Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 381
Filter
1.
Clin Chim Acta ; 562: 119850, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977167

ABSTRACT

OBJECTIVE: The receptor-interacting protein kinase 3 (RIPK3) is a pivotal component for triggering necroptosis. We intended to investigate predictive effects of serum RIPK3 levels on early hematoma growth (EHG) and poor neurological outcome after acute intracerebral hemorrhage (ICH). METHODS: In this prospective cohort study, 183 ICH patients and 100 controls were enrolled for measuring serum RIPK3 levels. National Institutes of Health Stroke Scale (NIHSS) and hematoma volume were recorded as the severity indicators. EHG and poststroke 6-month unfavorable outcome (modified Rankin Scale scores of 3-6) were registered as the two prognostic parameters. Multivariate analyses were implemented to discern relevance of serum RIPK3 to ICH severity and prognosis. RESULTS: Serum RIPK3 levels of patients, which were dramatically higher than those of controls, were independently related to NIHSS scores, hematoma volume, EHG, 6-month mRS scores and unfavorable outcome. Risks of EHG and unfavorable outcome were linearly pertinent to and efficiently discriminated by RIPK3 levels under restricted cubic spline and receiver operating characteristic curve respectively. RIPK3 levels nonsignificantly interacted with age, gender, hypertension, etc. Predictive ability of RIPK3 levels resembled those of NIHSS scores and hematoma volume. The prediction models, in which serum RIPK3, NIHSS scores and hematoma volume were integrated, were visually displayed via nomograms. The models' predictive capabilities substantially surpassed that of serum RIPK3, NIHSS scores and hematoma volumes alone. The models kept stable under calibration curve. CONCLUSION: A profound increase of serum RIPK3 levels after ICH is tightly relevant to severity, EHG and poor neurological outcomes, assuming that serum RIPK3 may emerge as a valuable prognostic predictor of ICH.

2.
Arch Pharm (Weinheim) ; : e2400302, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955770

ABSTRACT

Necroptosis is a form of regulated necrotic cell death and has been confirmed to play pivotal roles in the pathogenesis of multiple autoimmune diseases such as rheumatoid arthritis (RA) and psoriasis. The development of necroptosis inhibitors may offer a promising therapeutic strategy for the treatment of these autoimmune diseases. Herein, starting from the in-house hit compound 1, we systematically performed structural optimization to discover potent necroptosis inhibitors with good pharmacokinetic profiles. The resulting compound 33 was a potent necroptosis inhibitor for both human I2.1 cells (IC50 < 0.2 nM) and murine Hepa1-6 cells (IC50 < 5 nM). Further target identification revealed that compound 33 was an inhibitor of receptor interacting protein kinase 1 (RIPK1) with favorable selectivity. In addition, compound 33 also exhibited favorable pharmacokinetic profiles (T1/2 = 1.32 h, AUC = 1157 ng·h/mL) in Sprague-Dawley rats. Molecular docking and molecular dynamics simulations confirmed that compound 33 could bind to RIPK1 with high affinity. In silico ADMET analysis demonstrated that compound 33 possesses good drug-likeness profiles. Collectively, compound 33 is a promising candidate for antinecroptotic drug discovery.

3.
J Pathol ; 263(4-5): 466-481, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924548

ABSTRACT

The E3 ubiquitin ligase thyroid hormone receptor interacting protein 12 (TRIP12) has been implicated in pancreatic adenocarcinoma (PDAC) through its role in mediating the degradation of pancreas transcription factor 1a (PTF1a). PTF1a is a transcription factor essential for the acinar differentiation state that is notably diminished during the early steps of pancreatic carcinogenesis. Despite these findings, the direct involvement of TRIP12 in the onset of pancreatic cancer has yet to be established. In this study, we demonstrated that TRIP12 protein was significantly upregulated in human pancreatic preneoplastic lesions. Furthermore, we observed that TRIP12 overexpression varied within PDAC samples and PDAC-derived cell lines. We further demonstrated that TRIP12 was required for PDAC-derived cell growth and for the expression of E2F-targeted genes. Acinar-to-ductal cell metaplasia (ADM) is a reversible process that reflects the high plasticity of acinar cells. ADM becomes irreversible in the presence of oncogenic Kras mutations and leads to the formation of preneoplastic lesions. Using two genetically modified mouse models, we showed that a loss of TRIP12 prevented acini from developing ADM in response to pancreatic injury. With two additional mouse models, we further discovered that a depletion of TRIP12 prevented the formation of KrasG12D-induced preneoplastic lesions and impaired metastasis formation in the presence of mutated KrasG12D and Trp53R172H genes. In summary our study identified an overexpression of TRIP12 from the early stages of pancreatic carcinogenesis and proposed this E3 ubiquitin ligase as a novel regulator of acinar plasticity with an important dual role in initiation and metastatic steps of PDAC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Acinar Cells , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Ubiquitin-Protein Ligases , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/enzymology , Humans , Acinar Cells/pathology , Acinar Cells/metabolism , Acinar Cells/enzymology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/enzymology , Metaplasia/pathology , Metaplasia/metabolism , Cell Plasticity , Carcinogenesis/genetics , Carcinogenesis/metabolism , Mice , Cell Line, Tumor , Cell Proliferation , Mice, Knockout , Gene Expression Regulation, Neoplastic , Precancerous Conditions/pathology , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Precancerous Conditions/enzymology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cell Transformation, Neoplastic/metabolism , Carrier Proteins
4.
Endocrine ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851643

ABSTRACT

PURPOSE: Variants in the Aryl hydrocarbon receptor-interacting protein (AIP) gene have been identified in sporadic acromegaly and pituitary gigantism, especially in young patients, with a predisposition to aggressive clinical phenotype and poor treatment efficacy. The clinical characteristics of patients with sporadic acromegaly and pituitary gigantism as well as AIP variants in Han Chinese have been rarely reported. We aimed to identify AIP gene variants and analyze the clinical characteristics of patients with sporadic acromegaly and pituitary gigantism in Han Chinese. METHODS: The study included 181 sporadic acromegaly (N = 163) and pituitary gigantism (N = 18) patients with an onset age of no more than 45 years old, who were diagnosed, treated, and followed up in Huashan Hospital. All 6 exons and their flanking regions of the AIP gene were analyzed with Sanger sequencing or NGS. The clinical characteristics were compared between groups with and without AIP variants. RESULTS: Germline AIP variants were found in 15/181 (8.29%) cases. In patients with an onset age ≤30 years old, AIP variants were identified in 12/133 (9.02%). Overall, 13 variants were detected. The pathogenic (P) variants p.R304X and p.R81X were identified in four cases, with two instances of each variant. Six exon variants (p.C254R, p.K103fs, p.Q228fs, p.Y38X, p.Q213*, and p.1115 fs) have not been reported before, which were likely pathogenic (LP). Patients with P/LP variants had younger onset ages, a higher prevalence of pituitary gigantism, larger tumor volumes, and a higher percentage of Ki-67-positive cells in tumors. In addition, the group with P/LP variants showed a less significant reduction of GH levels in an acute octreotide suppression test (OST) [17.7% (0, 65.0%) vs. 80.5% (63.9%, 90.2%), P = 0.001], and a trend of less GH decrease after the 3-month treatment with long-acting somatostatin analogs (SSAs). CONCLUSION: Germline AIP variants existed in sporadic Chinese Han acromegaly and pituitary gigantism patients and were more likely to be detected in young patients. AIP variants were associated with more aggressive tumor phenotypes and less response to SSA treatment.

5.
Pediatr Surg Int ; 40(1): 115, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696138

ABSTRACT

OBJECTIVE: This study aimed to evaluate the role of receptor-interacting protein kinase-3 (RIPK3) in the diagnosis, estimation of disease severity, and prognosis of premature infants with necrotising enterocolitis (NEC). METHODS: RIPK3, lactic acid (LA), and C-reactive protein (CRP) levels were measured in the peripheral blood of 108 premature infants between 2019 and 2023, including 24 with stage II NEC, 18 with stage III NEC and 66 controls. Diagnostic values of the indicators for NEC were evaluated via receiver operating characteristic (ROC) curve analysis. RESULTS: Plasma RIPK3 and LA levels upon NEC suspicion in neonates with stage III NEC were 32.37 ± 16.20 ng/mL. The ROC curve for the combination of RIPK3, LA, CRP for NEC diagnosis were 0.925. The time to full enteral feeding (FEFt) after recovery from NEC was different between two expression groups of plasma RIPK3 (RIPK3 < 20.06 ng/mL and RIPK3 ≥ 20.06 ng/mL). CONCLUSION: Plasma RIPK3 can be used as a promising marker for the diagnosis and estimation of disease severity of premature infants with NEC and for the guidance on proper feeding strategies after recovery from NEC.


