Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Foods ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38890968

ABSTRACT

This study is the first to report on the presence of oestrogenic compounds in different clover flower nectar samples, in bee-deposited nectars collected from hive combs (unripe honey) and in mature honeys harvested from the same hives. The clover species investigated were two red clover (Trifolium pratense) cultivars, bred specifically for high isoflavone content, alongside a sainfoin (Onobrychis viciifolia) and a purple clover (T. purpureum) cultivar. A total of eight isoflavones, four of them non-glycosidic (biochanin A, formononetin, genistein and daidzein) the others glycosidic (sissotrin, ononin, genistin and daidzin), were targeted for identification and quantification in this study using high-performance thin-layer chromatography (HPTLC). Leaves and flower bracts of the clover samples were also investigated. Different isoflavone profiles were found across the four clover species and also in the different samples collected from each species indicating that, most likely due to the activity of honeybee (Apis mellifera) salivary enzymes, biochemical conversions take place when these bioactive compounds transition from flower nectar into ripe honey. Among the four investigated clover species, the two red clover cultivars, including their honeys, were found to contain higher levels of estrogenic compounds compared to other two cultivars.

2.
Front Plant Sci ; 15: 1407609, 2024.
Article in English | MEDLINE | ID: mdl-38916032

ABSTRACT

Genomic prediction has mostly been used in single environment contexts, largely ignoring genotype x environment interaction, which greatly affects the performance of plants. However, in the last decade, prediction models including marker x environment (MxE) interaction have been developed. We evaluated the potential of genomic prediction in red clover (Trifolium pratense L.) using field trial data from five European locations, obtained in the Horizon 2020 EUCLEG project. Three models were compared: (1) single environment (SingleEnv), (2) across environment (AcrossEnv), (3) marker x environment interaction (MxE). Annual dry matter yield (DMY) gave the highest predictive ability (PA). Joint analyses of DMY from years 1 and 2 from each location varied from 0.87 in Britain and Switzerland in year 1, to 0.40 in Serbia in year 2. Overall, crude protein (CP) was predicted poorly. PAs for date of flowering (DOF), however ranged from 0.87 to 0.67 for Britain and Switzerland, respectively. Across the three traits, the MxE model performed best and the AcrossEnv worst, demonstrating that including marker x environment effects can improve genomic prediction in red clover. Leaving out accessions from specific regions or from specific breeders' material in the cross validation tended to reduce PA, but the magnitude of reduction depended on trait, region and breeders' material, indicating that population structure contributed to the high PAs observed for DMY and DOF. Testing the genomic estimated breeding values on new phenotypic data from Sweden showed that DMY training data from Britain gave high PAs in both years (0.43-0.76), while DMY training data from Switzerland gave high PAs only for year 1 (0.70-0.87). The genomic predictions we report here underline the potential benefits of incorporating MxE interaction in multi-environment trials and could have perspectives for identifying markers with effects that are stable across environments, and markers with environment-specific effects.

3.
Cureus ; 16(5): e59762, 2024 May.
Article in English | MEDLINE | ID: mdl-38854355

ABSTRACT

INTRODUCTION: Red clover, a perennial herbaceous plant, has been demonstrated to possess blood-purifying, expectorant, and calming properties. This research endeavors to create and evaluate the antimicrobial, antioxidant characteristics, and cytotoxic effects of the ethanolic extract derived from red clover. METHODS: A water-based solution of red clover was formulated and subjected to centrifugation. Various concentrations of the extract were applied to the wells of agar plates inoculated with E. coli, Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis, and Candida albicans and then left to incubate. The inhibition zones for each concentration were subsequently measured. The antioxidant properties were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, while the cytotoxicity of the extract was assessed through the brine shrimp lethality assay. RESULTS: Initially, the extract was tested with a volume of 10 µL, which was subsequently incremented to 20 µL, 30 µL, 40 µL, and 50 µL. According to the DPPH assay, as the concentration of the extract solution increased incrementally by 10 µL, its antioxidant activity also exhibited a corresponding rise. The cytotoxicity assay indicated that the mouthwash formulated with red clover had minimal cytotoxic effects within the range of 5-20 µL. Antibacterial analysis revealed a similar zone of inhibition between the test and control groups. CONCLUSION: The ethanolic extract obtained from red clover was identified as a powerful antioxidant, antibacterial, and biocompatible substance. Hence, it can be a potential candidate for application as a mouthwash.

4.
Antioxidants (Basel) ; 13(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38671862

ABSTRACT

The purpose of this study was to analyze the effect of the type of extraction solution (water, different concentrations of ethanol), temperature and time on the polyphenol content and antioxidant properties of red clover extracts and the effect of the addition of selected extracts on the antioxidant properties of enriched blackcurrant beverages. In both the extractions carried out under different conditions and in the enriched beverages, the content of selected polyphenols was determined by HPLC. This study confirmed the significant effect of the alcohol content of the extract, extraction time and temperature on the antioxidant properties of clover extracts. Ethanolic extracts had better antioxidant properties than aqueous extracts. The addition of ethanol extracts had a significant effect on the antioxidant properties of the fortified beverages. Increasing the temperature, time or ethanol content in the extracts mostly resulted in an increase in the total polyphenol content in the obtained extracts. Based on the analysis of the response surface, it was found that for the DPPH radical, the best activity was obtained by extraction for 20 min with a solution of approximately 65% at low temperatures. In the case of the ABTS radical, the best antiradical activity was obtained after extraction for 60 min at 80 °C with a solution of approximately 50% ethanol. It was also found that the use of a solution of approximately 60% ethanol after extraction for 60 min at 80 °C would provide an extract with high antiradical activity against both radicals.

5.
Pharmaceutics ; 16(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675191

ABSTRACT

Encapsulating antioxidant-rich plant extracts, such as those found in red clover, within microcapsules helps protect them from degradation, thus improving stability, shelf life, and effectiveness. This study aimed to develop a microencapsulation delivery system using chitosan and alginate for microcapsules that dissolve in both the stomach and intestines, with the use of natural and synthetic emulsifiers. The microcapsules were formed using the extrusion method and employing alginate or chitosan as shell-forming material. In this study, all selected emulsifiers formed Pickering (ß-CD) and traditional (white mustard extract, polysorbate 80) stable emulsions. Alginate-based emulsions resulted in microemulsions, while chitosan-based emulsions formed macroemulsions, distinguishable by oil droplet size. Although chitosan formulations with higher red clover extract (C1) concentrations showed potential, they exhibited slightly reduced firmness compared to other formulations (C2). Additionally, both alginate and chitosan formulations containing ß-CD released bioactive compounds more effectively. The combined use of alginate and chitosan microcapsules in a single pill offers an innovative way to ensure dual solubility in both stomach and intestinal environments, increasing versatility for biomedical and pharmaceutical applications.

6.
Pharmaceutics ; 16(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38543293

ABSTRACT

Adding certain excipients during the extraction process can enhance the concentration of target compounds, leading to potentially increased biological properties of the plant extract. This study explores the impact of PVP/VAC and SSG excipients on red clover bud extracts, aiming to enhance their concentration of target compounds and, consequently, their biological properties. The antioxidative potential was evaluated using DPPH, ABTS, and FRAP methods, and the chemical profile was determined using mass spectrometry. Antibacterial activity against various strains was determined through the minimal inhibitory concentration (MIC) method. The results revealed that the excipient-enriched samples exhibited significantly elevated antioxidant activities as well as phenolic and flavonoid contents compared to control samples. Notably, sample V1E3 demonstrated the highest antioxidant potential, with 52.48 ± 0.24 mg GAE/g dw (phenolic content), 463 ± 6.46 µg TE/g dw (ABTS), 12.81 ± 0.05 µg TE/g dw (DPPH), and 29.04 ± 1.16 mg TE/g dw (post-column ABTS). The highest flavonoid content was found in the S1E3 sample-24.25 ± 0.17 mg RU/g dw. Despite the increased antioxidant potential, no significant variance in antimicrobial activity was noted between the test samples and controls. This implies that excipients may hold the potential to enhance the biological properties of red clover extracts for pharmaceutical applications. These findings contribute valuable insights into optimizing extraction processes for improved functionality and application of plant-derived compounds in therapeutic formulations.

7.
Food Chem ; 446: 138764, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38408399

ABSTRACT

Red clover (Trifolium pratense) isoflavone was supplemented to dairy cows, and antioxidant capacity of milk was assessed. Treated cows increased the activities of antioxidant enzymes, reduced production of oxidation products, and enhanced the concentrations of vitamin E and vitamin C. Moreover, milk fatty acid profile was positive influenced by 8 g/kg red clover isoflavone, with changes in the lower saturated and higher unsaturated fatty acids. We further demonstrated the efficacy of antioxidant capacity of milk in mice, found that milk from cows feeding red clover isoflavone increased the expressions of antioxidant enzymes, and alleviated lipopolysaccharide (LPS)-stimulated tissue damage of duodenum and jejunum, which was related to upregulated metabolism pathways of carbohydrate, lipid, and amino acid, as well as downregulated inflammatory related pathways. Together, dietary supplementation of red clover isoflavone is an effective way to improve milk antioxidant capacity, providing a natural strategy for developing functional foods.


