Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Ecology ; 104(9): e4140, 2023 09.
Article in English | MEDLINE | ID: mdl-37461360

ABSTRACT

Tropical forests are well known for their high woody plant diversity. Processes occurring at early life stages are thought to play a critical role in maintaining this high diversity and shaping the composition of tropical tree communities. To evaluate hypothesized mechanisms promoting tropical tree species coexistence and influencing composition, we initiated a census of woody seedlings and small saplings in the permanent 50 ha Forest Dynamics Plot (FDP) on Barro Colorado Island (BCI), Panama. Situated in old-growth, lowland tropical moist forest, the BCI FDP was originally established in 1980 to monitor trees and shrubs ≥1 cm diameter at 1.3 m above ground (dbh) at ca. 5-year intervals. However, critical data on the dynamics occurring at earlier life stages were initially lacking. Therefore, in 2001 we established a 1-m2 seedling plot in the center of every 5 × 5 m section of the BCI FDP. All freestanding woody individuals ≥20 cm tall and <1 cm dbh (hereafter referred to as seedlings) were tagged, mapped, measured, and identified to species in 19,313 1-m2 seedling plots. Because seedling dynamics are rapid, we censused these seedling plots every 1-2 years. Here, we present data from the 14 censuses of these seedling plots conducted between the initial census in 2001 to the most recent census, in 2018. This data set includes nearly 1 M observations of ~185,000 individuals of >400 tree, shrub, and liana species. These data will permit spatially-explicit analyses of seedling distributions, recruitment, growth, and survival for hundreds of woody plant species. In addition, the data presented here can be linked to openly-available, long-term data on the dynamics of trees and shrubs ≥1 cm dbh in the BCI FDP, as well as existing data sets from the site on climate, canopy structure, phylogenetic relatedness, functional traits, soil nutrients, and topography. This data set can be freely used for non-commercial purposes; we request that users of these data cite this data paper in all publications resulting from the use of this data set.


Subject(s)
Censuses , Seedlings , Humans , Colorado , Phylogeny , Tropical Climate , Forests , Plants , Panama
2.
Front Plant Sci ; 14: 1200520, 2023.
Article in English | MEDLINE | ID: mdl-37389292

ABSTRACT

Habitat fragmentation and climate change are the two main threats to global biodiversity. Understanding their combined impact on plant community regeneration is vital for predicting future forest structure and conserving biodiversity. This study monitored the seed production, seedling recruitment and mortality of woody plants in the Thousand Island Lake, a highly fragmented anthropogenic archipelago, for 5 years. We analyzed the seed-seedling transition, seedling recruitment and mortality of different functional groups in the fragmented forests and conducted correlation analyses involving climatic factors, island area, and plant community abundance. Our results showed that: 1) shade-tolerant and evergreen species had higher seed-seedling transition, seedling recruitment and survival rate than shade-intolerant and deciduous species in time and space, and these advantages increased with the island area. 2) Seedlings in different functional groups responded differently to island area, temperature and precipitation. 3) Increasing active accumulated temperature (the sum of the mean daily temperature above 0 °C) significantly increased seedling recruitment and survival, and warming climate favored the regeneration of evergreen species. 4) The seedling mortality rate of all plant functional groups increased with the increase of island area, but the increasing strength weakened significantly with the increase of the annual maximum temperature. These results suggested that the dynamics of woody plant seedlings varied among functional groups, and can be regulated separately and jointly by fragmentation and climate.

3.
Ecol Appl ; 33(5): e2888, 2023 07.
Article in English | MEDLINE | ID: mdl-37212209

ABSTRACT

Wildfires may facilitate climate tracking of forest species moving upslope or north in latitude. For subalpine tree species, for which higher elevation habitat is limited, accelerated replacement by lower elevation montane tree species following fire may hasten extinction risk. We used a dataset of postfire tree regeneration spanning a broad geographic range to ask whether the fire facilitated upslope movement of montane tree species at the montane-to-subalpine ecotone. We sampled tree seedling occurrence in 248 plots across a fire severity gradient (unburned to >90% basal area mortality) and spanning ~500 km of latitude in Mediterranean-type subalpine forest in California, USA. We used logistic regression to quantify differences in postfire regeneration between resident subalpine species and the seedling-only range (interpreted as climate-induced range extension) of montane species. We tested our assumption of increasing climatic suitability for montane species in subalpine forest using the predicted difference in habitat suitability at study plots between 1990 and 2030. We found that postfire regeneration of resident subalpine species was uncorrelated or weakly positively correlated with fire severity. Regeneration of montane species, however, was roughly four times greater in unburned relative to burned subalpine forest. Although our overall results contrast with theoretical predictions of disturbance-facilitated range shifts, we found opposing postfire regeneration responses for montane species with distinct regeneration niches. Recruitment of shade-tolerant red fir declined with fire severity and recruitment of shade-intolerant Jeffrey pine increased with fire severity. Predicted climatic suitability increased by 5% for red fir and 34% for Jeffrey pine. Differing postfire responses in newly climatically available habitats indicate that wildfire disturbance may only facilitate range extensions for species whose preferred regeneration conditions align with increased light and/or other postfire landscape characteristics.


