Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 599
Filter
1.
Materials (Basel) ; 17(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998206

ABSTRACT

The deformation mechanism and static recrystallization (SRX) behavior of an Ni-based single-crystal superalloy are investigated. Indentation tests were performed to investigate the effects of crystal orientation and external stress on SRX behavior. Following solution heat treatment, the depth of the SRX layer below the indentation increases with a deviation angle (ß) from the [001] orientation. The slip analysis indicates that an increased deviation angle leads to an increase in the resolved shear stress on the slip plane and a decrease in the number of active slip systems. In addition, the variation pattern of the SRX layer depth with the deviation angle is consistent for different external stresses. The depth of the SRX layer also increases with external stress. The coarse γ' phases and residual γ/γ' eutectics obviously enhance the pinning effects on the expansion of recrystallized grain boundaries, resulting in slower growth rates of the recrystallized grains in interdendritic regions than those in dendrite core regions.

2.
Materials (Basel) ; 17(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998235

ABSTRACT

Twin-roll strip casting (TRSC) technology has unique advantages in the production of non-oriented electrical steel. However, the hot deformation behavior of high-grade electrical steel produced by TRSC has hardly been reported. This work systematically studied the hot deformation behavior of free-Al 2.43 wt.% Si electrical steel strip produced by twin-roll strip casting. During the simulated hot rolling test, deformation reduction was set as 30%, and the ranges of deformation temperature and strain rate were 750~950 °C and 0.01~5 s-1, respectively. The obtained true stress-strain curves show that the peak true stress decreased with an increase in the deformation temperature and with a decrease in the strain rate. Then, the effect of hot deformation parameters on microstructure and texture was analyzed using optical microstructure observation, X-ray diffraction, and electron backscattered diffraction examination. In addition, based on the obtained true stress-strain curves of the strip cast during hot deformation, the constitutive equation for the studied silicon steel strip was established, from which it can be found that the deformation activation energy of the studied steel strip is 83.367 kJ/mol. Finally, the kinetics model of dynamic recrystallization for predicting the recrystallization volume percent was established and was verified by a hot rolling experiment conducted on a rolling mill.

3.
Sci Rep ; 14(1): 15106, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956156

ABSTRACT

We applied computing-as-a-service to the unattended system-agnostic miscibility prediction of the pharmaceutical surfactants, Vitamin E TPGS and Tween 80, with Copovidone VA64 polymer at temperature relevant for the pharmaceutical hot melt extrusion process. The computations were performed in lieu of running exhaustive hot melt extrusion experiments to identify surfactant-polymer miscibility limits. The computing scheme involved a massively parallelized architecture for molecular dynamics and free energy perturbation from which binodal, spinodal, and mechanical mixture critical points were detected on molar Gibbs free energy profiles at 180 °C. We established tight agreement between the computed stability (miscibility) limits of 9.0 and 10.0 wt% vs. the experimental 7 and 9 wt% for the Vitamin E TPGS and Tween 80 systems, respectively, and identified different destabilizing mechanisms applicable to each system. This paradigm supports that computational stability prediction may serve as a physically meaningful, resource-efficient, and operationally sensible digital twin to experimental screening tests of pharmaceutical systems. This approach is also relevant to amorphous solid dispersion drug delivery systems, as it can identify critical stability points of active pharmaceutical ingredient/excipient mixtures.


Subject(s)
Excipients , Polysorbates , Excipients/chemistry , Polysorbates/chemistry , Vitamin E/chemistry , Surface-Active Agents/chemistry , Pyrrolidines/chemistry , Molecular Dynamics Simulation , Thermodynamics , Hot Melt Extrusion Technology/methods , Vinyl Compounds
4.
Article in English | MEDLINE | ID: mdl-38958684

ABSTRACT

The synthesis of TaSe3 ring-shaped crystals displaying the coffee ring effect is investigated. By recrystallizing TaSe3 microcrystals dissolved in droplets of condensed Se gas, ring-shaped crystals were successfully grown. This novel method for ring formation effectively addressed the issue of connecting the edges of the crystal. Consequently, the synthesis method has the capability to grow MX3 ring-shaped crystals in any location where droplets can condense, can now be grown in specific locations, thus creating opportunities for advancements in electronic component development.