Subject(s)
Milk , Trifolium , Female , Cattle , Animals , Mice , Milk/chemistry , Trifolium/chemistry , Antioxidants/analysis , Diet/veterinary , Lactation , Silage/analysis , Dietary Supplements , Animal Feed/analysis
8.
Anim Nutr ; 16: 306-312, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38371476

ABSTRACT

This study was to conducted to investigate the effect of red clover isoflavones on the health indicated by immune status and blood biochemistry in dairy cows. Sixty-eight healthy Holstein lactating cows were randomly divided into four treatments (n = 17 per treatment) from 5 blocks according to milk yield using a randomized complete block design. No initial differences in parity (2.13 ± 1.21), days in milk (165 ± 21 d), and milk yield (33.93 ± 3.81 kg/d) between groups. Cows were fed the basal diet supplemented with 0, 2, 4, or 8 g/kg red clover extract (RCE) in diet (dry matter based). Feeding, refusal feed weights, and milk yield were recorded three consecutive days in weeks 0, 4, 8, and 12. Blood was collected from the tail vein of the cows on the last day of weeks 4, 8 and 12, 1 h after the morning feeding, and analyzed for hormones, immunoglobulins, inflammatory markers, and markers of liver and kidney activities. The dry matter intake was significantly decreased by 3.7% in the 8 g/kg group (P < 0.05). The fat-corrected milk yield was significantly higher in both of the 2 and 4 g/kg groups (P < 0.01). Plasma estradiol and prolactin showed a quadratic effect with increasing RCE levels, with the highest in the 4 g/kg group (P < 0.05). Plasma tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß levels decreased linearly with increasing dietary RCE levels. Plasma IL-18 levels showed a quadratic effect with increasing dietary RCE levels, with significantly lower levels in both of the 2 and 4 g/kg groups (P < 0.05). Plasma immunoglobulin A and D-lactic acid levels showed a quadratic effect with increasing dietary RCE levels, with significantly higher level in the 4 g/kg group (P < 0.05). The liver function and kidney activity makers were similar (P > 0.05). These results recommend the supplementation of RCE at a level from 2 to 4 g/kg DM.

9.
BMC Genomics ; 25(1): 128, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297198

ABSTRACT

BACKGROUND: The NAC TF family is widely involved in plant responses to various types of stress. Red clover (Trifolium pratense) is a high-quality legume, and the study of NAC genes in red clover has not been comprehensive. The aim of this study was to analyze the NAC gene family of red clover at the whole-genome level and explore its potential role in the Pb stress response. RESULTS: In this study, 72 TpNAC genes were identified from red clover; collinearity analysis showed that there were 5 pairs of large fragment replicators of TpNAC genes, and red clover was found to be closely related to Medicago truncatula. Interestingly, the TpNAC genes have more homologs in Arabidopsis thaliana than in soybean (Glycine max). There are many elements in the TpNAC genes promoters that respond to stress. Gene expression analysis showed that all the TpNAC genes responded to Pb stress. qRT-PCR showed that the expression levels of TpNAC29 and TpNAC42 were significantly decreased after Pb stress. Protein interaction network analysis showed that 21 TpNACs and 23 other genes participated in the interaction. In addition, the TpNAC proteins had three possible 3D structures, and the secondary structure of these proteins were mainly of other types. These results indicated that most TpNAC members were involved in the regulation of Pb stress in red clover. CONCLUSION: These results suggest that most TpNAC members are involved in the regulation of Pb stress in red clover. TpNAC members play an important role in the response of red clover to Pb stress.


