Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 480
Filter
1.
Front Bioeng Biotechnol ; 12: 1373473, 2024.
Article in English | MEDLINE | ID: mdl-38600947

ABSTRACT

This study analyzes Paraguay's biotechnology regulatory framework and its alignment with international standards amid biotechnological advancements. It also identifies areas of improvement for enhancing framework effectiveness. Through this work, we aim to provide a resource for policymakers, stakeholders, and researchers navigating Paraguay's biotechnology regulation.

2.
ACS Synth Biol ; 13(3): 963-968, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38437525

ABSTRACT

Gene synthesis efficiency has greatly improved in recent years but is limited when it comes to repetitive sequences, which results in synthesis failure or delays by DNA synthesis vendors. This represents a major obstacle for the development of synthetic biology since repetitive elements are increasingly being used in the design of genetic circuits and design of biomolecular nanostructures. Here, we describe a method for the assembly of small synthetic genes with repetitive elements: First, a gene of interest is split in silico into small synthons of up to 80 base pairs flanked by Golden-Gate-compatible overhangs. Then, synthons are made by oligo extension and finally assembled into a synthetic gene by Golden Gate Assembly. We demonstrate the method by constructing eight challenging genes with repetitive elements, e.g., multiple repeats of RNA aptamers and RNA origami scaffolds with multiple identical aptamers. The genes range in size from 133 to 456 base pairs and are assembled with fidelities of up to 87.5%. The method was developed to facilitate our own specific research but may be of general use for constructing challenging and repetitive genes and, thus, a valuable addition to the molecular cloning toolbox.


Subject(s)
Genes, Synthetic , Nanostructures , Repetitive Sequences, Nucleic Acid/genetics , Cloning, Molecular , RNA/chemistry , Nanostructures/chemistry , Synthetic Biology/methods
3.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(1): 1-14, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37648466

ABSTRACT

In the late 1970s, crude interferon samples were found to exhibit anti-tumour activity. This discovery led to the interferon as a "magic drug" for cancer patients. Many groups, including those in Tokyo, Zürich, and San Francisco, attempted to identify human interferon cDNAs. Tadatsugu Taniguchi was the first to announce the cloning of human interferon-ß cDNA in the December 1979 issue of Proc. Jpn. Acad. Ser. B. This was followed by the cloning of human interferon-α by a Zürich group and interferon-γ by a group in Genentech in San Francisco. Recombinant interferon proteins were produced on a large scale, and interferon-α was widely used to treat C-type hepatitis patients. The biological functions of interferons were quickly elucidated with the purified recombinant interferons. The molecular mechanisms underlying virus-induced interferon gene expression were also examined using cloned chromosomal genes. The background that led to interferon gene cloning and its impact on cytokine gene hunting is described herein.


Subject(s)
Interferon Type I , Humans , Interferon Type I/genetics , DNA, Complementary/genetics , Cloning, Molecular , Recombinant Proteins/genetics , Interferon-alpha
4.
Gen Dent ; 72(1): 54-57, 2024.
Article in English | MEDLINE | ID: mdl-38117642

ABSTRACT

Herpes zoster (HZ) is a reactivation of dormant varicella-zoster virus that most often erupts as painful vesicles in a unilateral dermatomal distribution. A sequela of HZ is postherpetic neuralgia (PHN), which is debilitating and may be persistent. Therefore, vaccination for the prevention of HZ and its sequelae is recommended for adults aged 50 years and older as well as immunocompromised adults. In 2017, the US Food and Drug Administration approved a recombinant DNA vaccine (Shingrix) that is safe to use in immunocompromised individuals and an improvement on the live-attenuated vaccine approved in 2006. This report discusses HZ, PHN, treatment of HZ and PHN, and prevention with vaccines.