Subject(s)
Biomarkers , Enterocolitis, Necrotizing , Infant, Premature , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , Enterocolitis, Necrotizing/blood , Enterocolitis, Necrotizing/diagnosis , Infant, Newborn , Receptor-Interacting Protein Serine-Threonine Kinases/blood , Biomarkers/blood , Male , Female , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Prognosis , ROC Curve , Severity of Illness Index , Infant, Premature, Diseases/blood , Infant, Premature, Diseases/diagnosis , Case-Control Studies , Lactic Acid/blood
6.
Adv Exp Med Biol ; 1451: 125-137, 2024.
Article in English | MEDLINE | ID: mdl-38801575

ABSTRACT

Poxviruses are notorious for having acquired/evolved numerous genes to counteract host innate immunity. Chordopoxviruses have acquired/evolved at least three different inhibitors of host necroptotic death: E3, which blocks ZBP1-dependent necroptotic cell death, and vIRD and vMLKL that inhibit necroptosis downstream of initial cell death signaling. While this suggests the importance of the necroptotic cell death pathway in inhibiting chordopoxvirus replication, several chordopoxviruses have lost one or more of these inhibitory functions. Monkeypox/mpox virus (MPXV) has lost a portion of the N-terminus of its E3 homologue. The N-terminus of the vaccinia virus E3 homologue serves to inhibit activation of the interferon-inducible antiviral protein, ZBP1. This likely makes MPXV unique among the orthopoxviruses in being sensitive to interferon (IFN) treatment in many mammals, including humans, which encode a complete necroptotic cell death pathway. Thus, IFN sensitivity may be the Achille's Heel for viruses like MPXV that cannot fully inhibit IFN-inducible, ZBP1-dependent antiviral pathways.


Subject(s)
Interferon Type I , Viral Proteins , Humans , Animals , Interferon Type I/immunology , Interferon Type I/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Monkeypox virus/drug effects , Monkeypox virus/physiology , Monkeypox virus/genetics , Immunity, Innate , Necroptosis/drug effects , Signal Transduction/drug effects , Mpox (monkeypox)/virology
7.
Int Immunopharmacol ; 133: 112060, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652970

ABSTRACT

Acute respiratory distress syndrome (ARDS) is characterized by lung tissue oedema and inflammatory cell infiltration, with limited therapeutic interventions available. Receptor-interacting protein kinase 1 (RIPK1), a critical regulator of cell death and inflammation implicated in many diseases, is not fully understood in the context of ARDS. In this study, we employed RIP1 kinase-inactivated (Rip1K45A/K45A) mice and two distinct RIPK1 inhibitors to investigate the contributions of RIP1 kinase activity in lipopolysaccharide (LPS)-induced ARDS pathology. Our results indicated that RIPK1 kinase inactivation, achieved through both genetic and chemical approaches, significantly attenuated LPS-induced ARDS pathology, as demonstrated by reduced polymorphonuclear neutrophil percentage (PMN%) in alveolar lavage fluid, expression of inflammatory and fibrosis-related factors in lung tissues, as well as histological examination. Results by tunnel staining and qRT-PCR analysis indicated that RIPK1 kinase activity played a role in regulating cell apoptosis and inflammation induced by LPS administration in lung tissue. In summary, employing both pharmacological and genetic approaches, this study demonstrated that targeted RIPK1 kinase inactivation attenuates the pathological phenotype induced by LPS inhalation in an ARDS mouse model. This study enhances our understanding of the therapeutic potential of RIPK1 kinase modulation in ARDS, providing insights for the pathogenesis of ARDS.


Subject(s)
Lipopolysaccharides , Protein Kinase Inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases , Respiratory Distress Syndrome , Animals , Humans , Male , Mice , Apoptosis/drug effects , Disease Models, Animal , Lung/pathology , Lung/drug effects , Lung/immunology , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology
8.
Heliyon ; 10(7): e28231, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38590848

ABSTRACT

Human familial isolated pituitary adenoma (FIPA) has been linked to germline heterozygous mutations in the gene encoding the aryl hydrocarbon receptor-interacting protein (AIP, also known as ARA9, XAP2, FKBP16, or FKBP37). To investigate the hypothesis that AIP is a pituitary adenoma tumor suppressor via its role in aryl hydrocarbon receptor (AHR) signaling, we have compared the pituitary phenotype of our global null Aip (AipΔC) mouse model with that of a conditional null Aip model (Aipfx/fx) carrying the same deletion, as well as pituitary phenotypes of Ahr global null and Arnt conditional null animals. We demonstrate that germline AipΔC heterozygosity results in a high incidence of pituitary tumors in both sexes, primarily somatotropinomas, at 16 months of age. Biallelic deletion of Aip in Pit-1 cells (Aipfx/fx:rGHRHRcre) increased pituitary tumor incidence and also accelerated tumor progression, supporting a loss-of-function/loss-of-heterozygosity model of tumorigenesis. Tumor development exhibited sexual dimorphism in wildtype and Aipfx/fx:rGHRHRcre animals. Despite the role of AHR as a tumor suppressor in other cancers, the observation that animals lacking AHR in all tissues, or ARNT in Pit-1 cells, do not develop somatotropinomas argues against the hypothesis that pituitary tumorigenesis in AIP-associated FIPA is related to decreased activities of either the Ahr or Arnt gene products.

9.
J Biol Chem ; 300(4): 107157, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479600

ABSTRACT

The aryl hydrocarbon receptor (AhR)-interacting protein (AIP) is a ubiquitously expressed, immunophilin-like protein best known for its role as a co-chaperone in the AhR-AIP-Hsp90 cytoplasmic complex. In addition to regulating AhR and the xenobiotic response, AIP has been linked to various aspects of cancer and immunity that will be the focus of this review article. Loss-of-function AIP mutations are associated with pituitary adenomas, suggesting that AIP acts as a tumor suppressor in the pituitary gland. However, the tumor suppressor mechanisms of AIP remain unclear, and AIP can exert oncogenic functions in other tissues. While global deletion of AIP in mice yields embryonically lethal cardiac malformations, heterozygote, and tissue-specific conditional AIP knockout mice have revealed various physiological roles of AIP. Emerging studies have established the regulatory roles of AIP in both innate and adaptive immunity. AIP interacts with and inhibits the nuclear translocation of the transcription factor IRF7 to inhibit type I interferon production. AIP also interacts with the CARMA1-BCL10-MALT1 complex in T cells to enhance IKK/NF-κB signaling and T cell activation. Taken together, AIP has diverse functions that vary considerably depending on the client protein, the tissue, and the species.


Subject(s)
Intracellular Signaling Peptides and Proteins , Neoplasms , Receptors, Aryl Hydrocarbon , Animals , Humans , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/genetics , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Mice , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/immunology , Immunity, Innate
10.
Adv Exp Med Biol ; 1444: 129-143, 2024.
Article in English | MEDLINE | ID: mdl-38467977

ABSTRACT

Necroptosis is a regulated form of cell death involved in the development of various pathological conditions. In contrast to apoptosis, plasma membrane rupture (PMR) occurs in cells in the relatively early stage of necroptosis; therefore, necroptosis induces a strong inflammatory response. Stimuli, including tumor necrosis factor (TNF), interferon (IFN)α/ß, lipopolysaccharide, polyI:C, and viral infection, induce the formation of necrosomes that lead to membrane rupture and the release of intracellular contents, termed danger-associated molecular patterns (DAMPs). DAMPs are the collective term for molecules that normally reside in the cytoplasm or nucleus in living cells without inducing inflammation but induce strong inflammatory responses when released outside cells. Recent studies have provided a better understanding of the mechanisms underlying PMR and the release of DAMPs. Moreover, necroptosis is involved in various pathological conditions, and mutations in necroptosis-related genes can cause hereditary autoinflammatory syndromes. Thus, manipulating necroptosis signaling pathways may be useful for treating diseases involving necroptosis.


Subject(s)
Apoptosis , Necroptosis , Humans , Necrosis/metabolism , Apoptosis/physiology , Cell Death , Tumor Necrosis Factor-alpha/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
11.
Mol Ther Nucleic Acids ; 35(1): 102148, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38439910

ABSTRACT

Biallelic variations in the aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) gene cause Leber congenital amaurosis subtype 4 (LCA4), an autosomal recessive early-onset severe retinal dystrophy that leads to the rapid degeneration of retinal photoreceptors and the severe impairment of sight within the first few years of life. Currently, there is no treatment or cure for AIPL1-associated LCA4. In this study, we investigated the potential of adeno-associated virus-mediated AIPL1 gene replacement therapy in two previously validated human retinal organoid (RO) models of LCA4. We report here that photoreceptor-specific AIPL1 gene replacement therapy, currently being tested in a first-in-human application, effectively rescued molecular features of AIPL1-associated LCA4 in these models. Notably, the loss of retinal phosphodiesterase 6 was rescued and elevated cyclic guanosine monophosphate (cGMP) levels were reduced following treatment. Transcriptomic analysis of untreated and AAV-transduced ROs revealed transcriptomic changes in response to elevated cGMP levels and viral infection, respectively. Overall, this study supports AIPL1 gene therapy as a promising therapeutic intervention for LCA4.