Subject(s)
Genome, Plant , Trifolium , Trifolium/genetics , Transcription Factors/genetics , Lead , Gene Expression Profiling
10.
J Dairy Sci ; 107(6): 3543-3557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38211692

ABSTRACT

The increasing cost of milk production, in association with tighter manure N application regulations and challenges associated with ammonia emissions in many countries, has increased interest in feeding lower crude protein (CP) diets based on legume silages. Most studies have focused on alfalfa silage, and little information is available on low-CP diets based on red clover silage. Our objectives were to examine the effects of dietary CP content and supplementing a low-CP diet with dietary starch or rumen-protected Met (RPMet) on the performance, metabolism, and nitrogen use efficiency (NUE; milk N output/N intake) in dairy cows fed a red clover and grass silage-based diet. A total of 56 Holstein-Friesian dairy cows were blocked and randomly allocated to 1 of 4 diets over a 14-wk feeding period. Diets were based on red clover and grass silages at a ratio of 50:50 on a dry matter (DM) basis and were fed as a total mixed ration, with a 53:47 ratio of forage to concentrate (DM basis). The diets were formulated to supply a similar metabolizable protein (MP) content, and had a CP concentration of either 175 g/kg DM (control [CON]) or 150 g/kg DM (low-protein [LP]), or LP supplemented with either additional barley as a source of starch (LPSt; +64 g/kg DM) or RPMet (LPM; +0.3 g/100 g MP). At the end of the 14-wk feeding period, 20 cows (5 per treatment) continued to be fed the same diets for a further 6 d, and total urine output and fecal samples were collected. We observed that dietary treatment did not affect DM intake, with a mean of 21.5 kg/d; however, we also observed an interaction between diet and week with intake being highest in cows fed LPSt in wk 4 and CON in wk 9 and 14. Mean milk yield, 4% fat-corrected milk, and energy-corrected milk were not altered by treatment. Similarly, we found no effect of dietary treatment on milk fat, protein, or lactose content. In contrast, milk and plasma urea concentrations were highest in cows fed CON. The concentration of blood plasma ß-hydroxybutyrate was highest in cows receiving LPM and lowest in LPSt. Apparent NUE was 28.6% in cows fed CON and was higher in cows fed any of the low-protein diets (LP, LPSt, or LPM), with a mean value of 34.2%. The sum of milk fatty acids with a chain length below C16:0 was also highest in cows fed CON. We observed that dietary treatment did not affect the apparent whole-tract nutrient digestibility of organic matter, N, neutral detergent fiber, and acid detergent fiber, with mean values of 0.785, 0.659, 0.660, and 0.651 kg/kg respectively, but urinary N excretion was approximately 60 g/d lower in cows fed the low-CP diets compared with CON. We conclude that reducing the CP content of red clover and grass silage-based diets from 175 to 150 g/kg DM while maintaining MP supply did not affect performance, but reduced the urinary N excretion and improved NUE, and that supplementing additional starch or RPMet had little further effect.


Subject(s)
Diet , Dietary Proteins , Dietary Supplements , Lactation , Methionine , Milk , Nitrogen , Rumen , Silage , Starch , Animals , Cattle , Female , Nitrogen/metabolism , Methionine/metabolism , Diet/veterinary , Starch/metabolism , Rumen/metabolism , Milk/chemistry , Milk/metabolism , Dietary Proteins/metabolism , Animal Feed , Trifolium/metabolism , Poaceae/metabolism
11.
J Dairy Sci ; 107(3): 1450-1459, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37806636

ABSTRACT

The effects of grass silage and red clover silage on milk fatty acid (FA) composition are extensively studied, but little is known of their effects on minor lipid constituents of milk fat globule membrane. We investigated the effects of forage:concentrate (FC) ratio in grass silage-based diets and forage type (grass silage vs. red clover silage) on selected molecular species of milk phospholipids (PL) and the FA composition of PL. Ten multiparous Nordic Red cows were offered following dietary treatments: grass silage-based diets containing 70:30 (HG) or 30:70 (LG) FC ratio or a red clover silage-based diet (RC) comprising 50:50 FC ratio on a dry matter basis. The most abundant molecular species within the phosphatidylcholines was 16:0-18:1 phosphatidylcholine that was increased by 18% in HG compared with LG milk. Dietary treatments did not affect the relative proportion of 18:1-18:1+18:0-18:2 phosphatidylethanolamine that was the most prevalent species (ca. 44%-45%) in that class. We identified the d18:1-22:0 sphingomyelin as the most abundant sphingomyelin species that tended to increase in HG milk compared with LG. The FC ratio did not affect the relative proportions of saturated FA nor monounsaturated FA in PL, but the proportion of cis-9 18:1 was elevated in HG versus LG milk, whereas the proportion of 18:2n-6 was 50% higher in LG versus HG milk. The RC diet increased monounsaturated FA and 18:3n-3 levels in PL compared with grass silage-based diets and decreased the relative proportion of saturated FA. However, the RC diet did not affect the relative proportion of polyunsaturated FA in PL, although red clover silage typically increases the proportion of polyunsaturated FA in milk fat. This study provides valuable knowledge of the minor lipid components in milk on species level in relation to common feeding strategies in high-forage systems.