5.
Ultrasonics ; 142: 107383, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38905844

ABSTRACT

In many metallic materials such as Inconel superalloys, the microstructure and grain size play an important role in their mechanical and physical properties and could impact the performance during long-term service at the operational temperature. Therefore, on-site detection of the microstructural transformation (such as recrystallization and grain growth) is of primary importance from a structural integrity point of view. Nondestructive evaluation methods such as the ultrasonic attenuation measurement offer a unique advantage that they can be used to evaluate the microstructure evolution of a component during fabrication or service operation. Nondestructive determination of the grain size could help predict the mechanical behavior of the component. In this study, the measured attenuation coefficient was fitted to a theoretical attenuation model to establish the grain size, which shows a strong quantitative agreement with the grain size determined from Electron Backscatter Diffraction (EBSD) analysis. Furthermore, the EBSD texture results confirmed the existence of a recrystallization temperature region previously established using hardness measurements. This experimental evidence demonstrates that ultrasonic attenuation can predict the grain transformation that could occur during material processing or operational service.

6.
Acta Pharm Sin B ; 14(6): 2669-2684, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828156

ABSTRACT

Solid oral controlled release formulations feature numerous clinical advantages for drug candidates with adequate solubility and dissolution rate. However, most new chemical entities exhibit poor water solubility, and hence are exempt from such benefits. Although combining drug amorphization with controlled release formulation is promising to elevate drug solubility, like other supersaturating systems, the problem of drug recrystallization has yet to be resolved, particularly within the dosage form. Here, we explored the potential of an emerging, non-leachable terpolymer nanoparticle (TPN) pore former as an internal recrystallization inhibitor within controlled release amorphous solid dispersion (CRASD) beads comprising a poorly soluble drug (celecoxib) reservoir and insoluble polymer (ethylcellulose) membrane. Compared to conventional pore former, polyvinylpyrrolidone (PVP), TPN-containing membranes exhibited superior structural integrity, less crystal formation at the CRASD bead surface, and greater extent of celecoxib release. All-atom molecular dynamics analyses revealed that in the presence of TPN, intra-molecular bonding, crystal formation tendency, diffusion coefficient, and molecular flexibility of celecoxib were reduced, while intermolecular H-bonding was increased as compared to PVP. This work suggests that selection of a pore former that promotes prolonged molecular separation within a nanoporous controlled release membrane structure may serve as an effective strategy to enhance amorphicity preservation inside CRASD.

7.
J Adv Res ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38844125

ABSTRACT

INTRODUCTION: Magnetostrictive Fe-Ga alloys have garnered extensive attention owing to their excellent magnetic properties and acceptable biocompatibility. Nevertheless, the polycrystalline Fe-Ga alloys currently available tend to display random texture orientations, which constrain their magnetostrictive performance. OBJECTIVES: To regulate the texture orientation of Fe-Ga-NbC alloys and thereby enhancing magnetostriction. METHODS: In this study, a processing route comprising laser powder bed fusion (LPBF) followed by secondary recrystallization annealing (800, 1000, and 1200 °C, respectively) was developed to prepare Fe-Ga-NbC alloys. RESULTS: The results showed that the LPBF-ed (Fe81Ga19)99(NbC)1 alloys exhibited a high content of high energy grain boundaries (HEGBs) due to the repeated melting and solidification. In subsequent annealing process, the migration of HEGBs induced the rearrangement and recrystallization of grains, during which NbC was found to locate at the grain boundaries and influence the migration path of HEGBs via selective pinning, thereby resulting in a strong Goss texture. With the rise in annealing temperature, the content of Goss texture gradually increased from the initial 3.9 % to 71.3 % at 1200 °C, leading to enhanced magnetostriction, lower saturation magnetization and coercivity. Furthermore, in alternating magnetic fields, the alloys annealed at 1200 °C also exhibited higher magnetostriction than the LPBF-ed alloys. And a noteworthy grain coarsening was also observed after annealing, accompanied by a discernible inclination of magnetic domains towards strip domains. Additional, cell tests demonstrated that the prepared alloys had satisfactory biocompatibility and the ability to promote osteogenic differentiation. CONCLUSION: These findings indicated that the LPBF-ed and annealed Fe-Ga-NbC alloys might be a promising alternative as magnetostrictive-driven materials for biomedical applications.

