Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Agric Food Chem ; 72(1): 590-603, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38133624

ABSTRACT

SBEIIb (Sobic.004G163700), SSSIIa (Sobic.010G093400), and GBSSI (Sobic.010G022600) genes that regulate starch synthesis in sorghum endosperm were transferred into Escherichia coli by transgenic technology. SBEIIb, SSSIIa, and GBSSI enzymes were separated and purified through a Ni column and analyzed by electrophoresis with molecular weights and activities of 91.57 84.57, and 66.89 kDa and 551 and 700 and 587 U/µL, respectively. Furthermore, they were applied to starch modification, yielding interesting findings: the A chain content increased from 25.79 to 89.55% for SBEIIb-treated waxy starch, while SSSIIa extended the A chain to form DPs of the B chain, with A chain content decreasing from 89.55 to 37.01%, whereas GBSSI was explicitly involved in the synthesis of B1 chain, with its content increasing from 9.59 to 48.45%. Modified starch was obtained, which could be accurately applied in various industries. For instance, we prepared a sample (containing 89.6% A chain content) with excellent antiaging and antidigestion properties through SBEIIb modification. Moreover, higher RS3 (34.25%) and SDS contents (15.75%) of starch were obtained through the joint modification of SBEIIb and SSSIIa. These findings provide valuable insights for developing sorghum starch synthesis-related enzymes and offer opportunities for improving starch properties through enzymatic approaches.


Subject(s)
Sorghum , Starch , Sorghum/genetics , Escherichia coli/genetics , Amylopectin , Endosperm/chemistry , Amylose/analysis
2.
Methods Enzymol ; 690: 1-37, 2023.
Article in English | MEDLINE | ID: mdl-37858526

ABSTRACT

Modern drug discovery is a target-driven approach in which a particular protein such as an enzyme is implicated in the disease process. Commonly, small-molecule drugs are identified using screening, rational design, and structural biology approaches. Drug screening, testing and optimization is typically conducted in vitro, and copious amounts of protein are required. The advent of recombinant DNA technologies has resulted in a rise in proteins purified by affinity techniques, typically by incorporating an "affinity tag" at the N- or C-terminus. Use of these tagged proteins and affinity techniques comes with a host of issues. This chapter describes the production of an untagged enzyme, α-methylacyl-CoA racemase (MCR) from Mycobacterium tuberculosis, using a recombinant E. coli system. Purification of the enzyme on a 100 mg scale using tandem anion-exchange chromatographies (DEAE-sepharose and RESOURCE-Q columns), and size-exclusion chromatographies is described. A modified protocol allowing the purification of cationic proteins is also described, based on tandem cation-exchange chromatographies (using CM-sepharose and RESOURCE-S columns) and size-exclusion chromatographies. The resulting MCR protein is suitable for biochemical and structural biology applications. The described protocols have wide applicability to the purification of other recombinant proteins and enzymes without using affinity chromatography.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Kinetics , Escherichia coli/genetics , Escherichia coli/metabolism , Sepharose/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Chromatography, Affinity/methods
3.
Enzyme Microb Technol ; 170: 110305, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37595400

ABSTRACT

One of the key intermediates, 5-hydroxyvaleric acid (5-HV), is used in the synthesis of polyhydroxyalkanoate monomer, δ-valerolactone, 1,5-pentanediol (1,5-PDO), and many other substances. Due to global environmental problems, eco-friendly bio-based synthesis of various platform chemicals and key intermediates are socially required, but few previous studies on 5-HV biosynthesis have been conducted. To establish a sustainable bioprocess for 5-HV production, we introduced gabT encoding 4-aminobutyrate aminotransferase and yqhD encoding alcohol dehydrogenase to produce 5-HV from 5-aminovaleric acid (5-AVA), through glutarate semialdehyde in Escherichia coli whole-cell reaction. As, high reducing power is required to produce high concentrations of 5-HV, we newly introduced glucose dehydrogenase (GDH) for NADPH regeneration system from Bacillus subtilis 168. By applying GDH with D-glucose and optimizing the parameters, 5-HV conversion rate from 5-AVA increased from 47% (w/o GDH) to 82% when using 200 mM (23.4 g/L) of 5-AVA. Also, it reached 56% conversion in 2 h, showing 56 mM/h (6.547 g/L/h) productivity from 200 mM 5-AVA, finally reaching 350 mM (41 g/L) and 14.6 mM/h (1.708 g/L/h) productivity at 24 h when 1 M (117.15 g/L) 5-AVA was used. When the whole-cell system with GDH was expanded to produce 1,5-PDO, its production was also increased 5-fold. Considering that 5-HV and 1,5-PDO production depends heavily on the reducing power of the cells, we successfully achieved a significant increase in 5-HV and 1,5-PDO production using GDH.


Subject(s)
Escherichia coli , Industrial Microbiology , Valerates , Valerates/chemical synthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Transaminases/genetics , Alcohol Dehydrogenase/genetics , NADP/metabolism , Biotransformation
4.
Heliyon ; 9(4): e14815, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37095938

ABSTRACT

N-Acetylheparosan and chondroitin are increasingly needed as alternative sources of animal-derived sulfated glycosaminoglycans (GAGs) and as inert substances in medical devices and pharmaceuticals. The N-acetylheparosan productivity of E. coli K5 has achieved levels of industrial applications, whereas E.coli K4 produces a relatively lower amount of fructosylated chondroitin. In this study, the K5 strain was gene-engineered to co-express K4-derived, chondroitin-synthetic genes, namely kfoA and kfoC. The productivities of total GAG and chondroitin in batch culture were 1.2 g/L and 1.0 g/L respectively, which were comparable to the productivity of N-acetylheparosan in the wild K5 strain (0.6-1.2 g/L). The total GAG of the recombinant K5 was partially purified by DEAE-cellulose chromatography and was subjected to degradation tests with specific GAG-degrading enzymes combined with HPLC and 1H NMR analyses. The results indicated that the recombinant K5 simultaneously produced both 100-kDa chondroitin and 45-kDa N-acetylheparosan at a weight ratio of approximately 4:1. The content of chondroitin in total GAG partially purified was 73.2%. The molecular weight of recombinant chondroitin (100 kDa) was 5-10 times higher than that of commercially available chondroitin sulfate. These results indicated that the recombinant K5 strain acquired the chondroitin-producing ability without altering the total GAG productivity of the host.

5.
Appl Biochem Biotechnol ; 194(5): 2204-2218, 2022 May.
Article in English | MEDLINE | ID: mdl-35048280

ABSTRACT

Recently, highly efficient production of valuable furan-based chemicals from available and renewable lignocellulosic biomass has attracted more and more attention via a chemoenzymatic route in an environmentally friendly reaction system. In this work, the feasibility of chemoenzymatically catalyzing sugarcane bagasse into furfurylamine with heterogeneous catalyst and ω-transaminase biocatalyst was developed in the deep eutectic solvent (DES) ChCl:Gly-water. Sulfonated Al-Laubanite was firstly synthesized to catalyze sugarcane bagasse to furfural. SEM, BET, XRD, and FT-IR were used to characterize Al-Laubanite. Catalyst Al-Laubanite structure was significantly different from carrier laubanite. High furfural yield (60.9%) was achieved by catalyzing sugarcane bagasse in 20 min at 170 ℃ and pH 1.0 by Al-Laubanite (2.4 wt%) in the presence of ChCl:Gly (20 wt%). Potential catalytic mechanism was proposed under the optimized catalytic condition. In addition, one recombinant E. coli CV harboring ω-transaminase could completely transform biomass-derived furfural to furfurylamine at 40 °C and pH 7.5 using L-alanine as amine donor in ChCl:Gly-water (20:80, wt:wt). This established chemoenzymatic cascade reaction strategy was successfully utilized for valorization of biomass into furan-based chemicals in the benign ChCl:Gly-water system.


Subject(s)
Furaldehyde , Saccharum , Cellulose/chemistry , Deep Eutectic Solvents , Escherichia coli , Furans , Saccharum/chemistry , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , Transaminases , Water
6.
Bioresour Bioprocess ; 9(1): 19, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-38647599

ABSTRACT

The efficient asymmetric bio-synthesis of chiral ß-hydroxy esters is of great importance for industrial production. In this work, a simple and productive engineered E.coli cell-immobilized strategy was applied for the asymmetric reduction of MAA to (R)-HBME with high enantioselectivity. Compared with the corresponding inactivated free cells, the alginate-immobilized cells remained 45% of initial activity at 50 â„ƒ and 65% after reuse of 10 times. After 60 days of storage at 4 â„ƒ, the immobilized cells maintained more than 80% relative activity. Immobilization contributed significantly to the improvement of thermal stability, pH tolerance, storage stability and operation stability without affecting the yield of product. The immobilized recombinant E. coli cell had absolute enantioselectivity for the asymmetric reduction of MAA to (R)-HBME with e.e. > 99.9%. Therefore, microbial cell immobilization is a perspective approach in asymmetric synthesis of chiral ß-hydroxy esters for industrial applications.

7.
Front Bioeng Biotechnol ; 9: 703399, 2021.
Article in English | MEDLINE | ID: mdl-34790650

ABSTRACT

Cis, cis-muconic acid (ccMA) is known for its industrial importance as a precursor for the synthesis of several biopolymers. Catechol 1,2-dioxygenase (C12O) is involved in aromatic compounds catabolism and ccMA synthesis in a greener and cleaner way. This is the first study on C12O gene from a metabolically versatile Paracoccus sp. MKU1, which was cloned and expressed in E. coli to produce ccMA from catechol. From the E. coli transformant, recombinant C12O enzyme was purified and found to be a homotrimer with a subunit size of 38.6 kDa. The apparent K m and V max for C12O was 12.89 µM and 310.1 U.mg-1, respectively, evidencing high affinity to catechol than previously reported C12Os. The predicted 3D-structure of C12O from MKU1 consisted of five α-helices in N-terminus, one α-helix in C-terminus, and nine ß-sheets in C-terminus. Moreover, a unique α-helix signature 'EESIHAN' was identified in C-terminus between 271 and 277 amino acids, however the molecular insight of conservative α-helix remains obscure. Further, fed-batch culture was employed using recombinant E. coli expressing C12O gene from Paracoccus sp. MKU1 to produce ccMA by whole-cells catalyzed bioconversion of catechol. With the successive supply of 120 mM catechol, the transformant produced 91.4 mM (12.99 g/L) of ccMA in 6 h with the purity of 95.7%. This single step conversion of catechol to ccMA using whole-cells reactions of recombinants did not generate any by-products in the reaction mixtures. Thus, the recombinant E. coli expressing high activity C12O from Paracoccus sp. MKU1 holds promise as a potential candidate for yielding high concentrations of ccMA at faster rates in low cost settings.

8.
Front Bioeng Biotechnol ; 9: 661096, 2021.
Article in English | MEDLINE | ID: mdl-34012957

ABSTRACT

Cupriavidus necator strain A-04 has shown 16S rRNA gene identity to the well-known industrial strain C. necator H16. Nevertheless, the cell characteristics and polyhydroxyalkanoate (PHA) production ability of C. necator strain A-04 were different from those of C. necator H16. This study aimed to express PHA biosynthesis genes of C. necator strain A-04 in Escherichia coli via an arabinose-inducible expression system. In this study, the PHA biosynthesis operon of C. necator strain A-04, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA A-04, 1182 bp, 40.6 kDa), acetoacetyl-CoA reductase (phaB A-04, 741 bp, 26.4 kDa) and PHB synthase Class I (phaC A-04, 1770 bp), was identified. Sequence analysis of the phaA A-04, phaB A-04, and phaCA-04 genes revealed that phaC A-04 was 99% similar to phaC H16 from C. necator H16. The difference in amino acid residue situated at position 122 of phaC A-04 was proline, whereas that of C. necator H16 was leucine. The intact phaCAB A-04 operon was cloned into the arabinose-inducible araBAD promoter and transformed into E. coli strains Top 10, JM109 and XL-1 blue. The results showed that optimal conditions obtained from shaken flask experiments yielded 6.1 ± 1.1 g/L cell dry mass (CDM), a PHB content of 93.3 ± 0.9% (w/w) and a productivity of 0.24 g/(L⋅h), whereas the wild-type C. necator strain A-04 accumulated 78% (w/w) PHB with a productivity of 0.09 g/(L⋅h). Finally, for the scaled-up studies, fed-batch cultivations by pH-stat control in a 5-L fermenter of E. coli strains XL1-Blue harboring pBAD/Thio-TOPO-phaCAB A-04 and pColdTF-phaCAB A-04 in MR or LB medium, leading to a PHB production of 31.4 ± 0.9 g/L at 54 h with a PHB content of 83.0 ± 3.8% (w/w), a CDM of 37.8 ± 1.2 g/L, a Y P/S value of 0.39 g PHB/g glucose and a productivity of 0.6 g PHB/(L⋅h) using pColdTF-phaCAB A-04 in MR medium. In addition, PHB production was 29.0 ± 1.1 g/L with 60.2 ± 2.3% PHB content in the CDM of 53.1 ± 1.0 g/L, a Y P/S value of 0.21 g PHB/g glucose and a productivity of 0.4 g PHB/(L⋅h) using pBAD/Thio-TOPO-phaCAB A-04 in LB medium. Thus, a relatively high PHB concentration and productivity were achieved, which demonstrated the possibility of industrial production of PHB.

9.
Bioresour Technol ; 320(Pt A): 124267, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33120059

ABSTRACT

In this study, tin-loaded sulfonated zeolite (Sn-zeolite) catalyst was synthesized for catalysis of raw corncob (75.0 g/L) to 103.0 mM furfural at 52.3% yield in water (pH 1.0) at 170 °C. This corncob-derived furfural was subsequently biotransformed with recombinant E. coli CG-19 cells coexpressing NADPH-dependent reductase and glucose dehydrogenase at 35 °C by supplementary of glucose (1.5 mol glucose/mol furfural), sodium dodecyl sulfate (0.50 mM) and NADP+ (1.0 µmol NADP+/mmol furfural) in the aqueous catalytic media (pH 7.5). Both sodium dodecyl sulfate (0.50 mM) and Sn4+ (1.0 mM) could promote reductase activity by 1.4-folds. Within 3 h, furfural was wholly catalyzed into furfuryl alcohol. By combining chemical catalysis with Sn-zeolite and biocatalysis with CG-19 cells in one-pot, an effective and sustainable process was established for tandemly catalyzing renewable biomass into furfuryl alcohol under environmentally-friendly way.


Subject(s)
Zea mays , Zeolites , Catalysis , Escherichia coli , Furaldehyde , Furans , NADP , Oxidoreductases , Tin
10.
Braz. arch. biol. technol ; 64: e21200724, 2021. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1355794

ABSTRACT

Abstract The Equine Strangles, caused by Streptococcus equi subs. equi, is a contagious disease, causing high rates of morbidity been responsible for important economic losses. The M protein synthesized by S. equi plays an important role in the pathogenesis and is a promising candidate for a vaccine antigen. The innate immune system is responsible for the first immune response against microorganisms, this response is mediated by receptors that detect PAMPs and their activation trigger crucial modulation of the adaptative immune response. This work describes the immune response of S. equi subs. equi. recombinant SeM protein, using Escherichia coli BL21 (DE3) as an expression and delivery vaccine system. To characterize and to determine the vaccine efficacy, mice were vaccinated as followed: 1. Recombinant E. coli expressing rSeM protein; 2. The same recombinant E. coli, inactivated adsorbed in Alumen; 3. Purified rSeM protein adsorbed in Alumen; 4. Inactivated S. equi whole cells adsorbed in Alumen; 5. Control group. All vaccinated mice developed protective response against S. equi infection, however the groups that received the E. coli expressing rSeM presented significant higher IgG level than other vaccinated groups. The recombinant E. coli delivery vaccine system also induced a highest IgG response than inactivated S. equi or purified rSeM vaccines in horses. This study evidence that the recombinant E. coli, live or inactivated, enhanced the humoral response, reaching significant higher antibodies levels than those obtained in the vaccination with the bacterin or purified antigen, showing the feasibility of producing low-cost vaccines against strangles.

11.
Beilstein J Org Chem ; 16: 2607-2622, 2020.
Article in English | MEDLINE | ID: mdl-33133292

ABSTRACT

In the present work, we suggested anion exchange resins in the phosphate form as a source of phosphate, one of the substrates of the phosphorolysis of uridine, thymidine, and 1-(ß-ᴅ-arabinofuranosyl)uracil (Ara-U) catalyzed by recombinant E. coli uridine (UP) and thymidine (TP) phosphorylases. α-ᴅ-Pentofuranose-1-phosphates (PF-1Pis) obtained by phosphorolysis were used in the enzymatic synthesis of nucleosides. It was found that phosphorolysis of uridine, thymidine, and Ara-U in the presence of Dowex® 1X8 (phosphate; Dowex-nPi) proceeded smoothly in the presence of magnesium cations in water at 20-50 °C for 54-96 h giving rise to quantitative formation of the corresponding pyrimidine bases and PF-1Pis. The resulting PF-1Pis can be used in three routes: (1) preparation of barium salts of PF-1Pis, (2) synthesis of nucleosides by reacting the crude PF-1Pi with an heterocyclic base, and (3) synthesis of nucleosides by reacting the ionically bound PF-1Pi to the resin with an heterocyclic base. These three approaches were tested in the synthesis of nelarabine, kinetin riboside, and cladribine with good to excellent yields (52-93%).

12.
Pak J Biol Sci ; 23(4): 561-566, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32363842

ABSTRACT

BACKGROUND AND OBJECTIVE: The DPEase enzyme from Agrobacterium tumefaciens is more efficient and has a high activity in D-fructose. The dpe gene has been successfully cloned to Escherichia coli BL21 (DE3) pET-21b dpe but the enzyme has not been purified and its character is unknown. The intent of this study was to purify and assign of DPEase enzyme by recombinant E. coli. MATERIALS AND METHODS: The enzyme was clarified by affinity chromatography and then characterized by following pH, temperature, co-factor parameters. Analysis of molecular weight proteins was done by SDS-PAGE. RESULTS: Through purification, the purified DPEase activity was increased 1,01 times than crude and with 84.2% of yield. The DPEase had an the maximum temperature is 40°C and pH was 8.5. The presence of Mg2+, Mo2+, Cu2+, Ca2+ and Zn2+ inhibited the activity of the enzyme while of Co2+, Mn2+, Fe2+, Ni2+ enhanced the activity. Estimation of molecular weight through SDS-PAGE revealed that weight of DPEase was 32 kDa. CONCLUSION: Purified DPease enzymes shows clear bands that demonstrate successful purification using affinity chromatography. It is expected that after pure enzymes are obtained the character of the enzymes working will be maximized.


Subject(s)
Carbohydrate Epimerases/pharmacology , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Fructose/metabolism , Carbohydrate Epimerases/isolation & purification , Chromatography, Affinity , Enzyme Stability , Escherichia coli Proteins/isolation & purification , Hydrogen-Ion Concentration , Substrate Specificity , Temperature
13.
Vaccine ; 38(11): 2519-2526, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32037222