Subject(s)
Fatty Acids , Isotopes , Titanium , Trifolium , Female , Animals , Cattle , Phospholipids , Sphingomyelins , Diet/veterinary , Fatty Acids, Monounsaturated , Phosphatidylcholines , Poaceae
12.
Front Vet Sci ; 10: 1279178, 2023.
Article in English | MEDLINE | ID: mdl-37854095

ABSTRACT

Introduction: Trifolium pratense L. has anti-inflammatory, antioxidant, cardiovascular disease prevention, and estrogen-like effects. The existing method for the assay of effective components is commonly based on a spectrophotometer, which could not meet the requirement of quality control. Furthermore, although there have been many studies on the anti-inflammation effect of red clover, a few have been reported on the regulatory effect of red clover isoflavones (RCI) on lipopolysaccharide (LPS)-induced inflammatory response in porcine alveolar macrophages (3D4/2 cells), and its mechanism of action is still unclear. Methods: The main components of RCI including daidzein, genistein, and biochanin A were accurately quantified by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) after optimizing the extraction process through response surface methodology. The anti-inflammatory potential of RCI was carried out by detecting the level of inflammatory cytokines and mRNA expression of related genes. Furthermore, its anti-inflammatory mechanism was explored by investigating two signaling pathways (NF-κB and MAPK). Results: The optimal extraction conditions of RCI were as follows: the concentration of ethanol is 86% and the solid-liquid ratio is 1:29, with the herb particle size of 40 mesh sieve. Under the optimal conditions, the total extraction of target components of RCI was 2,641.469 µg/g. The RCI could significantly suppress the production and expression of many pro-inflammatory cytokines. The results of the Western blot revealed that RCI dramatically reduced the expression of p65, p-p65, IκB-α, p38, and p-p38. These results are associated with the suppression of the signal pathway of p38 MAPK, and on the contrary, activating the NF-κB pathway. Collectively, our data demonstrated that RCI reversed the transcription of inflammatory factors and inhibited the expression of p65, p-p65, IκB-α, and p38, indicating that RCI had excellent anti-inflammatory properties through disturbing the activation of p38 MAPK and NF-κB pathways. Conclusion: The extraction conditions of RCI were optimized by HPLC-DAD combined with response surface methodology, which will contribute to the quality control of RCI. RCI had anti-inflammatory effects on the LPS-induced 3D4/2 cells. Its mechanism is to control the activation of NF-κB and p38 MAPK pathways, thereby reducing the expression of inflammatory-related genes and suppressing the release of cytokines.

13.
Nutrients ; 15(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836449

ABSTRACT

Postmenopausal women are at risk of developing an overactive bladder (OAB). Conventional vaginal estrogen has shown promise for symptom relief. Isoflavones have proven effective as an alternative to estrogen treatment against menopause-related symptoms. However, its effect on OAB symptoms has not been studied. This study investigates if fermented red clover isoflavones reduce OAB symptoms in postmenopausal women. In this randomized, double-blinded, placebo-controlled trial, women were administered red clover extract (RCE) or a placebo twice daily for three months. Women filled out the International Consultation on Incontinence Questionnaire Overactive Bladder (ICIQ-OAB) and Urinary Incontinence Short Form (ICIQ-UI-SF), together with a fluid intake and voiding diary. A total of 33 women (16 in the RCE group and 17 in the placebo group) were included in the analysis. Baseline demographics and OAB characteristics were comparable across groups. Intake of RCE did not lead to significant relief in most urinary bladder symptom measures, although a significant reduction in the bother of urinary urgency (p = 0.033) and a tendency towards a decreased ICIQ-OAB score were observed (p = 0.056). In contrast, the placebo exhibited a significant decrease in the ICIQ-OAB score (p = 0.021) and in some diary outcomes. We found that an intake of isoflavones did not relieve OAB symptoms in postmenopausal women.


Subject(s)
Trifolium , Urinary Bladder, Overactive , Urinary Incontinence , Humans , Female , Urinary Bladder, Overactive/drug therapy , Urinary Bladder, Overactive/diagnosis , Postmenopause , Urinary Bladder , Surveys and Questionnaires , Estrogens/therapeutic use , Treatment Outcome , Quality of Life
14.
Plants (Basel) ; 12(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37631177

ABSTRACT

Due to short post-harvest seasons, it is not always possible to grow worthy cover crops (CCs). This research aims to clarify the impact of undersown red clover (Trifolium pratense L., RC) and post-sown white mustard (Sinapis alba L., WM) management on their biomass, accumulated nitrogen (N), phosphorus (P), and potassium (K) content and the nutrient release to subsequent main crops. During the study period, RC mass yields varied from 220 to 6590 kg ha-1 DM and those of WM from 210 to 5119 kg ha-1 DM. WM shoot biomass increased with the increase in rainfall in August and the average daily temperature of the post-harvest period. CC productivity and efficiency were higher when growing short-season spring barley than winter wheat. In the warm and rainy post-harvest period, undersown WM after winter wheat increased the biomass by 34.1% compared to post-harvest sowing. The application of straw (+N) increased the accumulation of nutrients in WM biomass. The intensive fertilization of the main crop had a negative effect on RC yield and NPK accumulation. RC shoot biomass was characterized by a higher N content and WM by a higher P concentration. Well-developed CCs could reduce soil mineral nitrogen content by 28.5-58.8% compared to a plot without CCs. Nutrient transfer to spring barley was dependent on the N content of CC biomass and the carbon and nitrogen ratio (C:N < 20). We conclude that CC growth and efficiency were enhanced by the investigated measures, and in interaction with meteorological conditions.

15.
Front Plant Sci ; 14: 1195058, 2023.
Article in English | MEDLINE | ID: mdl-37426971

ABSTRACT

Red clover (Trifolium pratense L.), a key perennial pastoral species used globally, can strengthen pastural mixes to withstand increasingly disruptive weather patterns from climate change. Breeding selections can be refined for this purpose by obtaining an in-depth understanding of key functional traits. A replicated randomized complete block glasshouse pot trial was used to observe trait responses critical to plant performance under control (15% VMC), water deficit (5% VMC) and waterlogged conditions (50% VMC) in seven red clover populations and compared against white clover. Twelve morphological and physiological traits were identified as key contributors to the different plant coping mechanisms displayed. Under water deficit, the levels of all aboveground morphological traits decreased, highlighted by a 41% decrease in total dry matter and 50% decreases in both leaf number and leaf thickness compared to the control treatment. An increase in root to shoot ratio indicated a shift to prioritizing root maintenance by sacrificing shoot growth, a trait attributed to plant water deficit tolerance. Under waterlogging, a reduction in photosynthetic activity among red clover populations reduced several morphological traits including a 30% decrease in root dry mass and total dry matter, and a 34% decrease in leaf number. The importance of root morphology for waterlogging was highlighted with low performance of red clover: there was an 83% decrease in root dry mass compared to white clover which was able to maintain root dry mass and therefore plant performance. This study highlights the importance of germplasm evaluation across water stress extremes to identify traits for future breeding programs.

16.
Molecules ; 28(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37446841

ABSTRACT

Red clover is a raw material of interest primarily due to its isoflavone content. However, other groups of compounds may affect the pleiotropic biological effects of this raw material. It is used to alleviate menopausal symptoms, but the fact that there are many varieties of this plant that can be grown makes it necessary to compare the biological activity and phytochemical composition of this plant. Also of interest are the differences between the leaves and flowers of the plant. The aim of this study was to evaluate the properties of the leaves and flowers of six clover varieties-'Tenia', 'Atlantis', 'Milena', 'Magellan', 'Lemmon' and 'Lucrum'-with respect to their ability to inhibit α-glucosidase, lipase, collagenase and antioxidant activity. Therefore, the contents of polyphenols and the four main isoflavones-genistein, daidzein, biochanin and formononetin-were assessed. The study was complemented by testing for permeability through a model membrane system (PAMPA). Principal component analysis (PCA) identified a relationship between activity and the content of active compounds. It was concluded that antioxidant activity, inhibition of glucosidase, collagenase and lipase are not correlated with isoflavone content. A higher content of total polyphenols (TPC) was determined in the flowers of red clover while a higher content of isoflavones was determined in the leaves of almost every variety. The exception is the 'Lemmon' variety, characterized by high isoflavone content and high activity in the tests conducted.