12.
ESC Heart Fail ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509849

ABSTRACT

AIMS: As necroptosis involving receptor-interacting protein kinase 3 (RIP3) and dynamin-related protein 1 (Drp1)-mediated signalling is a crucial mechanism of cell loss in heart failure (HF), we aimed to determine the potential diagnostic use of these molecules. METHODS AND RESULTS: The serum samples of the healthy subjects (n = 8) and patients with HF with reduced ejection fraction (n = 31), being subdivided according to the aetiology and New York Heart Association (NYHA) class, were used to measure RIP3 and Drp1 levels by enzyme-linked immunosorbent assay. Although the serum levels of Drp1 in the patients with HF were comparable with those seen in healthy individuals, we found a trend of increase in the levels of RIP3 (P = 0.0697) in the diseased group. These changes were unlikely dependent on the HF aetiology or NYHA class. The circulating RIP3 correlated with neither the main parameters assessing cardiac function (left ventricular ejection fraction, left ventricular end-diastolic diameter, and N-terminal pro-brain natriuretic peptide) nor the marker of inflammation (C-reactive protein). CONCLUSIONS: In this pilot study, findings on serum RIP3 supported the importance of necroptosis in HF pathomechanisms. The potential diagnostic use of circulating RIP3, unlike Drp1, as an additional biomarker of HF has also been indicated; however, further large studies are needed to prove this concept.

13.
Aesthetic Plast Surg ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532201

ABSTRACT

BACKGROUND: Autologous fat transplantation, widely used in cosmetic and reparative surgery for volumetric enhancements, faces challenges with its inconsistent long-term survival rates. The technique's efficacy, crucial for its development, is hindered by unpredictable outcomes. Enriching fat grafts with adipose-derived stem cells (ADSCs) shows promise in improving survival efficiency. OBJECTIVES: This study aimed to explore the potential of receptor-interacting protein kinase 3 (RIP3) kinase inhibitors as a pretreatment for ADSCs in enhancing autologous fat graft retention over a long term. METHODS: ADSCs were isolated, cultured under normal or oxygen-glucose deprivation conditions, and mixed with particulate fat grafts to form distinct experimental groups in female nude mice. Fat graft mass and volume, along with underlying mechanisms, were evaluated using quantitative reverse transcription polymerase chain reaction (RT-qPCR), immunohistochemistry, and Western blot analysis. RESULTS: The experimental group, pretreated with RIP3 kinase inhibitors, had higher graft mass and volume, greater adipocyte integrity, and increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA levels than control groups. Furthermore, the experimental group demonstrated lower expression of necroptosis pathway proteins in the short term and an ameliorated inflammatory response as indicated by interleukin-1 beta (IL-1ß), interleukin-10 (IL-10) mRNA levels, and histological analyses. Notably, enhanced neovascularization was evident in the experimental group. CONCLUSIONS: These findings suggest that RIP3 kinase inhibitor pretreatment of ADSCs can improve fat graft survival, promote adipocyte integrity, potentially decrease inflammation, and enhance neovascularization. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

14.
J Neurosci Res ; 102(2): e25301, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361405

ABSTRACT

Our previous study found that receptor interacting protein 3 (RIP3) and apoptosis-inducing factor (AIF) were involved in neuronal programmed necrosis during global cerebral ischemia-reperfusion (I/R) injury. Here, we further studied its downstream mechanisms and the role of the autophagy inhibitors 3-methyladenine (3-MA) and bafilomycin A1 (BAF). A 20-min global cerebral I/R injury model was constructed using the 4-vessel occlusion (4-VO) method in male rats. 3-MA and BAF were injected into the lateral ventricle 1 h before ischemia. Spatial and activation changes of proteins were detected by immunofluorescence (IF), and protein interaction was determined by immunoprecipitation (IP). The phosphorylation of H2AX (γ-H2AX) and activation of mixed lineage kinase domain-like protein (p-MLKL) occurred as early as 6 h after reperfusion. RIP3, AIF, and cyclophilin A (CypA) in the neurons after I/R injury were spatially overlapped around and within the nucleus and combined with each other after reperfusion. The survival rate of CA1 neurons in the 3-MA and BAF groups was significantly higher than that in the I/R group. Autophagy was activated significantly after I/R injury, which was partially inhibited by 3-MA and BAF. Pretreatment with both 3-MA and BAF almost completely inhibited nuclear translocation, spatial overlap, and combination of RIP3, AIF, and CypA proteins. These findings suggest that after global cerebral I/R injury, RIP3, AIF, and CypA translocated into the nuclei and formed the DNA degradation complex RIP3/AIF/CypA in hippocampal CA1 neurons. Pretreatment with autophagy inhibitors could reduce neuronal necroptosis by preventing the formation of the RIP3/AIF/CypA complex and its nuclear translocation.