ABSTRACT

Botulism is a paralytic disease caused by the intoxication of neurotoxins produced by Clostridium botulinum. Among the seven immunologically distinct serotypes of neurotoxins (BoNTs A - G), serotypes C and D, or a chimeric fusion termed C/D or D/C, are responsible for animal botulism. The most effective way to prevent botulism in cattle is through vaccination; however, the commercially available vaccines produced by detoxification of native neurotoxins are time-consuming and hazardous. To overcome these drawbacks, a non-toxic recombinant vaccine was developed as an alternative. In this study, the recombinant protein vaccine was produced using an Escherichia coli cell-based system. The formaldehyde-inactivated E. coli is able to induce 7.45 ± 1.77 and 6.6 ± 1.28 IU/mL neutralizing mean titers against BoNTs C and D in cattle, respectively, determined by mouse neutralization bioassay, and was deemed protective by the Brazilian legislation. Moreover, when the levels of anti-BoNT/C and D were compared with those achieved by the recombinant purified vaccines, no significant statistical difference was observed. Cattle vaccinated with the commercial vaccine developed 1.33 and 3.33 IU/mL neutralizing mean titers against BoNT serotypes C and D, respectively. To the best of our knowledge, this study is the first report on recombinant E. coli bacterin vaccine against botulism. The vaccine was safe and effective in generating protective antibodies and, thus, represents an industry-friendly alternative for the prevention of cattle botulism.


Subject(s)
Bacterial Vaccines/immunology , Botulinum Toxins/immunology , Botulism/veterinary , Cattle Diseases/prevention & control , Animals , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Botulism/prevention & control , Brazil , Cattle , Cattle Diseases/microbiology , Clostridium botulinum , Escherichia coli , Mice , Neutralization Tests , Recombinant Proteins/immunology , Vaccines, Synthetic
14.
Vaccine ; 38(2): 258-270, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31629569

ABSTRACT

It is widely accepted that CD4+ and CD8+ T-cells play a significant role in protection against Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever. However, the antigen specificity of these T-cells remains largely unknown. Previously, we demonstrated the feasibility of using a recombinant Escherichia coli (E. coli) expression system to uncover the antigen specificity of CD4+ and CD8+ T cells. Here, we expanded these studies to include the evaluation of 12 additional S. Typhi proteins: 4 outer membrane proteins (OmpH, OmpL, OmpR, OmpX), 3 Vi-polysaccharide biosynthesis proteins (TviA, TviB, TviE), 3 cold shock proteins (CspA, CspB, CspC), and 2 conserved hypothetical proteins (Chp 1 and Chp2), all selected based on the bioinformatic analyses of the content of putative T-cell epitopes. CD4+ and CD8+ T cells from 15 adult volunteers, obtained before and 42 days after immunization with oral live attenuated Ty21a vaccine, were assessed for their functionality (i.e., production of cytokines and cytotoxic expression markers in response to stimulation with selected antigens) as measured by flow cytometry. Although volunteers differed on their T-cell antigen specificity, we observed T-cell immune responses against all S. Typhi proteins evaluated. These responses included 9 proteins, OmpH, OmpR, TviA, TviE, CspA, CspB, CspC, Chp 1 and Chp 2, which have not been previously reported to elicit T-cell responses. Interestingly, we also observed that, regardless of the protein, the functional patterns of the memory T-cells were different between CD4+ and CD8+ T cells. In sum, these studies demonstrated the feasibility of using bioinformatic analysis and the E. coli expressing system described here to uncover novel immunogenic T-cell proteins that could serve as potential targets for the production of protein-based vaccines.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Polysaccharides, Bacterial/administration & dosage , Salmonella typhi/immunology , Typhoid-Paratyphoid Vaccines/administration & dosage , Adult , Escherichia coli/immunology , Humans , Middle Aged , Polysaccharides, Bacterial/immunology , Typhoid Fever/prevention & control , Typhoid-Paratyphoid Vaccines/immunology , Vaccination , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Young Adult
15.
Int J Biol Macromol ; 131: 29-35, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30851327

ABSTRACT

During microbial production of target product, accumulation of by-products and target product itself may be toxic to host strain. Thus, development of abiotic stress tolerant strains are essential to achieve high productivity of target product with sustained metabolism. Expression of DR1558 from Deinococcus radiodurans, a response regulator in two-component signal transduction system, was reported to increase the tolerance against oxidative stress in Escherichia coli. In this study, the effect of overexpression of DR1558 was examined on poly­3­hydroxybutyrate (PHB) production in recombinant E. coli expressing Ralstonia eutropha PHB biosynthesis genes. It was found that dr1558 overexpressing E. coli produced 5.31 g PHB/L and 9.24 g dry cell weight/L, while control strain produced 1.52 g PHB/L and 4.47 g dry cell weight/L in 48 h shake-flask cultivation. Transcriptional analysis of E. coli suggested that DR1558 could improve the expression efficiency of the genes related to central carbon metabolism and threonine bypass pathway in PHB producing E. coli. When thrABC genes were overexpressed, PHB content was increased in recombinant E. coli, which suggests that stress-tolerant genes from extremophiles should be useful in the development of engineered strains for the production of bio-based products.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Hydroxybutyrates/metabolism , Polyesters/metabolism , Response Elements , Energy Metabolism , Metabolic Engineering , Metabolic Networks and Pathways , Operon
16.
Article in English | WPRIM (Western Pacific) | ID: wpr-823220

ABSTRACT

Aims@#Hyaluronic acid (HA) is a high molecular weight polymer and a major component of mucoid capsule in bacteria and extracellular matrix (ECM) of vertebrate tissue. Due to its unique characteristics, HA is used extensively in medical and cosmetic field. However, because of the exotoxins production from animal tissues extraction and Streptococcus zooepidemicus, HA production by recombinant microorganisms has gained interest. The present study was aimed at cloning of hasA gene in Escherichia coli and optimization of the medium components for HA production. @*Methodology and results@#A fragment of an approximate size of 1.5 kb that encodes the hyaluronan synthase (hasA) gene from S. zooepidemicus ATCC 39920 was amplified by PCR using hasA-specific primers. The hasA gene was ligated into the bacterial expression vector pLbADH and transformed into the expression host, Escherichia coli BL21 strain. Then, genetically engineered E. coli strain BL21 was used for the production of HA by fermentation using different glucose concentration (10-50 g/L) and different IPTG concentration (0.1, 0.5 and 1.0 mM) in shake flask culture. Amongst varying glucose concentrations, results showed that 50 g/L glucose with nutrient rich media containing nitrogen source was able to produce the highest HA concentration (0.115 ± 0.002 g/L). With addition of 1.0 mM IPTG, HA production reached a peak 0.532 ± 0.026 g/L which is around fivefold higher compared to without IPTG. @*Conclusion, significance and impact of study@#The hasA gene was cloned from S. zooepidemicus and successfully expressed in recombinant E. coli BL21 cells. This low molecular weight HA is gaining more importance in medical and cosmetic application due to possess pronounced free radical scavenging and antioxidant activities.

17.
AMB Express ; 8(1): 142, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30182189

ABSTRACT

Poly(3-hydroxybutyrate) (PHB) is a bacterial polymer of great commercial importance due to its properties similar to polypropylene. With an aim to develop a recombinant system for economical polymer production, PHB biosynthesis genes from Bacillus aryabhattai PHB10 were cloned in E. coli. The recombinant cells accumulated a maximum level of 6.22 g/L biopolymer utilizing glycerol in shake flasks. The extracted polymer was confirmed as PHB by GC-MS and NMR analyses. The polymer showed melting point at 171 °C, thermal stability in a temperature range of 0-140 °C and no weight loss up to 200 °C. PHB extracted from sodium hypochlorite lysed cells had average molecular weight of 143.108 kDa, polydispersity index (PDI) 1.81, tensile strength of 14.2 MPa and an elongation at break of 7.65%. This is the first report on high level polymer accumulation in recombinant E. coli solely expressing PHB biosynthesis genes from a Bacillus sp. As an alternative to sodium hypochlorite cell lysis mediated polymer extraction, the effect of combined treatment with ethylenediaminetetraacetic acid and microwave was studied which attained 93.75% yield. The polymer recovered through this method was 97.21% pure, showed 2.9-fold improvement in molecular weight and better PDI. The procedure is simple, with minimum polymer damage and more eco-friendly than the sodium hypochlorite lysis method.

18.
Appl Microbiol Biotechnol ; 102(20): 8763-8772, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30120526

ABSTRACT

In recent years, antimicrobial peptides (AMPs) have attracted increasing attention. The microbial cells provide a simple, cost-effective platform to produce AMPs in industrial quantities. While AMP production as fusion proteins in microorganisms is commonly used, the recovery of AMPs necessitates the use of expensive proteases and extra purification steps. Here, we develop a novel fusion protein DAMP4-F-pexiganan comprising a carrier protein DAMP4 linked to the AMP, pexiganan, through a long, flexible linker. We show that this fusion protein can be purified using a non-chromatography approach and exhibits the same antimicrobial activity as the chemically synthesized pexiganan peptide without any cleavage step. Activity of the fusion protein is dependent on a long, flexible linker between the AMP and carrier domains, as well as on the expression conditions of the fusion protein, with low-temperature expression promoting better folding of the AMP domain. The production of DAMP4-F-pexiganan circumvents the time-consuming and costly steps of chromatography-based purification and enzymatic cleavages, therefore shows considerable advantages over traditional microbial production of AMPs. We expect this novel fusion protein, and the studies on the effect of linker and expression conditions on its antimicrobial activity, will broaden the rational design and production of antimicrobial products based on AMPs.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Antimicrobial Cationic Peptides/biosynthesis , Escherichia coli/metabolism , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Gene Expression , Microbial Sensitivity Tests , Molecular Sequence Data , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology
19.
Biotechnol Biofuels ; 11: 81, 2018.
Article in English | MEDLINE | ID: mdl-29610578

ABSTRACT

BACKGROUND: The enzymatic conversion of lignocellulosic biomass into fermentable sugars is a promising approach for producing renewable fuels and chemicals. However, the cost and efficiency of the fungal enzyme cocktails that are normally employed in these processes remain a significant bottleneck. A potential route to increase hydrolysis yields and thereby reduce the hydrolysis costs would be to supplement the fungal enzymes with their lacking enzymatic activities, such as ß-glucosidase. In this context, it is not clear from the literature whether recombinant E. coli could be a cost-effective platform for the production of some of these low-value enzymes, especially in the case of on-site production. Here, we present a conceptual design and techno-economic evaluation of the production of a low-cost industrial enzyme using recombinant E. coli. RESULTS: In a simulated baseline scenario for ß-glucosidase demand in a hypothetical second-generation ethanol (2G) plant in Brazil, we found that the production cost (316 US$/kg) was higher than what is commonly assumed in the literature for fungal enzymes, owing especially to the facility-dependent costs (45%) and to consumables (23%) and raw materials (25%). Sensitivity analyses of process scale, inoculation volume, and volumetric productivity indicated that optimized conditions may promote a dramatic reduction in enzyme cost and also revealed the most relevant factors affecting production costs. CONCLUSIONS: Despite the considerable technical and economic uncertainties that surround 2G ethanol and the large-scale production of low-cost recombinant enzymes, this work sheds light on some relevant questions and supports future studies in this field. In particular, we conclude that process optimization, on many fronts, may strongly reduce the costs of E. coli recombinant enzymes, in the context of tailor-made enzymatic cocktails for 2G ethanol production.

20.
Prep Biochem Biotechnol ; 48(2): 188-193, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29355461

ABSTRACT

Pyruvate oxidase (PyOD) is a very powerful enzyme for clinical diagnostic applications and environmental monitoring. Influences of temperature on cell growth, plasmid stability, and PyOD expression during the PyOD fermentation process by recombinant Escherichia coli were investigated. Based on the influences of temperature on the physiological metabolism, a novel high-cell density fed-batch cultivation with gradient temperature decrease strategy for effective PyOD production was achieved, under which the biomass (OD600) of recombinant E. coli could reach to 71 and the highest PyOD activity in broth could reach to 3,307 U/L in 26 hr fermentation.


Subject(s)
Aerococcus/enzymology , Batch Cell Culture Techniques/methods , Escherichia coli/metabolism , Pyruvate Oxidase/metabolism , Aerococcus/genetics , Aerococcus/metabolism , Bioreactors , Culture Media/metabolism , Escherichia coli/genetics , Fermentation , Plasmids/genetics , Plasmids/metabolism , Pyruvate Oxidase/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...