Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 57(42): 16131-16140, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37812398

ABSTRACT

Improving the wettability of carbon-based catalysts and overcoming the rate-limiting step of the Mn+1/Mn+ cycle are effective strategies for activating peroxymonosulfate (PMS). In this study, the coupling of Co-NC, layered double hydroxide (LDH), and CoSx heterostructure (CoSx@LDH@Co-NC) was constructed to completely degrade ofloxacin (OFX) within 10 min via PMS activation. The reaction rate of 1.07 min-1 is about 1-2 orders of magnitude higher than other catalysts. The interfacial effect of confined Co-NC and layered double hydroxide (LDH) not only enhanced the wettability of catalysts but also increased the vacancy concentration; it facilitated easier contact with the interface reactive oxygen species (ROS). Simultaneously, reduced sulfur species (CoSx) accelerated the Co3+/Co2+ cycle, acquiring long-term catalytic activity. The catalytic mechanism revealed that the synergistic effect of hydroxyl groups and reduced sulfur species promoted the formation of 1O2, with a longer lifespan and a longer migration distance, and resisted the influence of nontarget background substances. Moreover, considering the convenience of practical application, the CoSx@LDH@Co-NC-based catalytic membrane was prepared, which had zero discharge of OFX and no decay in continuous operation for 5.0 h. The activity of the catalytic membrane was also verified in actual wastewater. Consequently, this work not only provides a novel strategy for designing excellent catalysts but also is applicable to practical organic wastewater treatment.


Subject(s)
Carbon , Ofloxacin , Peroxides , Sulfur , Hydroxides , Anti-Bacterial Agents
2.
J Hazard Mater ; 428: 128244, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35032952

ABSTRACT

The threat caused by the misuse of antibiotics to ecology and human health has been aroused an extensive attention. Developing cost-effective techniques for removing antibiotics needs to put on the agenda. In current research, the degradation mechanism of sulfamethoxazole (SMX) by sulfidated nanoscale zerovalent iron (S-nZVI) driven persulfate, together with the potential risk of intermediates were studied. The degradation of SMX followed a pseudo-first order kinetics reaction with kobs at 0.1176 min-1. Both SO4•- and •OH were responsible for the degradation of SMX, and SO4•- was the predominant free radical. XPS analysis demonstrated that reduced sulfide species promoted the conversion of Fe (III) to Fe (II), resulting in the higher transformation rate of SMX. Six intermediates products were generated through hydroxylation, dehydration condensation, nucleophilic reaction, and hydrolysis. The risk of intermediates products is subsequently assessed using E. coli as a model microorganism. After E.coli exposure to intermediates for 24 h, the upmetabolism of carbohydrate, nucleotide, citrate acid cycle and downmetabolism of glutathione, sphingolipid, galactose by metabolomics analysis identified that SMX was effectively detoxified by oxidation treatment. These findings not only clarified the superiority of S-nZVI/persulfate, but also generated a novel insight into the security of advanced oxidation processes.


Subject(s)
Sulfamethoxazole , Water Pollutants, Chemical , Escherichia coli , Humans , Iron , Metabolomics , Oxidation-Reduction , Risk Assessment , Sulfamethoxazole/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
Environ Sci Pollut Res Int ; 27(11): 12491-12498, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31997249

ABSTRACT

In this study, we estimated extracellular concentrations of algal-derived sulfur species in response to changing photoperiods. Cultures from three algal species (Chlorella vulgaris, Chlamydomonas reinhardtii, Scenedesmus obliquus) were subjected to five different light:dark cycles (12:12, 14:10, 16:8, 18:6, 20:4 h) for a period of 3 days. Sulfur compounds including total reactive thiol concentrations, electroactive reduced sulfur species (RSS), and thiol isomers were measured using qBBr fluorescence, differential pulse cathodic stripping voltammetry (DP-CSV), and high-resolution mass spectrometry (HRMS), respectively. Total reactive thiol concentrations were greater in Scenedesmus than in Chlamydomonas and Chlorella at low light regimes (i.e., 12:12 h) whereas Chlamydomonas produced more RSS than the other two species (p < 0.05) at any light regime. Scenedesmus was the only responsive species to produce maximal electroactive RSS, and HRMS equivalent thiol compounds under low light regime, congruent with previous studies. Principal component analysis revealed relationships between qBBr-equivalent thiol and GSH-equivalent RSS concentrations for Scenedesmus and Chlamydomonas (p < 0.05) suggesting that thiols were the dominant species in the pool of electroactive RSS for these two algal species. Overall, these results showed that the light growth conditions greatly influenced the production of S-rich compounds by algae, affecting the complexation of metals such as mercury and cadmium, especially during planktonic blooms.


