited outstanding biocompatibility and were shown not only to efficiently eliminate ROS and alleviate oxidative stress but also to suppress the activation of the NF-κB signaling pathway, leading to a reduction in the release of inflammatory factors. Importantly, CDs-GA NPs were shown to be able to rapidly accumulate rapidly in the renal tissues without the need for intricate targeting strategies. In vivo studies demonstrated that CDs-GA NPs significantly reduced the incidence of cisplatin (CDDP)-induced AKI in mice, surpassing the efficacy of the small molecular drug, N-acetylcysteine. This research provides an innovative strategy for the treatment of AKI.

11.
Carcinogenesis ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023127

ABSTRACT

We investigated the interplay among oxidative DNA damage and repair, expression of genes encoding major base excision repair (BER) enzymes and bypass DNA polymerases, and mutagenesis in mammalian cells. Primary mouse embryonic fibroblasts were challenged with oxidative stress induced by methylene blue plus visible light, and formation and repair of DNA damage, changes in gene expression, and mutagenesis were determined at increasing intervals post-treatment (0 - 192 hours). Significant formation of oxidative DNA damage together with upregulation of Ogg1, Polß, and Polκ, and no changes in Mutyh and Nudt1 expression were found in treated cells. There was a distinct interconnection between Ogg1 and Polß expression and DNA damage formation and repair whereby changes in expression of these two genes were proportionate to the levels of oxidative DNA damage, once a 3-plus hour lag time passed (P < 0.05). Equally notable was the matching pattern of Polκ expression and kinetics of oxidative DNA damage and repair (P < 0.05). The DNA damage and gene expression data were remarkably consistent with mutagenicity data in the treated cells; the induced mutation spectrum is indicative of erroneous bypass of oxidized DNA bases and incorporation of oxidized deoxynucleoside triphosphates during replication of the genomic DNA. Our findings support follow-up functional studies to elucidate how oxidation of DNA bases and the nucleotide pool, overexpression of Polκ, delayed upregulation of Ogg1 and Polß, and inadequate expression of Nudt1 and Mutyh collectively affect mutagenesis consequent to oxidative stress.

12.
Appl Environ Microbiol ; : e0059624, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023265

ABSTRACT

Pseudomonas protegens can serve as an agricultural biocontrol agent. P. protegens often encounters hyperosmotic stress during industrial production and field application. The ability of P. protegens to withstand hyperosmotic stress is important for its application as a biocontrol agent. AlgU is a global regulator responsible for stress response and biocontrol ability. However, the specific regulatory role of AlgU in the hyperosmotic adaptation of P. protegens is poorly understood. In this study, we found that the AlgU mutation disrupted the hyperosmotic tolerance of P. protegens. Many genes and metabolites related to cell envelope formation were significantly downregulated in ΔalgU compared with that in the wild-type (WT) strain under hyperosmotic conditions, and we found that the algU mutation caused membrane integrity to be compromised and increased membrane permeability. Further experiments revealed that the cell envelope integrity protein TolA, which is regulated by AlgU, contributes to cell membrane stability and osmotic tolerance in P. protegens. In addition, several genes related to oxidative stress response were significantly downregulated in ΔalgU, and higher levels of intracellular reactive oxygen species were found in ΔalgU. Furthermore, we found that the synthesis of N-acetyl glutaminyl glutamine amide is directly regulated by AlgU and contributes to the hyperosmotic adaptation of P. protegens. This study revealed the mechanisms of AlgU's participation in osmotic tolerance in P. protegens, and it provides potential molecular targets for research on the hyperosmotic adaptation of P. protegens.IMPORTANCEIn this study, we found that the extracytoplasmic function sigma factor AlgU is essential for the survival of P. protegens under hyperosmotic conditions. We provided evidence supporting the roles of AlgU in influencing cell membrane stability, intracellular reactive oxygen species (ROS) accumulation, and dipeptide N-acetylglutaminylglutamine amide (NAGGN) synthesis in P. protegens under hyperosmotic conditions. Our findings revealed the mechanisms of AlgU's participation in hyperosmotic stress tolerance in P. protegens, and they provide potential molecular targets for research on the hyperosmotic adaptation of P. protegens, which is of value in improving the biocontrol ability of P. protegens.