Subject(s)
Brain Ischemia , Macrolides , Reperfusion Injury , Rats , Male , Animals , Cyclophilin A/genetics , Cyclophilin A/metabolism , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Necroptosis , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Hippocampus/metabolism , Apoptosis , Neurons/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Autophagy
15.
Physiol Genomics ; 56(4): 327-342, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38314698

ABSTRACT

This study investigated the interaction between genetic differences in stress reactivity/coping and environmental challenges, such as acute stress during adolescence on adult contextual fear memory and anxiety-like behaviors. Fischer 344 (F344) and the inbred F344;WKY-Stresp3/Eer congenic strain (congenic), in which chromosomal regions from the Wistar-Kyoto (WKY) strain were introgressed into the F344 background, were exposed to a modified forced swim test during adolescence, while controls were undisturbed. In adulthood, fear learning and memory, assessed by contextual fear conditioning, were significantly greater in congenic animals compared with F344 animals, and stress during adolescence increased them even further in males of both strains. Anxiety-like behavior, measured by the open field test, was also greater in congenic than F344 animals, and stress during adolescence increased it further in both strains of adult males. Whole genome sequencing of the F344;WKY-Stresp3/Eer strain revealed an enrichment of WKY genotypes in chromosomes 9, 14, and 15. An example of functional WKY sequence variations in the congenic strain, cannabinoid receptor interacting protein 1 (Cnrip1) had a Cnrip1 transcript isoform that lacked two exons. Although the original hypothesis that the genetic predisposition to increased anxiety of the WKY donor strain would exaggerate fear memory relative to the background strain was confirmed, the consequences of adolescent stress were strain independent but sex dependent in adulthood. Molecular genomic approaches combined with genetic mapping of WKY sequence variations in chromosomes 9, 14, and 15 could aid in finding quantitative trait genes contributing to the variation in fear memory.NEW & NOTEWORTHY This study found that 1) whole genome sequencing of congenic strains should be a criterion for their recognition; 2) sequence variations between Wistar-Kyoto and Fischer 344 strains at regions of chromosomes 9, 14, and 15 contribute to differences in contextual fear memory and anxiety-like behaviors; and 3) stress during adolescence affects these behaviors in males, but not females, and is independent of strain.


Subject(s)
Anxiety , Fear , Male , Rats , Animals , Rats, Inbred WKY , Rats, Inbred F344 , Anxiety/genetics , Chromosomes , Animals, Congenic , Carrier Proteins/genetics
16.
Zhen Ci Yan Jiu ; 49(2): 127-134, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38413033

ABSTRACT

OBJECTIVES: To investigate the neuroprotective effect of electroacupuncture (EA) at "Quchi"(LI11) and "Zusanli"(ST36) in the rats with cerebral ischemia reperfusion injury and its influence on programmed necrosis of cerebral cortical neurons. METHODS: Sixty male SD rats were randomly divided into sham-operation group, model group, EA group and inhibitor group, with 15 rats in each group. Left middle cerebral artery occlusion model was established using the modified thread embolism method. In the sham-operation group, the carotid artery was exposed and dissociated in each rat. EA was applied to "Quchi"(LI11) and "Zusanli"(ST36) on the right side for 30 min each time, once daily for 7 days in the rats of the EA group. The rats in the inhibitor group were intraperitoneally injected with norstatin-1 (0.6 mg/kg) for consecutive 7 days. The neurological deficit score of rats in each group was observed. HE staining was adopted to detect the degree of pathological damage of the cerebral cortex in the infarction area. Using TUNEL staining, the apoptosis of cortical neurons in the infarction area was determined;the contents of tumor necrosis factor α (TNF-α), interleukin (IL)-1ß and IL-6 were detected by ELISA;the mRNA and protein expression of the receptor interacting protein-1 (RIP1), the receptor interacting protein-3 (RIP3) and the substrate mixed lineage kinase like protein (MLKL) were detected by fluorescence quantitative PCR and Western blot, respectively. RESULTS: In comparison with the sham-operation group, the neurological deficit score in the model group was higher(P<0.01);HE staining showed that there was the pathological damage in the infarction area;the neuron apoptosis rate, the contents of TNF-α, IL-1ß and IL-6, and the mRNA and protein expressions of RIP1, RIP3 and MLKL increased(P<0.01) in the model group. In the EA group, the neurological deficit score was reduced(P<0.01);HE staining showed that the pathological damage was ameliorated in the infarction area;the neuron apoptosis rate, the contents of TNF-α, IL-1ß and IL-6, and the mRNA and protein expressions of RIP1, RIP3, MLKL decreased(P<0.05, P<0.01) when compared with those in the model group. CONCLUSIONS: EA can attenuate cerebral ischemia reperfusion injury and display its neuroprotective effect probably through inhibiting programmed necrosis of cerebral cortical neurons in the rats.