Subject(s)
Herpes Zoster Vaccine , Herpes Zoster , Neuralgia, Postherpetic , Vaccines, DNA , United States , Humans , Middle Aged , Aged , Herpesvirus 3, Human , Herpes Zoster Vaccine/therapeutic use , Herpes Zoster/prevention & control , Herpes Zoster/complications , Neuralgia, Postherpetic/prevention & control , Neuralgia, Postherpetic/complications , Disease Progression
5.
Article in English | MEDLINE | ID: mdl-38023773

ABSTRACT

Over the last decades, PCR and molecular cloning have profoundly impacted various biological areas, from basic to pharmaceutical sciences. Presented in this study is a simple and step-by-step protocol that uses PCR to recover a poor-quality ligase product. In fact, a classic step that can be problematic in typical recombinant DNA manipulations can be the recovery of a product from a T4 DNA ligase reaction between two or more suitably prepared DNA fragments (sticky ends, blunt ends, TA cloning, etc.). This reaction can result in poor yields of the ligation product, due to various causes, mainly the preparation of the DNA fragments, and the poor yield can severely invalidate all subsequent steps. To overcome this problem, we designed a pair of PCR primers to amplify the entire ligase product into satisfactory amount. Of course, high-fidelity DNA polymerase must be used to obtain a faithful copy of the DNA of interest. The fragment thus amplified can then be inserted into a suitable vector and propagated by bacterial transformation. We applied this procedure to modify a synthetic gene by adding a His-Tag to its 5' end, and to insert this new construct into an expression cassette. This last step was achieved by employing a PCR cloning system. In our practical example, comprehensive PCR-based protocol with important tips were introduced. This methodological paper can serve as a roadmap for biologists who want to quickly/fully exploit the potential of the PCR-cloning to get desired constructs.

6.
J Fungi (Basel) ; 9(8)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37623605

ABSTRACT

The use of microorganisms in industry has enabled the (over)production of various compounds (e.g., primary and secondary metabolites, proteins and enzymes) that are relevant for the production of antibiotics, food, beverages, cosmetics, chemicals and biofuels, among others. Industrial strains are commonly obtained by conventional (non-GMO) strain improvement strategies and random screening and selection. However, recombinant DNA technology has made it possible to improve microbial strains by adding, deleting or modifying specific genes. Techniques such as genetic engineering and genome editing are contributing to the development of industrial production strains. Nevertheless, there is still significant room for further strain improvement. In this review, we will focus on classical and recent methods, tools and technologies used for the development of fungal production strains with the potential to be applied at an industrial scale. Additionally, the use of functional genomics, transcriptomics, proteomics and metabolomics together with the implementation of genetic manipulation techniques and expression tools will be discussed.

8.
Pathogens ; 12(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37375478

ABSTRACT

The first leptospiral recombinant vaccine was developed in the late 1990s. Since then, progress in the fields of reverse vaccinology (RV) and structural vaccinology (SV) has significantly improved the identification of novel surface-exposed and conserved vaccine targets. However, developing recombinant vaccines for leptospirosis faces various challenges, including selecting the ideal expression platform or delivery system, assessing immunogenicity, selecting adjuvants, establishing vaccine formulation, demonstrating protective efficacy against lethal disease in homologous challenge, achieving full renal clearance using experimental models, and reproducibility of protective efficacy against heterologous challenge. In this review, we highlight the role of the expression/delivery system employed in studies based on the well-known LipL32 and leptospiral immunoglobulin-like (Lig) proteins, as well as the choice of adjuvants, as key factors to achieving the best vaccine performance in terms of protective efficacy against lethal infection and induction of sterile immunity.

9.
Vaccines (Basel) ; 11(5)2023 May 21.
Article in English | MEDLINE | ID: mdl-37243111

ABSTRACT

Understanding the immunological mechanisms of protection and the viral proteins involved in the induction of a protective immune response to the African swine fever virus (ASFV) is still limited. In the last years, the CD2v protein (gp110-140) of the ASFV has been proven to be a serotype-specific protein. Current work is devoted to the investigation of the possibility of creating protection against virulent ASFV strain Mozambique-78 (seroimmunotype III) in pigs previously vaccinated with vaccine strain FK-32/135 (seroimmunotype IV) and then immunized with the pUBB76A_CD2v plasmid, containing a chimeric nucleotide sequence from the CD2v protein gene (EP402R, nucleotides from 49 to 651) from the MK-200 strain (seroimmunotype III). Vaccination with the ASFV vaccine strain FK-32/135 protects pigs from the disease caused by the strain with homologous seroimmunotype-France-32 (seroimmunotype IV). Our attempt to create balanced protection against virulent strain Mozambique-78 (seroimmunotype III) by induction of both humoral factors of immunity (by vaccination with strain FK-32/135 of seroimmunotype IV) and serotype-specific cellular immunity (by immunization with the plasmid pUBB76A_CD2v of seroimmunotype III) was unsuccessful.