8.
Materials (Basel) ; 17(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893795

ABSTRACT

Through the study of the thermal rheological behavior of Ti6Al4V alloy at different temperatures (500 °C, 600 °C, 700 °C, and 800 °C) and different strain rates (0.1 s-1, 0.05 s-1, 0.01 s-1, and 0.005 s-1), a constitutive model was developed for Ti6Al4V alloy across a wide temperature range in the hot stamping process. The model's correlation coefficient reached 0.9847, indicating its high predictive accuracy. Hot processing maps suitable for the hot stamping process of Ti6Al4V alloy were developed, demonstrating the significant impact of the strain rate on the hot formability of Ti6Al4V alloy. At higher strain rates (>0.05 s-1), the hot processing of Ti6Al4V alloy is less prone to instability. Combining hot processing maps with hot stamping experiments, it was found that the forming quality and thickness uniformity of parts improved significantly with the increase in stamping speed. The phase composition and microstructures of the forming parts under different heating temperature conditions have been investigated using SEM, EBSD, XRD, and TEM, and the maximum heating temperature of hot stamping forming was determined to be 875 °C. The recrystallization mechanism in hot stamping of Ti6Al4V alloys was proposed based on EBSD tests on different sections of a hot stamping formed box-shaped component. With increasing deformation, the effect of dynamic recrystallization (DRX) was enhanced. When the thinning rate reached 15%, DRX surpassed dynamic recovery (DRV) as the dominant softening mechanism. DRX grains at different thinning rates were formed through both discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX), with CDRX always being the dominant mechanism.

9.
Materials (Basel) ; 17(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893846

ABSTRACT

This paper reports the vapor pressure and enthalpy of vaporization for a promising phase change material (PCM) guanidinium methanesulfonate ([Gdm][OMs]), which is a typical guanidinium organomonosulfonate that displays a lamellar crystalline architecture. [Gdm][OMs] was purified by recrystallization. The elemental analysis and infrared spectrum of [Gdm][OMs] confirmed the purity and composition. Differential scanning calorimetry (DSC) also confirmed its high purity and showed a sharp and symmetrical endothermic melting peak with a melting point (Tm) of 207.6 °C and a specific latent heat of fusion of 183.0 J g-1. Thermogravimetric analysis (TGA) reveals its thermal stability over a wide temperature range, and yet three thermal events at higher temperatures of 351 °C, 447 °C, and 649 °C were associated with vaporization or decomposition. The vapor pressure was measured using the isothermogravimetric method from 220 °C to 300 °C. The Antoine equation was used to describe the temperature dependence of its vapor pressure, and the substance-dependent Antoine constants were obtained by non-linear regression. The enthalpy of vaporization (ΔvapH) was derived from the linear regression of the slopes associated with the linear temperature dependence of the rate of weight loss per unit area of vaporization. Hence, the temperature dependence of vapor pressures ln Pvap (Pa) = 10.99 - 344.58/(T (K) - 493.64) over the temperature range from 493.15 K to 573.15 K and the enthalpy of vaporization ΔvapH = 157.10 ± 20.10 kJ mol-1 at the arithmetic mean temperature of 240 °C were obtained from isothermogravimetric measurements using the Antoine equation and the Clausius-Clapeyron equation, respectively. The flammability test indicates that [Gdm][OMs] is non-flammable. Hence, [Gdm][OMs] enjoys very low volatility, high enthalpy of vaporization, and non-flammability in addition to its known advantages. This work thus offers data support, methodologies, and insights for the application of [Gdm][OMs] and other organic salts as PCMs in thermal energy storage and beyond.

10.
Materials (Basel) ; 17(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38893969

ABSTRACT

The microstructure and texture evolution of Cu-Ni-P alloy after cold rolling and annealing at 500 °C was studied by electron backscattering diffraction (EBSD). The equiaxed grain is elongated and the dislocation density increases gradually after cold rolling. The grain boundaries become blurred and the structure becomes banded when the reduction in cold rolling reaches 95%. A typical rolling texture is formed with the increase in deformation amount in cold rolling. The deformation structure gradually disappeared and recrystallized new grains were formed after annealing at 500 °C. The recrystallization nucleation mechanism of Cu-Ni-P alloy at 60% reduction is mainly a bow nucleation mechanism. A shear band begins to form after annealing at 80% reduction. The shear band becomes the preferred nucleation location with the increase in reduction. Most adjacent recrystallized grains growing in the shear band have a twin relationship.

11.
Materials (Basel) ; 17(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38930202

ABSTRACT

In industrial production, the deformation inhomogeneity after metal forging affects the mechanical properties of various parts of the forgings. The question of whether the organization and mechanical properties of ß-titanium alloy can be improved by controlling the amount of forging deformation needs to be answered. Therefore, in this paper, a new sub-stable ß-Ti alloy TB 18 (Ti-5.3Cr-4.9Mo4.9V-4.3Al-0.9Nb-0.3Fe) was subjected to three different levels of deformation, as well as solid solution-aging treatments, and the variation rules of microstructure and mechanical properties were investigated. During the solid solution process, the texture evolution pattern of the TB18 alloy at low deformation (20-40%) is mainly rotational cubic texture deviated into α-fiber texture; at high deformation (60%), the main components of the deformed texture are α-fiber texture with a specific orientation of (114)<113-3>. After subsequent static recrystallization, the α-fiber texture is deviated to an α*-fiber texture, while the specific orientation (114)<113-3> can still be inherited as a major component of the recrystallized texture. The plasticity of the alloy in the normal direction (ND) after the solid solution is influenced by the existence of the <110>//ND texture, and the plasticity of the alloy in the ND direction after aging is determined by a combination of the volume fraction of the <110>//ND texture in the matrix phase and the volume fraction of [112-0]α//ND in the α phase. The results show that it is feasible to change the characteristics of the recrystallization texture of TB18 by controlling the deformation level of hot forging, thus realizing the modulation of the mechanical properties.

12.
J Pharm Sci ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944343

ABSTRACT

The incorporation of leucine (Leu), a hydrophobic amino acid, into pharmaceutically relevant particles via spray-drying can improve the physicochemical and particulate properties, stability, and ultimately bioavailability of the final product. More specifically, Leu has been proposed to form a shell on the surface of spray-dried (SD) particles. The aim of this study was to explore the potential of Leu in the SD protein/trehalose (Tre) formulation to control the water uptake and moisture-induced recrystallization of amorphous Tre, using lysozyme (LZM) as a model protein. LZM/Tre (1:1, w/w) were dissolved in water with varied amounts of Leu (0 - 40%, w/w) and processed by spray-drying. The solid form, residual moisture content (RMC), hygroscopicity, and morphology of SD LZM/Tre/Leu powders were evaluated, before and after storage under 22°C/55% RH conditions for 90 and 180 days. The X-ray powder diffraction results showed that Leu was in crystalline form when the amount of Leu in the formulation was at least 20% (w/w). Thermo-gravimetric analysis and scanning electron microscopy results showed that 0%, 5%, and 10% Leu formulations led to comparable RMC and raisin-like round particles. In contrast, higher Leu contents resulted in a lower RMC and increased surface corrugation of the SD particles. Dynamic vapor sorption analysis showed that in the 0% Leu formulation, partial recrystallization of amorphous Tre to crystalline Tre·dihydrate occurred, and the addition of as little as 5% Leu could inhibit the recrystallization of amorphous Tre during the water sorption/desorption cycle. In addition, after storage, formulations with higher Leu contents resulted in less water uptake. Rather than recrystallization of amorphous Tre in 0%, 5%, and 10% Leu formulations, recrystallization of amorphous Leu was observed in both 5% and 10% Leu formulations after storage. In summary, our study demonstrated that the addition of Leu has the potential to reduce water uptake and inhibit moisture-induced recrystallization of amorphous Tre in the SD protein/Tre powder system.