Subject(s)
Brain Ischemia , Electroacupuncture , Neuroprotective Agents , Reperfusion Injury , Rats , Male , Animals , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/genetics , Brain Ischemia/genetics , Brain Ischemia/therapy , Interleukin-6 , Reperfusion Injury/genetics , Reperfusion Injury/therapy , Neurons/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Necrosis , Apoptosis , Infarction , RNA, Messenger , Protein Kinases
17.
Biomed Pharmacother ; 171: 116161, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244330

ABSTRACT

Autoimmune hepatitis (AIH) is a progressive liver disease mediated by the immune system that involves an imbalance in pro-inflammatory and regulatory mechanisms including regulatory T cells (Tregs), T helper 17 (Th17) cells, Th1, macrophages, and many other immune cells. Current steroid therapy for AIH has significant systemic side effects and is poorly tolerated by some individuals. Therefore, there is an urgent need for alternative treatments. Maintaining homeostasis in macrophage differentiation and activation is crucial for regulating immune responses in hepatitis. In this study, we loaded small interfering RNA (siRNA) targeting receptor-interacting protein kinase 3 (RIPK3) into M2-type macrophage-derived exosomes (M2 Exos) to create functionalized exosomes called M2 Exos/siRIPK3. These exosomes demonstrated a natural ability to target the liver in mice, as they were efficiently taken up by hepatic macrophages and showed significant and stable accumulation. M2 Exos/siRIPK3 effectively mitigated immune-mediated hepatitis by suppressing the expression of RIPK3, resulting in a reduced release of pro-inflammatory cytokines and chemokines in both liver tissues and serum. Additionally, M2 Exos/siRIPK3 exhibited immunomodulatory effects, as its administration resulted in a decreased proportion of hepatic and splenic Th17 cells, along with an increased ratio of Tregs. Overall, this study suggests that loading small molecule drugs onto M2 Exos could be a promising approach for developing immunomodulators that specifically target liver macrophages to treat AIH. This strategy has the potential to provide a safer and more effective alternative to current therapy for AIH patients.


Subject(s)
Exosomes , Hepatitis, Autoimmune , Humans , Animals , Mice , Exosomes/metabolism , Macrophages/metabolism , Cytokines/metabolism , RNA, Small Interfering/metabolism , Immunotherapy
18.
CNS Neurosci Ther ; 30(1): e14397, 2024 01.
Article in English | MEDLINE | ID: mdl-37553782

ABSTRACT

BACKGROUND: Necroptosis induced by receptor-interacting protein kinase 3 (RIPK3) is engaged in intracerebral hemorrhage (ICH) pathology. In this study, we explored the impact of RIPK3 activation on neuronal necroptosis and the mechanism of the death domain-associated protein (DAXX)-mediated nuclear necroptosis pathway after ICH. METHODS: Potential molecules linked to the progression of ICH were discovered using RNA sequencing. The level of DAXX was assessed by quantitative real-time PCR, ELISA, and western blotting. DAXX localization was determined by immunofluorescence and immunoprecipitation assays. The RIPK3 inhibitor GSK872 and DAXX knockdown with shRNA-DAXX were used to examine the nuclear necroptosis pathway associated with ICH. Neurobehavioral deficit assessments were performed. RESULTS: DAXX was increased in patients and mice after ICH. In an ICH mouse model, shRNA-DAXX reduced brain water content and alleviated neurologic impairments. GSK872 administration reduced the expression of DAXX. shRNA-DAXX inhibited the expression of p-MLKL. Immunofluorescence and immunoprecipitation assays showed that RIPK3 and AIF translocated into the nucleus and then bound with nuclear DAXX. CONCLUSIONS: RIPK3 revitalization promoted neuronal necroptosis in ICH mice, partially through the DAXX signaling pathway. RIPK3 and AIF interacted with nuclear DAXX to aggravate ICH injury.