Subject(s)
Isoflavones , Trifolium , Trifolium/chemistry , Antioxidants/pharmacology , Isoflavones/pharmacology , Isoflavones/analysis , Polyphenols/pharmacology , Menopause
17.
J Dairy Sci ; 106(10): 6903-6920, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37230877

ABSTRACT

The objective of this experiment was to investigate the effect of forage type [red clover (51%)-grass silage, i.e., RCG; vs. faba bean (66%)-grass silage, i.e., FBG] and concentrate type (faba bean, FB; vs. rapeseed expeller, RE) on lactational performance, milk composition and nitrogen (N) utilization in lactating dairy cows. Eight lactating multiparous Nordic Red cows were used in a replicated 4 × 4 Latin Square experiment, with 21-d periods, in a 2 × 2 factorial arrangement of treatments. The experimental treatments were as follows: (1) RCG with RE, (2) RCG with FB, (3) FBG with RE, and (4) FBG with FB. Inclusion rates of RE and FB were isonitrogenous. Crude protein contents of the experimental diets were 16.3, 15.9, 18.1, and 17.9% of dry matter, respectively. All diets included oats and barley and were fed ad libitum as total mixed rations with forage-to-concentrate ratio of 55:45. Dry matter intake and milk yield were recorded daily, and spot samples of urine, feces, and blood were collected at the end of each experimental period. Dry matter intake did not differ across diets, averaging 26.7 kg/d. Milk yield averaged 35.6 kg/d and was 1.1 kg/d greater for RCG versus FBG, and milk urea N concentration was lower for RCG compared with FBG. Milk yield was 2.2 kg/d and milk protein yield 66 g/d lower for FB versus RE. Nitrogen intake, urinary N, and urinary urea N excretions were lower, and milk N excretion tended to be lower for RCG compared with FBG. The proportion of the dietary N excreted as fecal N was larger in cows fed RCG than for those fed FBG, and the opposite was true for urinary N. We detected an interaction for milk N as percentage of N intake: it increased with RE compared with FB for RCG-based diet, but only a marginal increase was observed for FBG-based diet. Plasma concentration of His and Lys were lower for RCG than for FBG, whereas His tended to be greater and Lys lower for FB compared with RE. Further, plasma Met concentration was around 26% lower for FB than for RE. Of milk fatty acids, saturated fatty acids were decreased by RCG and increased by FB compared with FBG and RE, respectively, whereas monounsaturated fatty acids were increased by RCG versus FBG, and were lower for FB than for RE. In particular, 18:1n-9 concentration was lower for FB compared with RE. Polyunsaturated fatty acids, such as 18:2n-6 and 18:3n-3, were greater for RCG than for FBG, and 18:2n-6 was greater and 18:3n-3 was lower for FB versus RE. In addition, cis-9,trans-11 conjugated linoleic acid was lower for FB compared with RE. Faba bean whole-crop silage and faba bean meal have potential to be used as a part of dairy cow rations, but further research is needed to improve their N efficiency. Red clover-grass silage from a mixed sward, without inorganic N fertilizer input, combined with RE, resulted in the greatest N efficiency in the conditions of this experiment.


Subject(s)
Brassica napus , Brassica rapa , Fabaceae , Trifolium , Vicia faba , Female , Cattle , Animals , Silage/analysis , Vicia faba/metabolism , Brassica napus/metabolism , Lactation , Fabaceae/metabolism , Amino Acids/metabolism , Digestion , Diet/veterinary , Vegetables/metabolism , Fatty Acids/metabolism , Avena/metabolism , Trifolium/metabolism , Amines/metabolism , Nitrogen/metabolism , Urea/metabolism
18.
J Dairy Sci ; 106(6): 4072-4091, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37028960