10.
Arch Microbiol ; 205(5): 212, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37120438

ABSTRACT

The production of recombinant proteins is one of the most significant achievements of biotechnology in the last century. These proteins are produced in the eukaryotic or prokaryotic heterologous hosts. By increasing the omics data especially related to different heterologous hosts as well as the presence of new amenable genetic engineering tools, we can artificially engineer heterologous hosts to produce recombinant proteins in sufficient quantities. Numerous recombinant proteins have been produced and applied in various industries, and the global recombinant proteins market size is expected to be cast to reach USD 2.4 billion by 2027. Therefore, identifying the weakness and strengths of heterologous hosts is critical to optimize the large-scale biosynthesis of recombinant proteins. E. coli is one of the popular hosts to produce recombinant proteins. Scientists reported some bottlenecks in this host, and due to the increasing demand for the production of recombinant proteins, there is an urgent need to improve this host. In this review, we first provide general information about the E. coli host and compare it with other hosts. In the next step, we describe the factors involved in the expression of the recombinant proteins in E. coli. Successful expression of recombinant proteins in E. coli requires a complete elucidation of these factors. Here, the characteristics of each factor will be fully described, and this information can help to improve the heterologous expression of recombinant proteins in E. coli.


Subject(s)
Biotechnology , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/metabolism , Genetic Engineering
11.
Front Immunol ; 14: 1123805, 2023.
Article in English | MEDLINE | ID: mdl-36845125

ABSTRACT

Viral infectious diseases threaten human health and global stability. Several vaccine platforms, such as DNA, mRNA, recombinant viral vectors, and virus-like particle-based vaccines have been developed to counter these viral infectious diseases. Virus-like particles (VLP) are considered real, present, licensed and successful vaccines against prevalent and emergent diseases due to their non-infectious nature, structural similarity with viruses, and high immunogenicity. However, only a few VLP-based vaccines have been commercialized, and the others are either in the clinical or preclinical phases. Notably, despite success in the preclinical phase, many vaccines are still struggling with small-scale fundamental research owing to technical difficulties. Successful production of VLP-based vaccines on a commercial scale requires a suitable platform and culture mode for large-scale production, optimization of transduction-related parameters, upstream and downstream processing, and monitoring of product quality at each step. In this review article, we focus on the advantages and disadvantages of various VLP-producing platforms, recent advances and technical challenges in VLP production, and the current status of VLP-based vaccine candidates at commercial, preclinical, and clinical levels.


Subject(s)
Vaccine Development , Vaccines, Virus-Like Particle , Humans
12.
Microb Ecol ; 85(2): 572-585, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35333950

ABSTRACT

Along with the wide applications of conventional plastics, they have a large number of disadvantages like their non-biodegradable nature, dependency on fossil fuels and the release of large amounts of toxic materials in the environment. Therefore, to resolve these problems, a number of bioplastics are studied, out of which polyhydroxyalkanoates are considered as the best alternatives. Polyhydroxyalkanoates (PHAs) are produced by microorganisms as intracellular granules during stressful conditions. Though a wide range of organisms can naturally produce PHAs, only a few of them can be used for commercial production. Therefore, more diverse organisms that accumulate a considerable amount of PHAs and also reduce the production cost need to be exploited. Transgenic plants, recombinant bacteria, algae and extremophiles are some diverse organisms that produce a high amount of PHAs at a low cost. So, if potential organisms are used for PHA production, bioplastics will be able to completely replace petroleum-based polymers. Therefore, our review mainly focuses on production of PHAs using potential organisms so that amount of PHAs produced is high and cost-effective which would further help in the commercialization of PHAs.