13.
Small ; : e2403648, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881372

ABSTRACT

CsPbBr3@Cs4PbBr6 hexagonal NCs with a bright photoluminescence (PL) peak of 456 nm are created through the dissolution-recrystallization of CsPbBr3 nanoplatelets. Small CsPbBr3 nanocrystals are encapsulated in hexagonal Cs4PbBr6 during recrystallization to form a core-shell structure and keep high brightness and stability. The recrystallization kinetics is systematically investigated to explore the roles of methyl acetate, oleylamine, and n-hexane. Result further indicates that core/shell NCs remained high PL under a variety of harsh conditions (e.g., light irradiation and heat treatment) because of Cs4PbX6 shell and the controlling of recrystallization. Their initial PL intensity is remained after 4 months of storage under ambient conditions and continuous exposure to UV lamp for 180 min. The bright PL is also maintained even treatment at 120 °C. To indicate the universality of this synthesis method, CsPbX3@Cs4PbX6 hexagonal NCs with different emission colors are fabricated by changing temperature, solvent viscosity, and precursors (e,g, oleylamine and halogens). These core-shell samples reveal bright and stable green, orange, and red PL. Because of its high stability, the core/shell NCs are dispersed in flexible films to create diverse patterns. The films also exhibit high brightness and excellent stability. This strategy opens a novel avenue for the application of perovskite nanomaterials in the display field.

14.
Macromol Rapid Commun ; : e2400273, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876477

ABSTRACT

Poly(butylene succinate) (PBS) forms small and imperfect crystals of low melting temperature at high supercooling of the melt. Slow heating allows reorganization of the obtained semicrystalline structure with the changes of the crystallinity and of the size and perfection of crystals analyzed by differential scanning calorimetry (DSC) and temperature-resolved X-ray scattering techniques. Crystals generated at 20 °C begin to melt and reorganize at a few K higher temperature with their initial imperfection and thickness unchanged upon heating to 70-80 °C. Slow heating to temperatures higher than 70-80 °C yields a distinct exothermic peak in the DSC scan, paralleled by detection of crystals of larger size/higher perfection, beginning to melt at ≈100 °C. These observations suggest that below 70-80 °C, reorganization of the semicrystalline morphology is constrained such that only minor and local improvement of the structure of crystals are possible. The formation of both perfect and thicker crystal lamellae at higher temperature proceeds via melting of imperfect crystals followed by melt-recrystallization as for PBS solid-state thickening is impossible. The study shows the limit of low-temperature reorganization processes when not involving both complete melting of crystals and rearrangement of the lamellar-stack structure.

15.
Materials (Basel) ; 17(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793285

ABSTRACT

Single-pass-welding thermal cycles with different peak temperatures (Tp) were reproduced by a Gleeble 3800 to simulate the heat-affected zone (HAZ) of a Fe-24Mn-4Cr-0.4C-0.3Cu (wt.%) high manganese austenitic steel. Then, the effect of Tp on the microstructure and mechanical properties of the HAZ were investigated. The results indicate that recrystallization and grain growth play dominant roles. Based on this, the HAZ is proposed to categorize into three zones: the recrystallization heat-affected zone (RHAZ) with a Tp of 700~900 °C, the transition heat-affected zone (THAZ) with a Tp of 900~1000 °C, and the coarse grain heat-affected zone (CGHAZ) with a Tp of 1000~1300 °C. The recrystallization fraction was 29~44% in the RHAZ, rapidly increased to 87% in the THAZ, and exceeded 95% in the CGHAZ. The average grain size was 17~19 µm in the RHAZ, slightly increased to 22 µm in the THAZ, and ultimately increased to 37 µm in the CGHAZ. The yield strength in the RHAZ and THAZ was consistent with the change in recrystallization fraction, while in the CGHAZ, it satisfied the Hall-Petch relationship with grain size. In addition, compared with the base material, the Charpy impact absorbed energy at -196 °C decreased by 22% in the RHAZ, but slightly increased in the CGHAZ. This indicates that the theory of fine grain strengthening and toughening is not entirely applicable to the HAZ of the investigated high-Mn steel.

16.
Materials (Basel) ; 17(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38793381

ABSTRACT

In this work, thermomechanical treatment (single-pass rolling at 800 °C and solution treatment) was applied to nuclear-grade hot-rolled austenitic stainless steel to eliminate the mixed grain induced by the uneven hot-rolled microstructure. By employing high-temperature laser scanning confocal microscopy, microstructure evolution during solution treatment was observed in situ, and the effect of single-pass rolling reduction on it was investigated. In uneven hot-rolled microstructure, the millimeter-grade elongated grains (MEGs) possessed an extremely large size and a high Schmid factor for slip compared to the fine grains, which led to greater plastic deformation and increased dislocation density and deformation energy storage during single-pass rolling. During subsequent solution treatment, there were fewer nucleation sites for the new grain, and the grain boundary (GB) was the main nucleation site in MEGs at a lower rolling reduction. In contrast, at a higher reduction, increased uniformly distributed rolling deformation and more nucleation sites were developed in MEGs. As the reduction increased, the number of in-grain nucleation sites gradually exceeded that of GB nucleation sites, and in-grain nucleation preferentially occurred. This was beneficial for promoting the refinement of new recrystallized grains and a reduction in the size difference of new grains during recrystallization. The single-pass rolling reduction of 15-20% can effectively increase the nucleation sites and improve the uniformity of rolling deformation distribution in the MEGs, promote in-grain nucleation, and finally refine the abnormally coarse elongated grain, and eliminate the mixed-grain structure after solution treatment.

17.
Sci Rep ; 14(1): 11657, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777822

ABSTRACT

Corrosion-resistant steel plays a vital role in marine steel structures. This study developed an SS304/HRB400 stainless-steel-clad rebar for application in a cross-sea bridge in Zhejiang Province. CO2 gas shielded welding was employed in the prefabricated steel structure, with SS304 steel as the welding wire. This study investigated the welding on the corrosion resistance of clad rebars and explored corrosion protection measures for welded joints.The results indicated that refined grains appeared in both stainless steel and carbon steel due to distinct dynamic recrystallization (DRX) during welding. The corrosion resistance, as determined by potentiodynamic polarization curve analysis of the material's interaction with the solution ranked as follows: clad rebar (polished) > clad rebar welding (CRW) > painting the clad rebar after welding (PCRW) > clad rebar (unpolished) > carbon-steel welding (CSW) > carbon-steel bar > cold spraying zinc after clad rebar welding (ZCRW). However, an accelerated corrosion test with four samples for 600 s with a corrosion current of 0.8 A revealed minimal corrosion damage on zinc-coated surfaces. Hence, welding joints for clad steel structures are considered feasible and must be subject to cold zinc spraying after polishing to enhance their corrosion resistance.

18.
Materials (Basel) ; 17(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38730770

ABSTRACT

During thermal deformation, grain coarsening due to grain growth and grain refinement resulting from dynamic recrystallization (DRX) collectively influence the deformed grain size. To investigate the separative and comprehensive effects of the two mechanisms in the Ni-38Cr-3.8Al alloy, grain growth experiments and isothermal compression tests were conducted. Kinetics models for grain growth and DRX behaviors were established based on the experimental data, which were integrated with finite element (FE) techniques to simulate the evolution of grain size throughout the entire thermal compression process. The effects of grain coarsening and grain refinement during this process were separated and quantified based on the simulation data. The results revealed that grain coarsening predominated during the heating and holding stages, with a longer holding time and higher holding temperatures intensifying this effect. However, during the compression stage, grain coarsening and grain refinement co-existed, and their competition was influenced by deformation parameters. Specifically, grain refinement dominated at strain rates exceeding 0.1 s-1, while grain coarsening dominated at lower strain rates (<0.1 s-1) and higher deformation temperatures (>1373 K). The simulated grain sizes closely matched the experimental observations.

19.
Chem Asian J ; : e202400436, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753576

ABSTRACT

Prolonging the lifetime of SAPO-34 catalysts and enhancing their olefin selectivity in methanol-to-olefin (MTO) reactions are critical yet challenging objectives. Here, a series of hierarchical SAPO-34 catalysts were synthesized using a straightforward recrystallization method. The incorporation of triethylamine into the recrystallization mother liquor facilitated the formation of mesopores, achieving a high solid yield of up to 90%. Notably, the addition of phosphoric acid and ammonium polyvinyl phosphate alcohol during the recrystallization process significantly enhanced the crystallinity and regularity of the hierarchical SAPO-34 crystals, consequently increasing the mesopore size. Due to the substantially improved mass transfer efficiency and moderated acidity, the SP34-0.14P-0.06R catalysts exhibited a prolonged operational life of 344 min and 80.3% selectivity of ethylene and propylene at a WHSV of 2h-1. This performance markedly surpasses that of the parent SP34 catalyst, which demonstrated a lifetime of 136 min and a selectivity of 78.0%. Remarkably, the SP34-0.14P-0.06R maintained a lifetime of 166 minutes even at a high WHSV of 10h-1, which is more than 5-fold greater than that of the original microporous SP34. This research offers valuable insights into the design and development of hierarchically porous zeolites with high yields, enhancing the efficiency of MTO reactions and other applications.

20.
Int J Pharm ; 657: 124189, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38701906

ABSTRACT

Amorphous solid dispersions (ASDs) represent an important approach for enhancing oral bioavailability for poorly water soluble compounds; however, assuring that these ASDs do not recrystallize to a significant extent during storage can be time-consuming. Therefore, various efforts have been undertaken to predict ASD crystallization levels with kinetic models. However, only limited success has been achieved due to limits on crystal content quantification methods and the complexity of crystallization kinetics. To increase the prediction accuracy, the accelerated stability assessment program (ASAP), employing isoconversion (time to hit a specification limit) and a modified Arrhenius approach, are employed here for predictive shelf-life modeling. In the current study, a model ASD was prepared by spray drying griseofulvin and HPMC-AS-LF. This ASD was stressed under a designed combinations of temperature, relative humidity and time with the conditions set to ensure stressing was carried out below the glass transition temperature (Tg) of the ASD. Crystal content quantification method by X-ray powder diffraction (XRPD) with sufficient sensitivity was developed and employed for stressed ASD. Crystallization modeling of the griseofulvin ASD using ASAPprime® demonstrated good agreement with long-term (40 °C/75 %RH) crystallinity levels and support the use of this type of accelerated stability studies for further improving ASD shelf-life prediction accuracy.


Subject(s)
Crystallization , Drug Stability , Griseofulvin , Griseofulvin/chemistry , Hypromellose Derivatives/chemistry , X-Ray Diffraction/methods , Solubility , Drug Compounding/methods , Chemistry, Pharmaceutical/methods , Temperature , Humidity
SELECTION OF CITATIONS
SEARCH DETAIL
...