13.
Environ Res ; 260: 119592, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39002629

ABSTRACT

Reactive oxygen species (ROS), substances with strong activity generated by oxygen during electron transfer, play a significant role in the decomposition of organic matter in various environmental settings, including soil, water and atmosphere. Although ROS has a short lifespan (ranging from a few nanoseconds to a few days), it continuously generated during the interaction between microorganisms and their environment, especially in environments characterized by strong ultraviolet radiation, fluctuating oxygen concentration or redox conditions, and the abundance of metal minerals. A comprehensive understanding of the fate of ROS in nature can provide new ideas for pollutant degradation and is of great significance for the development of green degradation technologies for organic pollutants. At present, the review of ROS generally revolves around various advanced oxidation processes, but lacks a description and summary of the fate of ROS in nature, this article starts with the definition of reactive oxidants species and reviews the production, migration, and transformation mechanisms of ROS in soil, water and atmospheric environments, focusing on recent developments. In addition, the stimulating effects of ROS on organisms were reviewed. Conclusively, the article summarizes the classic processes, possible improvements, and future directions for ROS-mediated degradation of pollutants. This review offers suggestions for future research directions in this field and provides the possible ROS technology application in pollutants treatment.

14.
ACS Appl Mater Interfaces ; 16(28): 36077-36094, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38949426

ABSTRACT

Periodontitis, an inflammatory bone resorption disease associated with dental plaque, poses significant challenges for effective treatment. In this study, we developed Mino@ZIF-8 nanoparticles inspired by the periodontal microenvironment and the unique properties of zeolitic imidazolate framework 8, aiming to address the complex pathogenesis of periodontitis. Transcriptome analysis revealed the active engagement of Mino@ZIF-8 nanoparticles in innate and adaptive inflammatory host defense and cellular metabolic remodeling. Through sustained release of the anti-inflammatory and antibacterial agent minocycline hydrochloride (Mino) and the generation of Zn2+ with pro-antioxidant effects during degradation, Mino@ZIF-8 nanoparticles synergistically alleviate inflammation and oxidative damage. Notably, our study focuses on the pivotal role of zinc ions in mitochondrial oxidation protection. Under lipopolysaccharide (LPS) stimulation, periodontal ligament cells undergo a metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis, leading to reduced ATP production and increased reactive oxygen species levels. However, Zn2+ effectively rebalances the glycolysis-OXPHOS imbalance, restoring cellular bioenergetics, mitigating oxidative damage, rescuing impaired mitochondria, and suppressing inflammatory cytokine production through modulation of the AKT/GSK3ß/NRF2 pathway. This research not only presents a promising approach for periodontitis treatment but also offers novel therapeutic opportunities for zinc-containing materials, providing valuable insights into the design of biomaterials targeting cellular energy metabolism regulation.


Subject(s)
Nanoparticles , Oxidative Stress , Periodontitis , Oxidative Stress/drug effects , Periodontitis/drug therapy , Periodontitis/metabolism , Periodontitis/pathology , Nanoparticles/chemistry , Humans , Animals , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Minocycline/pharmacology , Minocycline/chemistry , Minocycline/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Lipopolysaccharides/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Reactive Oxygen Species/metabolism , Imidazoles
15.
ACS Appl Mater Interfaces ; 16(28): 35898-35911, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38954799

ABSTRACT

Alzheimer's disease (AD) has a complex etiology and diverse pathological processes. The therapeutic effect of single-target drugs is limited, so simultaneous intervention of multiple targets is gradually becoming a new research trend. Critical stages in AD progression involve amyloid-ß (Aß) self-aggregation, metal-ion-triggered fibril formation, and elevated reactive oxygen species (ROS). Herein, red blood cell membranes (RBC) are used as templates for the in situ growth of cerium oxide (CeO2) nanocrystals. Then, carbon quantum dots (CQDs) are encapsulated to form nanocomposites (CQD-Ce-RBC). This strategy is combined with photothermal therapy (PTT) for AD therapy. The application of RBC enhances the materials' biocompatibility and improves immune evasion. RBC-grown CeO2, the first application in the field of AD, demonstrates outstanding antioxidant properties. CQD acts as a chelating agent for copper ions, which prevents the aggregation of Aß. In addition, the thermal effect induced by near-infrared laser-induced CQD can break down Aß fibers and improve the permeability of the blood-brain barrier. In vivo experiments on APP/PS1 mice demonstrate that CQD-Ce-RBC combined with PTT effectively clears cerebral amyloid deposits and significantly enhances learning and cognitive abilities, thereby retarding disease progression. This innovative multipathway approach under light-induced conditions holds promise for AD treatment.


Subject(s)
Alzheimer Disease , Cerium , Erythrocyte Membrane , Quantum Dots , Alzheimer Disease/drug therapy , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Animals , Cerium/chemistry , Cerium/pharmacology , Mice , Erythrocyte Membrane/chemistry , Quantum Dots/chemistry , Quantum Dots/therapeutic use , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Infrared Rays , Carbon/chemistry , Carbon/pharmacology , Photothermal Therapy , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Nanocomposites/chemistry , Nanocomposites/therapeutic use
16.
Adv Healthc Mater ; : e2401227, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979866

ABSTRACT

Pain caused by lumbar disc herniation (LDH) severely compromises patients' quality of life. The combination of steroid and local anesthetics is routinely employed in clinics to alleviate LDH-induced pain. However, the approach only mediates transient efficacy and requires repeated and invasive lumbar epidural injections. Here a paravertebrally-injected multifunctional hydrogel that can efficiently co-load and controlled release glucocorticoid betamethasone and anesthetics ropivacaine for sustained anti-inflammation, reactive oxygen species (ROS)-removal and pain relief in LDH is presented. Betamethasone is conjugated to hyaluronic acid (HA) via ROS-responsive crosslinker to form amphiphilic polymer that self-assemble into particles with ropivacaine loaded into the core. Solution of drug-loaded particles and thermo-sensitive polymer rapidly forms therapeutic hydrogel in situ upon injection next to the herniated disc, thus avoiding invasive epidural injection. In a rat model of LDH, multifunctional hydrogel maintains the local drug concentration 72 times longer than free drugs and more effectively inhibits the expression of pro-inflammatory cytokines and pain-related molecules including cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). Therapeutic hydrogel suppresses the LDH-induced pain in rats for 12 days while the equivalent dose of free drugs is only effective for 3 days. This platform is also applicable to ameliorate pain caused by other spine-related diseases.

17.
Biomed Rep ; 21(2): 124, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39006508

ABSTRACT

Acute pancreatitis (AP) is a common inflammatory disorder of the exocrine pancreas that causes severe morbidity and mortality. Although the pathophysiology of AP is poorly understood, a substantial body of evidence suggests some critical events for this disease, such as dysregulation of digestive enzyme production, cytoplasmic vacuolization, acinar cell death, edema formation, and inflammatory cell infiltration into the pancreas. Oxidative stress plays a role in the acute inflammatory response. The present review clarified the role of oxidative stress in the occurrence and development of AP by introducing oxidative stress to disrupt cellular Ca2+ balance and stimulating transcription factor activation and excessive release of inflammatory mediators for the application of antioxidant adjuvant therapy in the treatment of AP.

18.
IBRO Neurosci Rep ; 16: 373-394, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39007083

ABSTRACT

Superoxide dismutase (SOD) is a common antioxidant enzyme found majorly in living cells. The main physiological role of SOD is detoxification and maintain the redox balance, acts as a first line of defence against Reactive nitrogen species (RNS), Reactive oxygen species (ROS), and other such potentially hazardous molecules. SOD catalyses the conversion of superoxide anion free radicals (O 2 -.) into molecular oxygen (O 2) and hydrogen peroxide (H 2O 2) in the cells. Superoxide dismutases (SODs) are expressed in neurons and glial cells throughout the CNS both intracellularly and extracellularly. Endogenous oxidative stress (OS) linked with enlarged production of reactive oxygen metabolites (ROMs), inflammation, deregulation of redox balance, mitochondrial dysfunction and bioenergetic crisis are found to be prerequisite for neuronal loss in neurological diseases. Clinical and genetic studies indicate a direct correlation between mutations in SOD gene and neurodegenerative diseases, like Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD), Parkinson's Disease (PD) and Alzheimer's Disease (AD). Therefore, inhibitors of OS are considered as an optimistic approach to prevent neuronal loss. SOD mimetics like Metalloporphyrin Mn (II)-cyclic polyamines, Nitroxides and Mn (III)- Salen complexes are designed and used as therapeutic extensively in the treatment of neurological disorders. SODs and SOD mimetics are promising future therapeutics in the field of various diseases with OS-mediated pathology.

19.
Cancers (Basel) ; 16(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39001381

ABSTRACT

Glioblastoma (GBM) is the most prevalent and advanced malignant primary brain tumor in adults. GBM frequently harbors epidermal growth factor receptor (EGFR) wild-type (EGFRwt) gene amplification and/or EGFRvIII activating mutation. EGFR-driven GBM relies on the thioredoxin (Trx) and/or glutathione (GSH) antioxidant systems to withstand the excessive production of reactive oxygen species (ROS). The impact of EGFRwt or EGFRvIII overexpression on the response to a Trx/GSH co-targeting strategy is unknown. In this study, we investigated Trx/GSH co-targeting in the context of EGFR overexpression in GBM. Auranofin is a thioredoxin reductase (TrxR) inhibitor, FDA-approved for rheumatoid arthritis. L-buthionine-sulfoximine (L-BSO) inhibits GSH synthesis by targeting the glutamate-cysteine ligase catalytic (GCLC) enzyme subunit. We analyzed the mechanisms of cytotoxicity of auranofin and the interaction between auranofin and L-BSO in U87MG, U87/EGFRwt, and U87/EGFRvIII GBM isogenic GBM cell lines. ROS-dependent effects were assessed using the antioxidant N-acetylsteine. We show that auranofin decreased TrxR1 activity and increased ROS. Auranofin decreased cell vitality and colony formation and increased protein polyubiquitination through ROS-dependent mechanisms, suggesting the role of ROS in auranofin-induced cytotoxicity in the three cell lines. ROS-dependent PARP-1 cleavage was associated with EGFRvIII downregulation in U87/EGFRvIII cells. Remarkably, the auranofin and L-BSO combination induced the significant depletion of intracellular GSH and synergistic cytotoxicity regardless of EGFR overexpression. Nevertheless, molecular mechanisms associated with cytotoxicity were modulated to a different extent among the three cell lines. U87/EGFRvIII exhibited the most prominent ROS increase, P-AKT(Ser-473), and AKT decrease along with drastic EGFRvIII downregulation. U87/EGFRwt and U87/EGFRvIII displayed lower basal intracellular GSH levels and synergistic ROS-dependent DNA damage compared to U87MG cells. Our study provides evidence for ROS-dependent synergistic cytotoxicity of auranofin and L-BSO combination in GBM in vitro. Unraveling the sensitivity of EGFR-overexpressing cells to auranofin alone, and synergistic auranofin and L-BSO combination, supports the rationale to repurpose this promising pro-oxidant treatment strategy in GBM.

20.
World J Microbiol Biotechnol ; 40(9): 267, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004689

ABSTRACT

As an efficient and safe industrial bacterium, Corynebacterium glutamicum has extensive application in amino acid production. However, it often faces oxidative stress induced by reactive oxygen species (ROS), leading to diminished production efficiency. To enhance the robustness of C. glutamicum, numerous studies have focused on elucidating its regulatory mechanisms under various stress conditions such as heat, acid, and sulfur stress. However, a comprehensive review of its defense mechanisms against oxidative stress is needed. This review offers an in-depth overview of the mechanisms C. glutamicum employs to manage oxidative stress. It covers both enzymatic and non-enzymatic systems, including antioxidant enzymes, regulatory protein families, sigma factors involved in transcription, and physiological redox reduction pathways. This review provides insights for advancing research on the antioxidant mechanisms of C. glutamicum and sheds light on its potential applications in industrial production.


Subject(s)
Antioxidants , Bacterial Proteins , Corynebacterium glutamicum , Gene Expression Regulation, Bacterial , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Sigma Factor , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Antioxidants/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Reactive Oxygen Species/metabolism , Sigma Factor/metabolism , Sigma Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...