ABSTRACT

This experiment investigated the variation in enteric methane production and associated gas exchange parameters, nutrient digestibility, rumen fermentation, and rumen microbiome when a range of silages based on different forage types (grass or clover), and different species within the 2 types, were fed as the sole feed to heifers. Three grass species (perennial ryegrass, festulolium, and tall fescue) and 2 clover species (red clover and white clover) were included. Perennial ryegrass was harvested at 2 maturity stages in the primary growth, white clover was harvested once in the primary growth, and 4 cuts of festulolium and tall fescue and 3 cuts of red clover were harvested during the growing season, giving 14 different silage batches in total. Sixteen Holstein heifers 16 to 21 mo old and 2 to 5 mo in pregnancy were fed the silages ad libitum as the sole feed in an incomplete crossover design. Each silage was fed to 4 heifers, except for the 2 perennial ryegrass silages, which were fed to 8 heifers; in total 64 observations. The CH4 production was measured for 3 d in respiration chambers. Heifers fed clover silages had higher dry matter intake (DMI) compared with heifers fed grass silages, and heifers fed tall fescue silages had the numerically the lowest DMI. Compared with grass silages, feeding clover silages led to higher crude protein digestibility but lower neutral detergent fiber (NDF) digestibility. Rumen pH was higher in heifers fed clover silages compared with those fed grass silages. Based on composition analysis, the rumen microbiota of the heifers clustered clearly according to forage type and species. More specifically, 7 of the 34 dominating rumen bacterial genus-level groups showed higher relative abundances for the clover silages, whereas 7 genus-level groups showed higher abundances for the grass silages. Methane yield was higher for heifers fed grass silages than for those fed clover silages when methane production was related to dry matter and digestible organic matter intake, whereas the opposite was seen when related to NDF digestion. The gross energy lost as methane (CH4 conversion factor, %) reduced from 7.5% to 6.7%, equivalent to an 11% reduction. The present study gives the outlines for choosing the optimal forage type and forage species with respect to nutrient digestibility and enteric methane emission in ruminants.


Subject(s)
Festuca , Lolium , Trifolium , Pregnancy , Cattle , Animals , Female , Poaceae/metabolism , Silage/analysis , Rumen/metabolism , Medicago , Trifolium/metabolism , Diet/veterinary , Nutrients/analysis , Digestion , Methane/metabolism , Lactation
19.
Front Plant Sci ; 14: 1112002, 2023.
Article in English | MEDLINE | ID: mdl-37056492

ABSTRACT

Amending soil with biochar can reduce the toxic effects of heavy metals (HM) on plants and the soil. However, the effects of different concentrations of biochar on the properties and microbial activities in lead (Pb)-contaminated soils are unclear. In this study, two Pb concentrations were set (low, 1000 mg/kg; high, 5000 mg/kg), and five corn straw biochar (CSB) concentrations (0, 2.5, 5, 10 and 15%) were used to determine the response of the growth and rhizosphere of red clover (Trifolium pretense L.) (in terms of soil properties and bacteria) to CSB and Pb application. The results showed that 5% CSB better alleviated the toxicity of Pb on the shoot length of red clover, the biomass increased by 74.55 and 197.76% respectively and reduced the enrichment factor (BCF) and transport factor (TF) of red clover. Pb toxicity reduced soil nutrients, catalase (CAT), acid phosphatase (ACP) and urease activity, while the addition of CSB increased soil pH, soil organic matter (SOM) content and soil enzyme activity. 16S rDNA amplicon sequencing analysis showed that Pb toxicity reduced the diversity of rhizosphere bacteria in red clover and reduced the relative abundance of plant growth-promoting rhizobacteria such as Gemmatimonas, Devosia and Bryobacter. Spearman correlation analysis showed that the addition of alkaline CSB restored the relative abundance of rhizobacteria positively correlated with pH, such as Chitinophaga, Sphingomonas, Devosia and Pseudomonas, and thus restored the rhizosphere soil environment. This study demonstrates that 5% CSB can better alleviate the toxicity of Pb to red clover and soil. We also provide a theoretical basis for the subsequent use of beneficial bacteria to regulate the repair efficiency of red clover.

20.
Food Chem ; 420: 136084, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37060670

ABSTRACT

Red clover (RC) extract is rich in isoflavones (formononetin and biochanin A) that have various biological functions. However, its low water solubility limits its bioavailability. In this study, an RC extract/ß-cyclodextrin (RC/ß-CD) dispersion was prepared by ball milling to enhance its water solubility and biological availability. The water solubility of formononetin and biochanin A was 34.45 and 13.65 µg/mL (increased to 3.11 and 2.14 times higher than that of RC alone), respectively. The alleviating effects of the dispersion on lipid accumulation and gut microbiota were evaluated in mice. The RC/ß-CD dispersion showed a better effect on inhibiting lipid accumulation, especially on total triglycerides. The dispersion group had a higher relative abundance of Akkermansia, Muribaculaceae, and Bacteroides than RC alone, along with a higher level of acetic and butyric acid. The study provides a feasible way for improving the bioaccessibility and bioactivity of RC isoflavones in red clover.


Subject(s)
Gastrointestinal Microbiome , Isoflavones , Trifolium , Dysbiosis , Isoflavones/pharmacology , Animals , Mice , Diet, High-Fat/adverse effects , Triglycerides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...