Subject(s)
Petroleum , Polyhydroxyalkanoates , Biopolymers , Plastics , Plants
13.
Biofactors ; 49(2): 251-269, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36326181

ABSTRACT

In the last two decades, protein-protein interactions (PPIs) have been used as the main target for drug development. However, with larger or superficial binding sites, it has been extremely difficult to disrupt PPIs with small molecules. On the other hand, intracellular PPIs cannot be targeted by antibodies that cannot penetrate the cell membrane. Peptides that have a combination of conformational rigidity and flexibility can be used to target difficult binding interfaces with appropriate binding affinity and specificity. Since the introduction of insulin nearly a century ago, more than 80 peptide drugs have been approved to treat a variety of diseases. These include deadly diseases such as cancer and human immunodeficiency virus infection. It is also useful against diabetes, chronic pain, and osteoporosis. Today, more research is being done on these drugs as lessons learned from earlier approaches, which are still valid today, complement newer approaches such as peptide display libraries. At the same time, integrated genomics and peptide display libraries are new strategies that open new avenues for peptide drug discovery. The purpose of this review is to examine the problems in elucidating the peptide-protein recognition mechanism. This is important to develop peptide-based interventions that interfere with endogenous protein interactions. New approaches are being developed to improve the binding affinity and specificity of existing approaches and to develop peptide agents as potentially useful drugs. We also highlight the key challenges that must be overcome in peptide drug development to realize their potential and provide an overview of recent trends in peptide drug development. In addition, we take an in-depth look at early efforts in human hormone discovery, smart medicinal chemistry and design, natural peptide drugs, and breakthrough advances in molecular biology and peptide chemistry.


Subject(s)
Osteoporosis , Peptides , Humans , Drug Discovery , Osteoporosis/drug therapy , Osteoporosis/genetics , Peptides/pharmacology , Peptides/therapeutic use , Proteomics , Protein Binding , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism
14.
Microbiol Immunol ; 67(2): 79-89, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36345699

ABSTRACT

A well preserved immune system is a powerful tool to prevent foreign invasion or to suppress internal mutation, which must be tightly controlled by co-stimulatory molecules in different pathophysiological conditions. One such critical molecule is OX40L expressed on activated antigen-presenting cells (APCs). Consistently, its abnormality is associated with various immunological disorders such as autoinflammatory diseases and allergy. However, a comprehensive analysis of the immune-moderating role of OX40L in dendritic cells (DCs), the most powerful APCs to initiate immune responses in vivo, and investigation of its anti-tumor efficacy in the disease setting have not been performed properly. In this study, genetic approaches for both gain-of-function and reduction-of-function were employed to reveal that OX40L was required for the efficient presentation, but not uptake, of antigens by DCs to stimulate CD4+ , as well as CD8+ T cells in vivo. As a result, CD4+ T cells were promoted towards Th1, but inhibited on Treg differentiation, by the LPS-induced OX40L on DCs, which was supported by their altered expression of co-inhibitory receptor, PD-L1. CD8+ T cells, on the other hand, also enhanced their cytotoxicity towards target cells in response to OX40L expression on the DCs transferred in vivo. Finally, in a DC-mediated tumor immunity model, the strong immunogenic roles of OX40L on DCs led to better metastasis inhibition in vivo. Collectively, our results demonstrate that OX40L could serve as a potential target in the DC-based vaccine for enhanced anti-tumor efficacy in vivo.


Subject(s)
CD8-Positive T-Lymphocytes , Dendritic Cells , Mice , Animals , Lymphocyte Activation
15.
BioTech (Basel) ; 11(4)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36412753

ABSTRACT

Beet yellows virus, which belongs to the genus Closterovirus, family Closteroviridae and has a significant negative economic impact, has proven to be challenging to detect and diagnose. To obtain antibodies against BYV, we propose an easier bioinformatics approach than the isolation and purification of the wild virus as an antigen. We used the SWISS-MODEL Workspace (Biozentrum Basel) protein 3D prediction program to discover epitopes of major coat protein p22 lying on the surface of the BYV capsid. Sequences coding these epitopes were cloned into plasmid pQE-40 (Qiagen) in frame with mouse dihydrofolate reductase gene. Fused epitopes were expressed in Escherichia coli and isolated by the Ni-NTA affinity chromatography. Murine antibodies were raised against each epitope and in a combination of both and characterized by dot-ELISA and indirect ELISA. We successively used these antibodies for diagnosis of virus disease in systemically infected Tetragonia tetragonioides. We believe the approach described above can be used for diagnostics of difficult-to-obtain and hazardous-to-health viral infections.

16.
Adv Drug Deliv Rev ; 190: 114544, 2022 11.
Article in English | MEDLINE | ID: mdl-36176240

ABSTRACT

Chemotherapy is the standard of care for the treatment of cancer and infectious diseases. However, its use is associated with severe toxicity and resistance arising mainly due to non-specificity, resulting in disease progression. The advancement in recombinant technology has led to the synthesis of genetically engineered protein polymers like Elastin-like polypeptide (ELP), Silk-like polypeptide (SLP), hybrid protein polymers with specific sequences to impart precisely controlled properties and to target proteins that have provided satisfactory preclinical outcomes. Such protein polymers have been exploited for the formulation and delivery of chemotherapeutics for biomedical applications. The use of such polymers has not only solved the limitation of conventional chemotherapy but has also improved the therapeutic index of typical drug delivery systems. This review, therefore, summarizes the development of such advanced recombinant protein polymers designed to deliver chemotherapeutics and also discusses the key challenges associated with their current usage and their application in the future.


Subject(s)
Antineoplastic Agents , Elastin , Antineoplastic Agents/therapeutic use , Drug Delivery Systems/methods , Elastin/chemistry , Humans , Peptides/chemistry , Polymers/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/therapeutic use , Silk/chemistry
17.
Antib Ther ; 5(3): 177-191, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35967905

ABSTRACT

Additional COVID-19 vaccines that are safe and immunogenic are needed for global vaccine equity. Here, we developed a recombinant type 5 adenovirus vector encoding for the SARS-CoV-2 S1 subunit antigen and nucleocapsid as a fusion protein (Ad5.SARS-CoV-2-S1N). A single subcutaneous immunization with Ad5.SARS-CoV-2-S1N induced a similar humoral response, along with a significantly higher S1-specific cellular response, as a recombinant type 5 adenovirus vector encoding for S1 alone (Ad5.SARS-CoV-2-S1). Immunogenicity was improved by homologous prime-boost vaccination, and further improved through intramuscular heterologous prime-boost vaccination using subunit recombinant S1 protein. Priming with low dose (1 × 1010 v.p.) of Ad5.SARS-CoV-2-S1N and boosting with either wild-type recombinant rS1 or B.1.351 recombinant rS1 induced a robust neutralizing response, which was sustained against Beta and Gamma SARS-CoV-2 variants. This novel Ad5-vectored SARS-CoV-2 vaccine candidate showed promising immunogenicity in mice and supports the further development of COVID-19-based vaccines incorporating the nucleoprotein as a target antigen.

18.
Expert Rev Vaccines ; 21(9): 1233-1242, 2022 09.
Article in English | MEDLINE | ID: mdl-35678205

ABSTRACT

INTRODUCTION: Influenza is a vaccine-preventable disease. Due to the evolving nature of influenza viruses, the composition of vaccines has to be updated annually. Most of the current influenza vaccines are still produced in embryonated chicken eggs, a well-established process with some limitations. AREA COVERED: This review focuses on the recombinant DNA technology using baculovirus expression vector system a modern method of manufacturing licensed influenza vaccines. The speed, scalability, biosafety and flexibility of the process, together with the reliability of the hemagglutinin in the vaccine, represent a significant advance toward new platforms for vaccine production. EXPERT OPINION: The scenario of vaccine production in the next years seems to be particularly interesting, involving a transition from the current egg-based production to new technologies, such as the cell culture platform, the RNA technology, the plant-based system, and the DNA vaccine. This latter offers great advantages over egg- and cell-based influenza vaccine production. The universal vaccine remains the goal of researchers and ideally would avoid the need for annual reformulation and re-administration of seasonal vaccines. The lesson learned from the COVID-19 pandemic highlights the importance of having different technologies available and able to promptly respond to a great demand of vaccines worldwide.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Baculoviridae/genetics , Humans , Influenza Vaccines/genetics , Pandemics , Reproducibility of Results , Technology
19.
Methods Mol Biol ; 2461: 123-135, 2022.
Article in English | MEDLINE | ID: mdl-35727447

ABSTRACT

PTO-QuickStep is a quick and easy molecular cloning technique that allows seamless point integration of a DNA fragment, encoding either a tag or a protein, into any position within a target plasmid. The entire process is conducted in a time-efficient and cost-effective manner, without the need of DNA gel purification and enzymatic restriction and ligation. PTO-QuickStep further innovates protein engineering by providing the possibility of integrating a random mutagenesis step (e.g., error-prone PCR) into the workflow, without compromising the time duration required. Random mutagenesis libraries can be quickly and efficiently cloned into a plasmid of interest, thereby accelerating directed evolution. On top of that, PTO-QuickStep can be utilized for rapid integration of noncoding DNA fragments to modify existing plasmids, making it an excellent tool for synthetic biologists.


Subject(s)
Cloning, Molecular , DNA , Gene Library , DNA/genetics , Mutagenesis , Plasmids/genetics , Polymerase Chain Reaction/methods
20.
Rev. colomb. bioét ; 17(1)jun. 2022.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1535751

ABSTRACT

Propósito/Contexto. Este artículo analiza aspectos éticos de la edición genética en seres humanos. Metodología/Enfoque. Se describe el desarrollo de las principales aplicaciones de la tecnología genética en prevención, diagnóstico y terapéutica de enfermedades genéticas en las últimas décadas, culminando con la edición genética. Resultados/Hallazgos. Se definen los principales aspectos éticos que presenta la edición genética somática y germinal en seres humanos, incluyendo cuestiones de seguridad, especificidad, precisión y certeza. Se critica la edición genética germinal y el concepto de "mejoramiento" humano por vulnerar la autonomía individual, generar cambios genéticos heredables en la progenie y aceptar la falacia del reduccionismo genético de que los rasgos de las personas dependen exclusivamente de la constitución genética, independiente del ambiente. Discusión/Conclusiones/Contribuciones. La edición genética somática puede ser ética si se siguen las normas éticas de la investigación biomédica. Por el contrario, la edición genética germinal no es pertinente ni necesaria para el tratamiento de enfermedades genéticas y presenta graves conflictos éticos, por lo cual, previo a su aplicación es necesario un consenso social por discusiones democráticas, amplias y profundas entre todos los actores sociales involucrados, seguido de mecanismos de gobernanza con regulación robusta por parte del estado, que impidan la vulneración de derechos humanos fundamentales.


Purpose/Context. This article discusses ethical aspects of gene editing in humans. Methodology/Approach. The main applications of genetic technology in the prevention, diagnosis and therapeutics of genetic diseases in recent decades, are described, culminating with genetic editing. Results/Findings. The main ethical aspects of somatic and germline gene editing in humans are discussed, including issues of safety, specificity, precision and certainty. Germline genetic editing and human "enhancement" are criticized for violating individual autonomy, for generating heritable genetic changes in the progeny and for accepting the fallacy of genetic reductionism that people's traits depend exclusively on genetic makeup, independent of the environment. Discussion/Conclusions/Contributions. Somatic gene editing can be ethical if the ethical standards of biomedical research are followed. However, germline genetic editing is not relevant nor necessary for the treatment of genetic diseases and, furthermore, it presents serious ethical conflicts. Therefore, prior to its application, a social consensus is necessary, obtained by democratic, broad and profound discussions among all the social players involved, followed by governance mechanisms with robust regulation by the state, which prevent the violation of fundamental human rights.


Finalidade/Contexto. Este artigo discute aspectos éticos da edição de genes em humanos. Metodologia/Aproximação. Descreve o desenvolvimento das principais aplicações da tecnologia genética na prevenção, diagnóstico e terapia de doenças genéticas nas últimas décadas, culminando com a edição de genes. Resultados/Descobertas. São definidos os principais aspectos éticos da edição de genes somáticos e da linha germinal no ser humano, incluindo questões de segurança, especificidade, precisão e exactidão. A edição genética da Germline e o conceito de "melhoramento" humano são criticados por violarem a autonomia individual, gerando alterações genéticas hereditárias nos descendentes e aceitando a falácia do reducionismo genético de que as características das pessoas dependem exclusivamente da sua constituição genética, independente do ambiente. Discussão/Conclusões/Contribuições. A edição somática de genes pode ser ética se os padrões éticos da investigação biomédica forem seguidos. Pelo contrário, a edição genética na linha germinal não é relevante nem necessária para o tratamento de doenças genéticas e apresenta graves conflitos éticos. Por conseguinte, antes da sua aplicação, é necessário um consenso social através de discussões democráticas, amplas e profundas entre todos os actores sociais envolvidos, seguidas de mecanismos de governação com regulação robusta por parte do Estado, que impeçam a violação dos direitos humanos fundamentais.

SELECTION OF CITATIONS
SEARCH DETAIL
...