Subject(s)
Pinus , Wildfires , Ecosystem , Fires , Forests , Seedlings , Trees
4.
Oecologia ; 201(1): 19-29, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36471066

ABSTRACT

When investigating relationships between species' niches and distributions, niches can be divided demographically, resulting in unique niches for different life stages. This approach can identify changing substrate requirements throughout a species' life cycle. Using non-metric multidimensional scaling, we quantified microsite conditions associated with successful recruitment in the tundra landscape and successful seed production amongst adult trees of black spruce (Picea mariana) at subarctic treeline in Yukon, Canada to assess how life stage-specific requirements may impact the distribution of this widespread boreal tree species. Treeline ecotones in this region showed high heterogeneity in tundra microsites available for establishment. Black spruce exhibited changing microsite associations from germination to reproductive maturity, which were mainly driven by changes in plant community and soil moisture. These associations limit the microsites where individuals can establish and reproduce to a subset available within the heterogeneous landscape. Overall, we suggest that (1) substrates suitable for early recruitment are limited at the range edge; and (2) reproductive adults have a narrow niche, limiting successful seed production in adults and forming sink populations where suitable conditions are limited. Our multivariate assessment of microsite suitability can provide valuable insights into the spatial distribution of a species throughout its life cycle and identify life stage-specific constraints to range expansion.


Subject(s)
Picea , Humans , Seedlings , Germination , Trees , Demography
5.
Front Plant Sci ; 13: 827330, 2022.
Article in English | MEDLINE | ID: mdl-35646004

ABSTRACT

The reasons why some species occur widespread, while related species have restricted geographical ranges have been attributed to habitat specialization or ecological niche breadth. For species in the genus Saxifraga, habitat specialization alone cannot explain the distributional differences observed. We hypothesize that recruitment traits (i.e., germination, emergence, and survival) may account for differences in geographical ranges and that early life stages correlate to survival. We studied recruitment responses in 13 widespread and 12 narrow-ranged Saxifraga species in the laboratory and common garden experiments using seeds collected from 79 populations in the European Alps. We found that in the laboratory cold temperature led to higher germination percentages compared with warm temperature for both distribution groups. This represents an exception to the general assumption that alpine species require warm cues for germination. In warm laboratory temperatures, widespread species germinated better than narrow-ranged species, indicating a greater tolerance of warm temperatures for the former. Subsequent to germination, recruitment traits between the two distribution groups were lower or null in the common garden, suggesting that the impact of recruitment on species' geographical ranges occurs at the earliest life stage. Mean time to emergence of narrow-ranged species showed lower variability than that of widespread species. Consistently, intraspecific variation of mean annual temperatures between seed collection sites was lower for narrow-ranged species, indicating a close relationship between home sites and emergence time. Emergence percentage was a strong predictor of survival only for widespread species, underlining that seed and seedling functional traits differ between distribution groups, which require further research. Our results support the view that early life stages are critical to population dynamics and thus can influence species' geographical ranges. The wider responses to climatic conditions in widespread species may have facilitated their spread across the Alps. Our results also suggest that all Saxifraga species face a considerable threat from climate warming due to their overall cold-adapted recruitment niche.

6.
Cell Rep ; 39(5): 110750, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35508129

ABSTRACT

Bone stromal cells are critical for bone homeostasis and regeneration. Growing evidence suggests that non-stem bone niche cells support bone homeostasis and regeneration via paracrine mechanisms, which remain to be elucidated. Here, we show that physiologically quiescent SM22α-lineage stromal cells expand after bone injury to regulate diverse processes of intramembranous bone regeneration. The majority of SM22α-lineage cells neither act as stem cells in vivo nor show their expression patterns. Dysfunction of SM22α-lineage niche cells induced by loss of platelet-derived growth factor receptor ß (PDGFRß) impairs bone repair. We further show that PDGFRß-triggered hydrogen sulfide (H2S) generation in SM22α-lineage niche cells facilitates osteogenesis and angiogenesis and suppresses overactive osteoclastogenesis. Collectively, these data demonstrate that non-stem SM22α-lineage niche cells support the niche for bone regeneration with a PDGFRß/H2S-dependent regulatory mechanism. Our findings provide further insight into non-stem bone stromal niche cell populations and niche-regulation strategy for bone repair.


Subject(s)
Hydrogen Sulfide , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Bone Regeneration , Hydrogen , Hydrogen Sulfide/pharmacology , Osteogenesis , Receptor, Platelet-Derived Growth Factor beta/metabolism
7.
Ann Bot ; 129(7): 761-774, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35020780

ABSTRACT

BACKGROUND AND AIMS: European ancient woodlands are subject to land use change, and the distribution of herbaceous understorey species may be threatened because of their poor ability to colonize isolated forest patches. The regeneration niche can determine the species assembly of a community, and seed germination traits may be important descriptors of this niche. METHODS: We analysed ecological records for 208 herbaceous species regarded as indicators of ancient woodlands in Europe and, where possible, collated data on seed germination traits, reviewed plant regeneration strategies and measured seed internal morphology traits. The relationship between plant regeneration strategies and ecological requirements was explored for 57 species using ordination and classification analysis. KEY RESULTS: Three regeneration strategies were identified. Species growing in closed-canopy areas tend to have morphological seed dormancy, often requiring darkness and low temperatures for germination, and their shoots emerge in early spring, thus avoiding the competition for light from canopy species. These species are separated into two groups: autumn and late winter germinators. The third strategy is defined by open-forest plants with a preference for gaps, forest edges and riparian forests. They tend to have physiological seed dormancy and germinate in light and at higher temperatures, so their seedlings emerge in spring or summer. CONCLUSION: Seed germination traits are fundamental to which species are good or poor colonizers of the temperate forest understorey and could provide a finer explanation than adult plant traits of species distribution patterns. Seed dormancy type, temperature stratification and light requirements for seed germination are important drivers of forest floor colonization patterns and should be taken in account when planning successful ecological recovery of temperate woodland understories.


Subject(s)
Germination , Plant Dormancy , Europe , Forests , Germination/physiology , Plant Dormancy/physiology , Plants , Seeds/physiology , Temperature
8.
Plant Biol (Stuttg) ; 24(2): 286-291, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34850527

ABSTRACT

Surviving the seedling phase is crucial for the establishment of plant individuals and populations. In ecosystems with dynamic water availability such as temperate grasslands, seedlings should adjust their growth strategy not only to match the current conditions but also to secure resource acquisition in the future. Here, we explored evolutionary adaptations determining plant early growth strategies in herbaceous species of temperate grasslands differing in their requirements for soil water availability. We chose 15 plant genera, within which we selected species differing in their Ellenberg indicator values for moisture. We cultivated the seedlings under standard conditions with sufficient water supply for 4 weeks. Subsequently, we measured length-based and mass-based shoot:root ratio to investigate seedling growth strategy and its association with species ecological niche. Seed size and content of soil-borne nutrients were considered as potential covariates affecting this association. Linear mixed-effect models identified the length-based shoot:root ratio of seedlings was positively associated with soil moisture requirements in a congeneric species comparison. Nitrogen and phosphorus seed concentrations had an additional negative effect on the shoot:root ratio. Neither of these trends was found for the mass-based shoot:root ratio. We demonstrated for the first time that there might be a general adaptation modifying the seedling shoot:root ratio according to the species niche position on the soil moisture gradient in temperate grassland species across a broad range of angiosperm phylogeny. This adaptation seems to be affected by seed mineral nutrient reserves and may operate in parallel to the well-known phenotypic plasticity.


Subject(s)
Seedlings , Soil , Ecosystem , Nitrogen/analysis , Phosphorus , Plant Roots/chemistry , Seedlings/chemistry
9.
Ecology ; 103(4): e3624, 2022 04.
Article in English | MEDLINE | ID: mdl-34967952

ABSTRACT

Ecologists have recently accepted the notion that species coexistence involves both niche and neutral processes, but few studies have explained how both of these opposite views can explain coexistence in the same community. Here we focus on competition among sessile organisms and explored first the extent to which species-based niche reflects local "matchups" between nearby individuals, using 726 saplings of 10 temperate tree species, and second the members engaging in the matchups, which have rarely been quantified despite the importance in mixed-species forests. Growth responses to light showed considerable species-level differences, suggesting commonly seen regeneration niches. Outcomes of the individual matchups were basically predictable from the species mean response, but also with substantial contribution of within-species variation. We found strong imbalance in matchup frequencies, such that some individuals meet more individuals of differing species but others meet fewer, as well as many isolated, competition-free ones. The niche and neutral processes appear to reflect, respectively, between- and within-species differences, and our findings suggest that even when niche segregation is discernible, the role of stochasticity for the frequency of local competition, as well as its outcomes, cannot be discounted in species coexistence.


Subject(s)
Ecosystem , Forests , Humans , Trees/physiology
10.
J Environ Manage ; 276: 111291, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33010737

ABSTRACT

One of the major threats to tropical savannas globally is the invasion by alien grasses. In systems frequently disturbed, individuals can be recruited from the seed bank, and areas under natural regeneration can be more easily invaded when exotic newcomers are in the system, including the presence of invasive propagules in the soil seed bank. This study analyzed the dynamics of the soil seed bank in invaded and non-invaded areas of open savannas elucidating the potential of grass regeneration from the seed bank. Soil samples were collected in areas with different invasive grasses: Urochloa brizantha (Hochst. ex A. Rich.) R.D.Webster - synonym Brachiaria brizantha (Hochst. ex A. Rich.) Stapf, Melinis minutiflora Beauv. and areas with native vegetation. Soil seed bank was assessed using two techniques: seed counting and seedling emergence. Dominant species in each area influenced the seed bank composition, showing the highest densities from April to September. In invaded areas, the seed bank was composed mainly of invasive grasses that contributed to 98% (670 ±â€¯382 seeds.m-2) of total seeds. In non-invaded areas, the soil seed bank presented the highest density (65%, 135 ±â€¯38 seeds.m-2) of native species. However, the presence of invasive grasses was significant, with 35% of the total seeds belonging to U. brizantha. Although non-invaded areas have a higher potential for regeneration by native grasses, the presence of invasive grasses in the seed bank is an indication that the invasive species is already in the system and changes in the aboveground cover could accelerate the invasion process. Early management efforts towards establishing and/or established invasive species before seed dispersal could help reduce the soil seed bank load and should be carried out to control and avoid the establishment of African grasses, since they can dominate the seed bank in non-invaded areas if they are present in neighboring areas, affecting the dynamics of plant communities.


Subject(s)
Seed Bank , Soil , Ecosystem , Grassland , Humans , Poaceae , Seeds
11.
Ann Bot ; 125(1): 67-78, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31420645

ABSTRACT

BACKGROUND AND AIMS: Hydroperiod drives plant community composition in wetlands, resulting in distinct zonation patterns. Here, we explored the role of seed germination traits in shaping wetland community assembly along a hydroperiod gradient. Specifically, we tested the hypothesis that seeds of reed, mudflat, swamp, shallow- and deep-water communities only germinate under a specific set of environmental factors characterized by the community-specific optimal conditions for seedling survival and growth. METHODS: In a three-factorial experiment, we tested the seed germination response of 50 species typical for temperate wetlands of Europe to temperature fluctuations (constant vs. fluctuating temperature), illumination (light vs. darkness) and oxygen availability (aerobic vs. hypoxia). Phylogenetic principal component analysis, cluster analysis and phylogenetic linear regressions were used to confirm the community-specific seed germination niches. KEY RESULTS: Our study revealed the presence of five distinct, community-specific seed germination niches that reflect adaptations made by the study communities to decreasing light intensity, temperature fluctuations and oxygen availability along the hydroperiod gradient. Light as a germination trigger was found to be important in mudflats, swamps and shallow water, whereas the seeds of reed and deep-water species were able to germinate in darkness. A fluctuating temperature is only required for seed germination in mudflat species. Germination of species in the communities at the higher end of the hydroperiod gradient (reed and mudflat) demonstrated a strict requirement for oxygen, whereas swamp, shallow- and deep-water species also germinated under hypoxia. CONCLUSIONS: Our study supports the recent argument that the inclusion of seed germination traits in community ecology adds significant insights to community response to the abiotic and biotic environment. Furthermore, the close relationship between seed germination adaptations and community assembly could help reach a better understanding of the existing patterns of wetland plant distribution at local scales and wetland vegetation dynamics, as well as facilitate nature conservation measures and aquatic habitat restoration.


Subject(s)
Germination , Seeds , Europe , Phylogeny , Seedlings , Temperature
12.
Plant Biol (Stuttg) ; 22(2): 184-190, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31652363

ABSTRACT

By the year 2100, temperatures are predicted to increase by about 6 °C at higher latitudes and about 3 °C in the tropics. In spite of the smaller increase in the tropics, consequences may be more severe because the climatic niches of tropical species are generally assumed to be rather narrow due to a high degree of climate stability and higher niche specialisation. However, rigorous data to back up this notion are rare. We chose the megadiverse genus Anthurium (Araceae) for study. Considering that the regeneration niche of a species is crucial for overall niche breadth, we focused on the response of germination and early growth through a temperature range of 24 °C of 15 Anthurium species, and compared the thermal niche breadth (TNB) with the temperature conditions in their current range, modelled from occurrence records. Surprisingly, an increase of 3 °C would lead to a larger overlap of TNB of germination and modelled in situ temperature conditions, while the overlap of TNB of growth with in situ conditions under current and future conditions is statistically indistinguishable. We conclude that future temperatures tend to be closer to the thermal optima of most species. Whether this really leads to an increase in performance depends on other abiotic and biotic factors, most prominently potentially changing precipitation patterns.


Subject(s)
Araceae , Germination , Temperature , Araceae/growth & development , Araceae/physiology , Ecosystem
13.
Conserv Physiol ; 7(1): coz076, 2019.
Article in English | MEDLINE | ID: mdl-31687148

ABSTRACT

Changes in species ranges are anticipated with climate change, where in alpine settings, fragmentation and contraction are likely. This is especially true in high altitude biodiversity hotspots, where warmer growing seasons and increased drought events may negatively impact populations by limiting regeneration. Here, we test for high-altitude species responses to the interactive effects of warming and drought in Heterotheca brandegeei, a perennial cushion plant endemic to alpine outcroppings in Sierra de San Pedro Mártir National Park, Baja California, México. We exposed H. brandegeei seedlings to experimental warming and drought conditions to document early life history responses and the species ability to tolerate climate change. Drought negatively influenced seedling growth, with overall reductions in above- and belowground biomass. Warming and drought each led to substantial reductions in leaf development. At the same time, individuals maintained high specific leaf area and carbon investment in leaves across treatments, suggesting that existing phenotypic variation within populations may be high enough to withstand climate change. However, warming and drought interacted to negatively influence leaf-level water-use efficiency (WUE). Seedling mortality rates were nearly three times higher in warming and drought treatments, suggesting bleak prospects for H. brandegeei populations in future climate conditions. Overall, our results suggest H. brandegeei populations may experience substantial declines under future warmer and drier conditions. Some individuals may be able to establish, albeit, as smaller, more stressed plants. These results further suggest that warming alone may not be as consequential to populations as drought will be in this already water-limited system.

14.
PeerJ ; 7: e6855, 2019.
Article in English | MEDLINE | ID: mdl-31119078

ABSTRACT

The species-rich arborescent assemblages of humid tropical forests encompass much of the known range of the leaf economics spectrum, often including >20-fold variation in leaf lifespan. This suite of traits underpins a life-history continuum from fast-growing pioneers to slow-growing shade-tolerant species. Less is known about the range of leaf traits in humid temperate forests, and there are conflicting reports about relationships of these traits with the light requirements of temperate evergreen angiosperms. Here I quantify the range of leaf functional traits in a New Zealand temperate evergreen forest, and relationships of these traits with light requirements of juvenile trees and shrubs. Foliage turnover of saplings of 19 evergreen angiosperms growing beneath gaps (12-29% canopy openness) and in understories (1.2-2.9%) was measured over 12 months. Dry mass per area (LMA), dry matter content, thickness, density and nitrogen content (N) of leaves were also measured. Species minimum light requirements were indexed as the 10th percentile of the distribution of saplings in relation to canopy openness. Interspecific variation of leaf lifespan was ∼6-fold in gaps (0.6 to 3.8 yrs), and ∼11-fold in the understorey (0.7 to 7.7 yrs). Six small tree and shrub species are effectively leaf-exchangers, with leaf lifespans of c.1 year in gaps-albeit usually longer in the shade. Interspecific variation in other leaf traits was 2.5 to 4-fold. Lifespans and LMA of both sun and shade leaves were negatively correlated with species light requirements i.e., positively correlated with shade tolerance. However, light environment (gap vs shade) explained about the same amount of variation in LMA as species' identity did. Species light requirements were not significantly correlated with leaf N, dry matter content, density or thickness-except for a marginally significant correlation with dry matter content of shade leaves. Species light requirements were thus less consistently related to leaf structural traits than appears to be the case in humid tropical forests. Whereas the wide interspecific variation in leaf economic traits of tropical rainforest species outweighs plastic response to light availability, temperate evergreen woody angiosperms appear to occupy a narrower range of the leaf economic spectrum. Standardization of the light environments in which LMA is measured is vital in comparative studies of humid temperate forest evergreens, because of countergradient responses of this trait to light, and because of the relative magnitudes of plastic and interspecific variation in LMA in these forests.

15.
Rev. biol. trop ; 67(2)abr. 2019.
Article in English | LILACS-Express | LILACS | ID: biblio-1507500

ABSTRACT

Shade tolerance (the capacity to survive and grow over long periods under shade) is a key component of plant fitness and the foundation of current theories of forest succession in tropical rain forests. It serves as a paradigm to understand the optimal allocation of limited resources under dynamic light regimes. I analyze how tropical rain forest succession influences the expression of ecophysiological mechanisms leading to shade tolerance, and identify future areas that will increase our understanding of the ecological and evolutionary consequences of this phenomenon. Shade tolerance is a multivariate, continuous functional trait reflecting the growth-mortality trade-off of investing resources under limited light vs. exploiting high light conditions. I propose the life cycle successional trajectory model of Gómez-Pompa & Vázquez-Yanes as an integrative tool to understand tropical rain forest succession. This model shows how species distribute along the successional environmental gradient based on their degree of shade tolerance and represents a more integrative paradigm to understand the interface between different aspects of species diversity (ontogenetic variation and functional diversity) throughout succession. It proposes that different trait combinations determining shade tolerance are expressed at different stages of the life cycle, which affects how and when plants enter the successional trajectory. Models explaining the expression of shade tolerance (resource availability, carbon gain, CSR, resource competition) are based on whole-plant economics and are not mutually exclusive. The analysis of shade tolerance is biased towards tree seedlings in the understory of mature forests. Other life stages (juvenile and adult trees), life forms, and microhabitats throughout the forest profile are almost always excluded from these analyses. More integrative explanations based on the distribution of functional traits among species, ontogenetic stages, and the nature of the environmental gradient are being developed based on long-term data and chronosequence comparisons. In summary, shade-tolerance is a complex phenomenon, is determined by multiple characters that change ontogenetically over space and time and entails considerable plasticity. Current methods do not account for this plasticity. Understanding the nature of shade tolerance and its functional basis is critical to comprehending plant performance and improving the management, restoration and conservation of tropical rain forests given the combined threats of global warming and habitat loss.


La tolerancia a la sombra (la capacidad de sobrevivir y crecer durante largos períodos bajo sombra profunda) es un componente clave del valor adaptativo de la planta y la base de las teorías actuales de la sucesión forestal de la selva tropical. Sirve como un paradigma para entender la asignación óptima de recursos limitados bajo regímenes dinámicos de luz. En esta revisión analizo cómo la sucesión de los bosques tropicales lluviosos influye en la expresión de los mecanismos ecofisiológicos que conducen a la tolerancia a la sombra, e identifico áreas futuras que pueden aumentar nuestra comprensión de las consecuencias ecológicas y evolutivas de este fenómeno. La tolerancia a la sombra es un rasgo funcional continuo y multivariable que refleja el balance de invertir recursos bajo condiciones de luz limitada versus crecer más rápidamente en condiciones de luz intensa. Propongo el modelo de ciclo de vida a lo largo de la trayectoria de sucesión de Gómez-Pompa y Vázquez-Yanes como una herramienta integradora para entender la sucesión de la selva tropical. Este modelo muestra cómo las especies se distribuyen a lo largo del gradiente ambiental en función de su grado de tolerancia a la sombra, y representa un paradigma más integrador para comprender la interacción entre los diferentes componentes de la diversidad de especies (diversidad taxonómica y funcional y variación ontogenética) a lo largo de la sucesión. El modelo propone que las diferentes combinaciones de caracteres funcionales que determinan la tolerancia a la sombra se expresan en diferentes etapas del ciclo de vida, y afectan cómo y cuándo las plantas ingresan en el proceso de sucesión. Los modelos que explican la expresión de tolerancia a la sombra (disponibilidad de recursos, ganancia de carbono, CSR, competencia de recursos) se basan en la economía de toda la planta y no son mutuamente excluyentes. Se están desarrollando explicaciones más integradoras basadas en la distribución de caracteres funcionales entre especies, etapas ontogenéticas, y micrositios, mediante el uso de estudios de cronosecuencia y metadatos colectados a largo plazo. El análisis de la tolerancia a la sombra está sesgado hacia las plántulas de árboles y el sotobosque. Otras formas de vida y microhábitats dentro del perfil del bosque están casi excluidas de estos análisis. En resumen, la tolerancia a la sombra es un fenómeno complejo, está determinada por múltiples caracteres funcionales que cambian ontogenéticamente en el espacio y el tiempo, e implica una considerable plasticidad. Los métodos actuales no toman en cuenta esta plasticidad. Comprender la naturaleza de la tolerancia a la sombra y su base funcional es fundamental para entender el crecimiento de la planta y mejorar la gestión, restauración, y conservación de los bosques tropicales, los cuales enfrentan las amenazas combinadas del calentamiento global y la pérdida de hábitat.

16.
Front Plant Sci ; 10: 88, 2019.
Article in English | MEDLINE | ID: mdl-30787938

ABSTRACT

Seedling emergence in plant communities depends on the composition in the soil seed bank, in combination with species-specific responses to the environment. It is generally assumed that this juvenile transition, known as the recruitment niche, is a crucial filter that determines species' distributions and plant community assemblies. The relative importance of this filter, however, has been widely debated. Empirical descriptions of the recruitment niche are scarce, as most field studies focus on environmental effects at later life stages. In this study, we examine the importance of the recruitment niche for predicting plant communities across a hydrological gradient in a disturbed and undisturbed area in Lake Schmiechen, Baden-Württemberg, Germany. We combine a seed bank experiment, measuring germination in water basins under standardized conditions and different water levels, with field observations of plant communities along a hydrological gradient in plowed and undisturbed transects in a former agricultural wetland. We find that hydrology consistently predicted plant community composition in both the germination experiment and in the field. The hydrological recruitment niches measured in the seed bank experiment correlated with the hydrological niche in both the plowed and undisturbed area, with slightly stronger correlation in the plowed area. We explain the latter by the fact that the seed bank experiment most closely resembles the plowed area, whereas succession and competitive interactions become more important in the undisturbed area. Our results support the view that the recruitment niche is an important driver of species composition, in both the plowed and undisturbed area. Recognizing the recruitment niche and the response of seeds within a seed bank to environmental gradients and anthropogenic disturbance is necessary to understand and predict future plant community composition.

17.
Front Plant Sci ; 9: 1036, 2018.
Article in English | MEDLINE | ID: mdl-30073009

ABSTRACT

In 1977, Peter Grubb introduced the regeneration niche concept, which assumes that a plant species cannot persist if the environmental conditions are only suitable for adult plant growth and survival, but not for seed production, dispersal, germination, and seedling establishment. During the last decade, this concept has received considerable research attention as it helps to better understand community assembly, population dynamics, and plant responses to environmental changes. Yet, in its present form, it focuses too much on the post-fertilization stages of plant sexual reproduction, neglecting the fact that the environment can operate as a constraint at many points in the chain of processes necessary for successful regeneration. In this review, we draw the attention of the plant ecology research community to the pre-fertilization stages of plant sexual reproduction, an almost ignored but important aspect of the regeneration niche, and their potential consequences for successful seed production. Particularly, we focus on how temperature affects pollen performance and determines plant reproduction success by playing an important role in the temporal and spatial variations in seed quality and quantity. We also review the pollen adaptations to temperature stresses at different levels of plant organization and discuss the plasticity of the performance of pollen under changing temperature conditions. The reviewed literature demonstrates that pre-fertilization stages of seed production, particularly the extreme sensitivity of male gametophyte performance to temperature, are the key determinants of a species' regeneration niche. Thus, we suggest that previous views stating that the regeneration niche begins with the production of seeds should be modified to include the preceding stages. Lastly, we identify several gaps in pollen-related studies revealing a framework of opportunities for future research, particularly how these findings could be used in the field of plant biology and ecology.

18.
Ecology ; 99(6): 1480-1489, 2018 06.
Article in English | MEDLINE | ID: mdl-29676019

ABSTRACT

Pollination is critical for plant fitness and population dynamics, yet little attention is paid to the role of flowering and plant-pollinator interactions in structuring plant communities, including community responses to environmental change. Changes in arbuscular mycorrhizal fungi (AMF), nutrient abundances, and plant litter all affect plant access to different resources, and are known regulators of community structure. Each factor can also affect flowering and plant-pollinator interactions, potentially contributing to changes in community structure. To test whether AMF, nutrients, and litter influenced the relationship between pollination and community structure, we conducted a 5-yr field experiment applying fungicide, adding fertilizer, and removing plant litter in native grassland. We measured the distribution of flowers and floral visits among species in year three and linked these measures to changes in plant composition and species richness between years three and five. We hypothesized that an uneven distribution of flowers and visits among species would lead to greater community change, but that the treatments would disrupt this relationship by altering sexual allocation and recruitment. Consistent with our hypothesis, communities with uneven flower distributions exhibited greater changes in community composition and richness under ambient conditions. However, AMF suppression neutralized this relationship and regulated the other treatment effects, highlighting the potential importance of AMF for stabilizing recruitment dynamics. Combined, AMF suppression and nutrient addition caused species losses when few species flowered, likely by compounding stresses for those species. The treatment effects on the relationship between flowering and community composition were more nuanced, but were likely driven by increased competition and altered flowering among species. By contrast, community composition was more stable when visitation rates were uneven among species, irrespective of any treatments. This suggests that some species require high visitation rates to maintain their populations due to greater dependence on sexual reproduction. Combined, these results highlight the importance of flowering and floral visitation to the dynamics of grassland communities. They also suggest that altered recruitment dynamics is a major, yet understudied, mechanism by which environmental change affects communities. Consequently, understanding the effects of environmental change on plant communities will require study of both plant growth and sexual reproduction.


Subject(s)
Mycorrhizae , Flowers , Plants/microbiology , Pollination , Reproduction
19.
Ecol Lett ; 21(4): 506-515, 2018 04.
Article in English | MEDLINE | ID: mdl-29446220

ABSTRACT

Species coexistence in diverse communities likely results from multiple interacting factors. Mechanisms such as conspecific negative density dependence (CNDD) and varying life-history strategies related to resource partitioning are known to influence plant fitness, and thereby community composition and diversity. However, we have little understanding of how these mechanisms interact and how they vary across life stages. Here, we document the interaction between CNDD and life-history strategy, based on growth-mortality trade-offs, from seedling to adult tree for 47 species in a tropical forest. Species' life-history strategies remained consistent across stages: fast-growing species had higher mortality than slow-growing species at all stages. In contrast, mean CNDD was strongest at early life stages (i.e. seedling, sapling). Fast-growing species tended to suffer greater CNDD than slow-growing species at several, but not all life stages. Overall, our results demonstrate that coexistence mechanisms interact across multiple life stages to shape diverse tree communities.


Subject(s)
Forests , Trees , Life History Traits , Seedlings , Tropical Climate
20.
New Phytol ; 213(2): 657-668, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27588893

ABSTRACT

Forest ecologists researching the functional basis of tree regeneration patterns and species coexistence often attempt to correlate traits with light-gradient partitioning. However, an exclusive focus on light can overlook other important drivers of forest dynamics. We measured light, temperatures, humidity and sapling densities in each of four phases of a forest dynamic mosaic in New Zealand: shaded understoreys, tree-fall gaps, treefern groves and clearings. We then measured leaf, wood and seed traits, as potential predictors of species' regeneration patterns. Saplings of 18 out of 21 species were significantly associated with one or other of the four phases, and associations were best predicted by a two-trait model (leaf size, wood density) explaining 51% of observed variation. Species associated with treefall gaps had traits favouring light pre-emption (large leaves, low-density wood), whereas those establishing in clearings mostly had small leaves and dense wood, traits probably conferring resistance to the frosts and summer water deficits that saplings were exposed to there. The dynamics of some forests cannot be explained adequately by light-gradient partitioning through a growth vs shade tolerance tradeoff, underpinned by the leaf economics spectrum. Consideration of multiple environmental filters and multiple traits will enhance understanding of regeneration patterns and species coexistence.


Subject(s)
Environment , Forests , Regeneration , Trees/physiology , Analysis of Variance , Lakes , Microclimate , New Zealand , Organ Size , Plant Leaves/anatomy & histology , Quantitative Trait, Heritable , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...