Subject(s)
Necroptosis , Protein Kinases , Animals , Humans , Mice , Brain/metabolism , Cerebral Hemorrhage , Co-Repressor Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering/genetics
19.
J Biol Chem ; 300(1): 105525, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043800

ABSTRACT

The innate antiviral response to RNA viruses is initiated by sensing of viral RNAs by RIG-I-like receptors and elicits type I interferon (IFN) production, which stimulates the expression of IFN-stimulated genes that orchestrate the antiviral response to prevent systemic infection. Negative regulation of type I IFN and its master regulator, transcription factor IRF7, is essential to maintain immune homeostasis. We previously demonstrated that AIP (aryl hydrocarbon receptor interacting protein) functions as a negative regulator of the innate antiviral immune response by binding to and sequestering IRF7 in the cytoplasm, thereby preventing IRF7 transcriptional activation and type I IFN production. However, it remains unknown how AIP inhibition of IRF7 is regulated. We show here that the kinase TBK1 phosphorylates AIP and Thr40 serves as the primary target for TBK1 phosphorylation. AIP Thr40 plays critical roles in regulating AIP stability and mediating its interaction with IRF7. The AIP phosphomimetic T40E exhibited increased proteasomal degradation and enhanced interaction with IRF7 compared with wildtype AIP. AIP T40E also blocked IRF7 nuclear translocation, which resulted in reduced type I IFN production and increased viral replication. In sharp contrast, AIP phosphonull mutant T40A had impaired IRF7 binding, and stable expression of AIP T40A in AIP-deficient mouse embryonic fibroblasts elicited a heightened type I IFN response and diminished RNA virus replication. Taken together, these results demonstrate that TBK1-mediated phosphorylation of AIP at Thr40 functions as a molecular switch that enables AIP to interact with and inhibit IRF7, thus preventing overactivation of type I IFN genes by IRF7.


Subject(s)
Immunity, Innate , Interferon Regulatory Factor-7 , Interferon Type I , Protein Serine-Threonine Kinases , RNA Virus Infections , RNA Viruses , Receptors, Aryl Hydrocarbon , Animals , Mice , Fibroblasts , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Type I/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Receptors, Aryl Hydrocarbon/metabolism , RNA Viruses/immunology , RNA Virus Infections/immunology , Humans , HEK293 Cells
20.
Endocr Pathol ; 35(1): 1-13, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095839

ABSTRACT

Since 2017, hormone-negative pituitary neuroendocrine tumors expressing the steroidogenic factor SF1 have been recognized as gonadotroph tumors (GnPT) but have been poorly studied. To further characterize their bio-clinical spectrum, 54 GnPT defined by immunostaining for FSH and/or LH (group 1, n = 41) or SF1 only (group 2, n = 13) were compared and studied for SF1, ßFSH, ßLH, CCNA2, CCNB1, CCND1, caspase 3, D2R, and AIP gene expression by qRT-PCR. Immunohistochemistry for AIP and/or D2R was performed in representative cases. Overall, patients were significantly younger in group 1 (P = 0.040 vs group 2), with a similar trend excluding recurrent cases (P = 0.078), and no significant difference in gender, tumor size, invasion or Ki67. SF1 expression was similar in both groups but negatively correlated with the patient's age (P = 0.013) and positively correlated with ßLH (P < 0.001) expression. Beta-FSH and AIP were significantly higher in group 1 (P = 0.042 and P = 0.024, respectively). Ki67 was unrelated to gonadotroph markers but positively correlated with CCNB1 (P = 0.001) and negatively correlated with CCND1 (P = 0.008). D2R and AIP were strongly correlated with each other (P < 0.001), and both positively correlated with SF1, ßFSH, ßLH, and CCND1. AIP immunopositivity was frequently observed in both groups, with a similar median score, and unrelated to Ki67. D2R immunostaining was best detected with a polyclonal antibody and mostly cytoplasmic. This study indicates that hormone-negative GnPT tend to occur in older patients but do not significantly differ from other GnPT in terms of invasion or proliferation. It also points out the current limits of D2R immunostaining in such tumors.


Subject(s)
Gonadotrophs , Pituitary Neoplasms , Humans , Aged , Pituitary Neoplasms/pathology , Gonadotrophs/metabolism , Gonadotrophs/pathology , Ki-67 Antigen/metabolism , Follicle Stimulating Hormone , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...