Subject(s)
Chlamydomonas reinhardtii , Chlorella vulgaris , Scenedesmus , Photoperiod , Sulfur
4.
Chemosphere ; 233: 252-260, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31176126

ABSTRACT

Although 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) was banned in the United States in 1972, it is still often detected in sediments where pyrogenic carbonaceous matter (PCM) and sulfate-reducing bacteria (SRB) co-exist. In this study, we found that 70.2 ±â€¯0.2% of DDT disappeared in the presence of SRB and graphite powder, a model PCM, after 21 days at pH 7. Our results suggest that the observed DDT decay was due to the reaction between graphite powder and the reduced sulfur species that were produced by SRB. No biofilm formation was observed on the surface of graphite powder. Rather, the activity of SRB was inhibited by the presence of graphite powder. To understand the involvement of PCM in DDT decay, electrochemical cells and batch reactor experiments with sulfur-pretreated PCM as well as direct electrochemical reduction by a potentiostat were employed. Our results suggest that polysulfide, sulfide, sulfite, and thiosulfate could all react with PCM, forming surface-bound intermediates that subsequently led to DDT decay. The reactivity of reduced sulfur species was the highest for polysulfide, followed by sulfide, sulfite, and thiosulfate.


Subject(s)
DDT/chemistry , DDT/metabolism , Desulfovibrio/metabolism , Biodegradation, Environmental , Environmental Pollutants/chemistry , Environmental Pollutants/metabolism , Graphite , Sulfides/chemistry , Sulfides/metabolism , Sulfites/chemistry , Sulfites/metabolism , Thiosulfates/chemistry , Thiosulfates/metabolism
5.
Chemosphere ; 176: 288-295, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28273536

ABSTRACT

Although the kinetics and transformation of methyl parathion have been investigated extensively, its abiotic degradation mechanism in anoxic sulfur-containing groundwater system is still not clear. In this work, the abiotic degradation of methyl parathion in anoxic sulfur-containing system mediated by natural organic matter (NOM) was investigated in batch experiments. It was found that the removal of methyl parathion (up to 80.7%) was greatly improved in sulfide containing NOM compared to those in sulfide alone (with 15.5%) and in NOM alone (almost negligible). Various sulfur species presented significant differences in behaviors methyl parathion degradation, but followed by the pseudo-first-order model well. No facilitated degradation of methyl parathion was observed in sulfite (SO32-) or thiosulfate (S2O32-) containing NOM such as anthraquinone. Although elemental sulfur (S0) and cysteine could further improve the degradation rate of methyl parahtion, their impacts was very limited. The removal efficiency of methyl parathion in anoxic sulfur-containing system were related remarkably with NOM concentration and solution pH. Based on the transformation products identified by gas chromatography-mass spectrometer (GC/MS) and liquid chromatography high resolution mass spectrometer (LC/HRMS), both the nitro group reduction and hydrolysis (SN@C) processes by sulfide (HS-) were further proved to be two predominant reaction mechanisms for the abiotic degradation of methyl parathion in anoxic sulfur-containing system. The results of this study help to understand the natural attenuation of methyl parathion under anoxic sulfide-containing groundwater system mediated by NOM.


Subject(s)
Humic Substances/analysis , Methyl Parathion/analysis , Sulfur Compounds/chemistry , Water Pollutants, Chemical/analysis , Gas Chromatography-Mass Spectrometry , Hydrolysis , Kinetics , Models, Theoretical , Solutions , Sulfides/chemistry , Sulfites/chemistry , Thiosulfates/chemistry
6.
Chemosphere ; 93(9): 2033-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23948611

ABSTRACT

Tris(haloalkyl)phosphates (THAPs) are among the most widely used flame retardants in the U.S. They have been identified as one of the most frequently detected contaminants in U.S. streams. These contaminants are of toxicological concern in sensitive coastal ecosystems such as estuaries and salt marshes. It is likely that reactions with reduced sulfur species such as polysulfides (Sn(2-)) and bisulfide (HS(-)), present in anoxic subregions of coastal water bodies could have a significant impact on rates of removal of such contaminants, especially since no significant degradation reactions in the environment (e.g., hydrolysis, biological degradation) is reported for these compounds. The kinetics of the reaction of reduced sulfur species with three structurally related THAPs have been determined in well-defined aqueous solutions under anoxic conditions. Reactions were monitored at varying concentrations of reduced sulfur species to obtain second-order rate constants from the observed pseudo-first order rate constants. The degradation products were studied with GC-FID and LC-MS. The reactivity of Sn(2-), thiophenolate, and HS(-) were compared and steric, as well as electronic factors are used to explain the relative reactivity of the three THAPs with these three sulfur species.


Subject(s)
Flame Retardants/analysis , Organophosphorus Compounds/chemistry , Sulfur/chemistry , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental , Organophosphorus Compounds/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL