Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
Sci Rep ; 14(1): 15562, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971863

ABSTRACT

Systolic blood pressure variability (SBPV) is associated with outcome in acute ischemic stroke. Remote ischemic conditioning (RIC) has been demonstrated to be effective in stroke and may affect blood pressure. Relationship between SBPV and RIC treatment after stroke warrants investigation. A total of 1707 patients from per-protocol analysis set of RICAMIS study were included. The SBPV was calculated based on blood pressure measured at admission, Day 7, and Day 12. (I) To investigate the effect of SBPV on efficacy of RIC in stroke, patients were divided into High and Low categories in each SBPV parameter. Primary outcome was excellent functional outcome at 90 days. Compared with Control, efficacy of RIC in each category and interaction between categories were investigated. (II) To investigate the effect of RIC treatment on SBPV, SBPV parameters were compared between RIC and Control groups. Compared with Control, a higher likelihood of primary outcome in RIC was found in high category (max-min: adjusted risk difference [RD] = 7.2, 95% CI 1.2-13.1, P = 0.02; standard deviation: adjusted RD = 11.5, 95% CI 1.6-21.4, P = 0.02; coefficient of variation: adjusted RD = 11.2, 95% CI 1.4-21.0, P = 0.03). Significant interaction of RIC on outcomes were found between High and Low standard deviations (adjusted P < 0.05). No significant difference in SBPV parameters were found between treatment groups. This is the first report that Chinese patients with acute moderate ischemic stroke and presenting with higher SBPV, who were non-cardioemoblic stroke and not candidates for intravenous thrombolysis or endovascular therapy, would benefit more from RIC with respect to functional outcomes at 90 days, but 2-week RIC treatment has no effect on SBPV during hospital.


Subject(s)
Blood Pressure , Ischemic Preconditioning , Ischemic Stroke , Humans , Male , Female , Blood Pressure/physiology , Aged , Ischemic Stroke/therapy , Ischemic Stroke/physiopathology , Middle Aged , Ischemic Preconditioning/methods , Treatment Outcome , Systole/physiology
2.
World J Pediatr ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951456

ABSTRACT

BACKGROUND: Moyamoya disease (MMD) is a significant cause of childhood stroke and transient ischemic attacks (TIAs). This study aimed to assess the safety and efficacy of remote ischemic conditioning (RIC) in children with MMD. METHODS: In a single-center pilot study, 46 MMD patients aged 4 to 14 years, with no history of reconstructive surgery, were randomly assigned to receive either RIC or sham RIC treatment twice daily for a year. The primary outcome measured was the cumulative incidence of major adverse cerebrovascular events (MACEs). Secondary outcomes included ischemic stroke, recurrent TIA, hemorrhagic stroke, revascularization rates, and clinical improvement assessed using the patient global impression of change (PGIC) scale during follow-up. RIC-related adverse events were also recorded, and cerebral hemodynamics were evaluated using transcranial Doppler. RESULTS: All 46 patients completed the final follow-up (23 each in the RIC and sham RIC groups). No severe adverse events associated with RIC were observed. Kaplan-Meier analysis indicated a significant reduction in MACEs frequency after RIC treatment [log-rank test (Mantel-Cox), P = 0.021]. At 3-year follow-up, two (4.35%) patients had an ischemic stroke, four (8.70%) experienced TIAs, and two (4.35%) underwent revascularization as the qualifying MACEs. The clinical improvement rate in the RIC group was higher than the sham RIC group on the PGIC scale (65.2% vs. 26.1%, P < 0.01). No statistical difference in cerebral hemodynamics post-treatment was observed. CONCLUSIONS: RIC is a safe and effective adjunct therapy for asymptomatic children with MMD. This was largely due to the reduced incidence of ischemic cerebrovascular events.

3.
Biomaterials ; 311: 122664, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38889597

ABSTRACT

In order to guide the formulation of post-stroke treatment strategy in time, it is necessary to have real-time feedback on collateral circulation and revascularization. Currently used near-infrared II (NIR-II) probes have inherent binding with endogenous albumin, resulting in significant background signals and uncontrollable pharmacokinetics. Therefore, the albumin-escaping properties of the new probe, IR-808AC, was designed, which achieved timely excretion and low background signal, enabling the short-term repeatable injection for visualization of cerebral vessels and perfusion. We further achieved continuous observation of changes in collateral vessels and perfusion during the 7-d period in middle cerebral artery occlusion mice using IR-808AC in vivo. Furthermore, using IR-808AC, we confirmed that remote ischemic conditioning could promote collateral vessels and perfusion. Finally, we evaluated the revascularization after thrombolysis on time in embolic stroke mice using IR-808AC. Overall, our study introduces a novel methodology for safe, non-invasive, and repeatable assessment of collateral circulation and revascularization in real-time that is crucial for the optimization of treatment strategies.

4.
J Neurol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869825

ABSTRACT

Stroke can lead to cardiac complications such as arrhythmia, myocardial injury, and cardiac dysfunction, collectively termed stroke-heart syndrome (SHS). These cardiac alterations typically peak within 72 h of stroke onset and can have long-term effects on cardiac function. Post-stroke cardiac complications seriously affect prognosis and are the second most frequent cause of death in patients with stroke. Although traditional vascular risk factors contribute to SHS, other potential mechanisms indirectly induced by stroke have also been recognized. Accumulating clinical and experimental evidence has emphasized the role of central autonomic network disorders and inflammation as key pathophysiological mechanisms of SHS. Therefore, an assessment of post-stroke cardiac dysautonomia is necessary. Currently, the development of treatment strategies for SHS is a vital but challenging task. Identifying potential key mediators and signaling pathways of SHS is essential for developing therapeutic targets. Therapies targeting pathophysiological mechanisms may be promising. Remote ischemic conditioning exerts protective effects through humoral, nerve, and immune-inflammatory regulatory mechanisms, potentially preventing the development of SHS. In the future, well-designed trials are required to verify its clinical efficacy. This comprehensive review provides valuable insights for future research.

5.
BMC Anesthesiol ; 24(1): 168, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702625

ABSTRACT

BACKGROUND: Remote ischemic conditioning (RIC) has the potential to benefit graft function following kidney transplantation by reducing ischemia-reperfusion injury; however, the current clinical evidence is inconclusive. This meta-analysis with trial sequential analysis (TSA) aimed to determine whether RIC improves graft function after kidney transplantation. METHODS: A comprehensive search was conducted on PubMed, Cochrane Library, and EMBASE databases until June 20, 2023, to identify all randomized controlled trials that examined the impact of RIC on graft function after kidney transplantation. The primary outcome was the incidence of delayed graft function (DGF) post-kidney transplantation. The secondary outcomes included the incidence of acute rejection, graft loss, 3- and 12-month estimated glomerular filtration rates (eGFR), and the length of hospital stay. Subgroup analyses were conducted based on RIC procedures (preconditioning, perconditioning, or postconditioning), implementation sites (upper or lower extremity), and graft source (living or deceased donor). RESULTS: Our meta-analysis included eight trials involving 1038 patients. Compared with the control, RIC did not significantly reduce the incidence of DGF (8.8% vs. 15.3%; risk ratio = 0.76, 95% confidence interval [CI], 0.48-1.21, P = 0.25, I2 = 16%), and TSA results showed that the required information size was not reached. However, the RIC group had a significantly increased eGFR at 3 months after transplantation (mean difference = 2.74 ml/min/1.73 m2, 95% CI: 1.44-4.05 ml/min/1.73 m2, P < 0.0001, I2 = 0%), with a sufficient evidence suggested by TSA. The secondary outcomes were comparable between the other secondary outcomes. The treatment effect of RIC did not differ between the subgroup analyses. CONCLUSION: In this meta-analysis with trial sequential analysis, RIC did not lead to a significant reduction in the incidence of DGF after kidney transplantation. Nonetheless, RIC demonstrated a positive correlation with 3-month eGFR. Given the limited number of patients included in this study, well-designed clinical trials with large sample sizes are required to validate the renoprotective benefits of RIC. TRIAL REGISTRATION: This systematic review and meta-analysis was registered at the International Prospective Register of Systematic Reviews (Number CRD42023464447).


Subject(s)
Delayed Graft Function , Ischemic Preconditioning , Kidney Transplantation , Humans , Kidney Transplantation/methods , Ischemic Preconditioning/methods , Delayed Graft Function/epidemiology , Delayed Graft Function/prevention & control , Randomized Controlled Trials as Topic/methods , Graft Rejection/prevention & control
6.
J Clin Med ; 13(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731225

ABSTRACT

Background: Early perihematomal edema (PHE) growth is associated with worse functional outcomes at 90 days. Remote Ischemic conditioning (RIC) may reduce perihematomal inflammation if applied early to patients with intracerebral hemorrhage (ICH). We hypothesize that early RIC, delivered for seven days in patients with spontaneous ICH, may reduce PHE growth. Methods: ICH patients presenting within 6 h of symptom onset and hematoma volume < 60 milliliters (mL) were randomized to an RIC + standard care or standard care (SC) group. The primary outcome measure was calculated edema extension distance (EED), with the cm assessed on day seven. Results: Sixty patients were randomized with a mean ± SD age of 57.5 ± 10.8 years, and twenty-two (36.7%) were female. The relative baseline median PHE were similar (RIC group 0.75 (0.5-0.9) mL vs. SC group 0.91 (0.5-1.2) mL, p = 0.30). The median EEDs at baseline were similar (RIC group 0.58 (0.3-0.8) cm vs. SC group 0.51 (0.3-0.8) cm, p = 0.76). There was no difference in the median day 7 EED (RIC group 1.1 (0.6-1.2) cm vs. SC group 1 (0.9-1.2) cm, p = 0.75). Conclusions: Early RIC therapy delivered daily for seven days was feasible. However, no decrease in EED was noted with the intervention.

7.
Adv Ther ; 41(7): 3003-3012, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38616242

ABSTRACT

INTRODUCTION: Despite the appearance of off-pump coronary artery bypass grafting (CABG), ischemia-reperfusion injury (IRI) in the perioperative period still arouses concerns of clinicians. Remote ischemic conditioning (RIC) is the process of repeated ischemia and reperfusion in the peripheral vessels, which is proven to reduce IRI in vital organs. However, the effect of RIC in patients undergoing off-pump CABG is still unclear. METHODS: This IMPROVE trial is a national, multicenter, randomized, controlled, open-label, blinded-endpoint clinical trial designed to assess whether RIC intervention can improve short-term prognosis of patients undergoing off-pump CABG. It plans to enroll 648 patients who will be randomly assigned into a RIC group or control group. Patients in the RIC group will receive four cycles of 5 min of pressurization (about 200 mmHg) and 5 min of rest in the 3 days before and 7 days after the surgery. PLANNED OUTCOMES: The primary outcome is the occurrence of major adverse cardiovascular and cerebrovascular events (MACCE) within the 3-month follow-up. MACCE is defined as all-cause death, myocardial infarction, stroke, and coronary revascularization surgery. CLINICAL TRIAL REGISTRATION: NCT06141525 (ClinicalTrials.gov).


Subject(s)
Coronary Artery Bypass, Off-Pump , Humans , Coronary Artery Bypass, Off-Pump/methods , Male , Aged , Middle Aged , Female , Ischemic Preconditioning/methods , Adult , Treatment Outcome
8.
Phys Med Rehabil Clin N Am ; 35(2): 319-338, 2024 May.
Article in English | MEDLINE | ID: mdl-38514221

ABSTRACT

Remote ischemic conditioning (RIC) is a therapeutic strategy to protect a vital organ like the brain from ischemic injury through brief and repeat cycles of ischemia and reperfusion in remote body parts such as arm or leg. RIC has been applied in different aspects of the stroke field and has shown promise. This narrative review will provide an overview of how to implement RIC in stroke patients, summarize the clinical evidence of RIC on stroke recovery, and discuss unresolved questions and future study directions.


Subject(s)
Ischemia , Stroke , Humans , Stroke/therapy , Brain
9.
Curr Heart Fail Rep ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512567

ABSTRACT

PURPOSE OF REVIEW: To provide an overview of (a) protective effects on mitochondria induced by remote ischemic conditioning (RIC) and (b) mitochondrial damage caused by anticancer therapy. We then discuss the available results of studies on mitochondrial protection via RIC in anticancer therapy-induced cardiotoxicity. RECENT FINDINGS: In three experimental studies in healthy mice and pigs, there was a RIC-mediated protection against anthracycline-induced cardiotoxicity and there was some evidence of improved mitochondrial function with RIC. The RIC-mediated protection was not confirmed in the two available studies in cancer patients. In adult cancer patients, RIC was associated with an adverse outcome. There are no data on mitochondrial function in cancer patients. Studies in tumor-bearing animals are needed to determine whether RIC does not interfere with the anticancer properties of the drugs and whether RIC actually improves mitochondrial function, ultimately resulting in improved cardiac function.

10.
J Am Heart Assoc ; 13(7): e033609, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38533936

ABSTRACT

BACKGROUND: Remote ischemic conditioning has been found to be effective in improving functional outcomes in acute ischemic stroke. We conducted a post hoc analysis of the RICAMIS (Remote Ischemic Conditioning for Acute Moderate Ischemic Stroke) trial to determine whether long-term remote ischemic conditioning duration after stroke onset is associated with better clinical outcomes in ischemic stroke. METHODS AND RESULTS: Patients from the full analysis set were included in this secondary analysis. The primary outcome was the proportion of patients with an excellent functional outcome at 90 days, defined as a modified Rankin Scale score of 0 to 1. Among the 1776 patients, there were 55 patients in the 1 to 7 days remote ischemic conditioning group, 345 in the 8 to 10 days group, 412 in the 11 to 13 days group, 51 in the 14 to 16 days group, and 913 in the control group. Compared with the control group, a significantly higher proportion of excellent functional outcomes at 90 days was found in the 11 to 13 days remote ischemic conditioning group (adjusted absolute difference, 9.1% [95% CI, 3.7%-14.5%]; P =0.001), which was attenuated in the other groups (adjusted absolute difference in the 8-10 days group, 2.0% [95% CI, -4.0% to 8.0%]; P=0.51; adjusted absolute difference in the 14-16 days group, 7.4% [95% CI, -5.8% to 20.5%]; P=0.27), but compared to the control group, there was lower proportion of excellent functional outcomes in the 1 to 7 days group (adjusted absolute difference, -14.4% [95% CI, -27.8% to 0.0%]; P=0.05). CONCLUSIONS: Among patients with acute moderate ischemic stroke, a higher likelihood of excellent clinical outcome was found in patients with longer duration of remote ischemic conditioning.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Brain Ischemia/diagnosis , Brain Ischemia/therapy , Brain Ischemia/complications , Ischemic Stroke/complications , Stroke/diagnosis , Stroke/therapy , Stroke/complications , Treatment Outcome
11.
J Neurosci Res ; 102(3): e25324, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38515341

ABSTRACT

Patients with symptomatic intracranial arterial stenosis (sICAS) suffer embarrassed hemodynamic status and acute ischemic stroke (AIS) recurrence. We aimed to assess the efficacy of remote ischemic conditioning (RIC) on improving this status by evaluating cerebral blood flow (CBF) and cerebral glucose metabolism (CGM) via PET/CT. Adult patients with unilateral sICAS in middle cerebral artery and/or intracranial segment of internal carotid artery-related AIS or transient ischemic attack within 6 months prior to randomization were enrolled. Individuals who received intravenous thrombolysis or endovascular treatment, or sICAS caused by cardiac embolism, small vessel occlusion, or other determined causes were excluded. Twenty-three eligible patients were randomly assigned to standard medical treatment (SMT) (n = 10) or RIC group (n = 13). The RIC protocol consisted of 5 cycles, each for 5-min bilateral upper limb ischemia and 5-min reperfusion period, twice a day, with a total duration of 3 months. Ten healthy volunteers were enrolled as healthy control group. We tested CBF and CGM at the rest stage and the methazolamide-induced stress stage. All patients received PET/CT at baseline and three-month followup. Both CBF and CGM in ipsilateral hemisphere of sICAS patients were significantly decreased at the rest stage and the stress stage (p < .05), which were improved by three-month RIC (p < .05). The lesions decreased notably in RIC group compared to SMT group (p < .05). RIC ameliorated the hemodynamic status and glucose metabolism in regions at high risk of infarction, which might improve the resistance capacity towards ischemic load in sICAS patients.


Subject(s)
Intracranial Arteriosclerosis , Ischemic Stroke , Adult , Humans , Positron Emission Tomography Computed Tomography , Intracranial Arteriosclerosis/diagnostic imaging , Intracranial Arteriosclerosis/therapy , Ischemia , Hemodynamics , Glucose
12.
CNS Neurosci Ther ; 30(2): e14613, 2024 02.
Article in English | MEDLINE | ID: mdl-38379185

ABSTRACT

AIMS: Alzheimer's disease (AD) is a significant global health concern, and it is crucial that we find effective methods to prevent or slow down AD progression. Recent studies have highlighted the essential role of blood vessels in clearing Aß, a protein that contributes to AD. Scientists are exploring blood biomarkers as a potential tool for future AD diagnosis. One promising method that may help prevent AD is remote ischemic conditioning (RIC). RIC involves using sub-lethal ischemic-reperfusion cycles on limbs. However, a comprehensive understanding of how RIC can prevent AD and its long-term effectiveness is still lacking. Further research is essential to fully comprehend the potential benefits of RIC in preventing AD. METHODS: Female wild-type (WT) and APP/PS1 transgenic rats, aged 12 months, underwent ovariectomy and were subsequently assigned to WT, APP/PS1, and APP/PS1 + RIC groups. RIC was conducted five times a week for 4 weeks. The rats' depressive and cognitive behaviors were evaluated using force swimming, open-field tests, novel objective recognition, elevated plus maze, and Barnes maze tests. Evaluation of the neurovascular unit (NVU), synapses, vasculature, astrocytes, and microglia was conducted using immunofluorescence staining (IF), Western blot (WB), and transmission electron microscopy (TEM). Additionally, the cerebro-vasculature was examined using micro-CT, and cerebral blood flow (CBF) was measured using Speckle Doppler. Blood-brain barrier (BBB) permeability was determined by measuring the Evans blue leakage. Finally, Aß levels in the rat frontal cortex were measured using WB, ELISA, or IF staining. RESULTS: RIC enhanced memory-related protein expression and rescued depressive-like behavior and cognitive decline in APP/PS1 transgenic rats. Additionally, the intervention protected NVU in the rat frontal cortex, as evidenced by (1) increased expression of TJ (tight junction) proteins, pericyte marker PDGFRß, and glucose transporter 1 (GLUT1), as well as decreased VCAM1; (2) mitigation of ultrastructure impairment in neuron, cerebral vascular, and astrocyte; (3) upregulation of A2 astrocyte phenotype markers and downregulation of A1 phenotype markers, indicating a shift toward a healthier phenotype. Correspondingly, RIC intervention alleviated neuroinflammation, as evidenced by the decreased Iba1 level, a microglia marker. Meanwhile, RIC intervention elevated CBF in frontal cortex of the rats. Notably, RIC intervention effectively suppressed Aß toxicity, as demonstrated by the enhancement of α-secretase and attenuation of ß-secretase (BACE1) and γ- secretase and Aß1-42 and Aß1-40 levels as well. CONCLUSION: Chronic RIC intervention exerts vascular and neuroprotective roles, suggesting that RIC could be a promising therapeutic strategy targeting the BBB and NVU during AD development.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Mice , Rats , Female , Animals , Blood-Brain Barrier/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/genetics , Mice, Transgenic , Rats, Transgenic , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/therapeutic use , Alzheimer Disease/drug therapy , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/therapy , Disease Models, Animal , Presenilin-1/genetics , Presenilin-1/metabolism
13.
Neurotherapeutics ; 21(1): e00294, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38241163

ABSTRACT

RICAMIS (ClinicalTrials.gov Identifier: NCT03740971) trial has demonstrated efficacy of remote ischemic conditioning (RIC) in acute ischemic stroke, but whether baseline NIHSS score can affect outcomes in stroke remains unclear. We conducted a post hoc analysis of RICAMIS to investigate the issue. Patients included in RICAMIS were divided into three groups based on baseline NIHSS score. The primary outcome was excellent functional outcome at 90 days, defined as mRS score of 0-1. Compared with patients receiving usual care, we investigated association of RIC effect with outcomes in each group and interaction between RIC effect and stroke severity. Among 1776 patients, 1255 were assigned into NIHSS score 6-8 group, 402 into NIHSS score 9-12 group, and 119 into NIHSS score 13-16 group. A higher proportion of primary outcome was found associated with RIC in NIHSS score 9-12 group (adjusted risk difference [RD], 14.6 â€‹%; 95 â€‹% CI, 5.0 â€‹%-24.2 â€‹%; P â€‹= â€‹0.003), but no significant association was found in NIHSS score 6-8 group (adjusted RD, 2.3 â€‹%; 95 â€‹% CI, -2.5 â€‹%-7.2 â€‹%; P â€‹= â€‹0.34), or in NIHSS score 13-16 group (adjusted RD, 9.7 â€‹%; 95 â€‹% CI, -7.5 â€‹%-26.9 â€‹%; P â€‹= â€‹0.27). There was a significant interaction between RIC effect and stroke severity when analysis was performed between NIHSS score 6-8 and 9-12 groups (P â€‹= â€‹0.04), but not between NIHSS score 9-12 and 13-16 groups (P â€‹= â€‹0.57). Current study firstly reported patients with NIHSS score 9-12 may get more benefit from RIC after stroke with respect to excellent functional outcome at 90 days.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Ischemic Stroke/therapy , Brain Ischemia/therapy , Brain Ischemia/complications , Stroke/therapy , Stroke/complications , Treatment Outcome
14.
Crit Care ; 28(1): 5, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167175

ABSTRACT

BACKGROUND: Acute ischemic stroke (AIS) complicating an acute myocardial infarction (AMI) is not uncommon, but can severely worsen the clinical prognosis. This study aimed to investigate whether remote ischemic conditioning (RIC) could provide clinical benefits to patients with AIS complicating AMI. METHODS: Subjects with AIS complicating AMI were recruited in this double-blind, randomized, controlled trial; assigned to the RIC and sham groups; and respectively underwent twice daily RIC and sham RIC for 2 weeks. All subjects received standard medical therapy. The primary endpoint was the rate of major adverse cardiac and cerebrovascular events (MACCEs) within 3 months after enrollment. MACCEs comprise of death from all causes, unstable anginas, AMI, acute ischemic strokes, and transient ischemic attacks. RESULTS: Eighty subjects were randomly assigned; 37 patients in the RIC group and 40 patients in the sham-RIC group completed the 3-month follow-up and were included in the final analysis. Both RIC and sham RIC procedures were well tolerated. At 3-month follow-up, 11 subjects (29.7%) in the RIC group experienced MACCEs compared to 21 (52.5%) in the sham group (hazard ratio [HR], 0.396; 95% confidence interval, 0.187-0.838; adjusted p < 0.05). Six subjects (16.2%) in the RIC group had died at the 3-month follow up, significantly lower than the 15 (37.5%) deaths in the sham group (adjusted HR 0.333; 95% CI 0.126-0.881; p = 0.027). Seventeen subjects (45.9%) in the RIC group and 6 subjects (15.0%) in the sham group achieved functional independence (mRS score ≤ 2) at 3-month follow-up (adjusted OR 12.75; 95% CI 2.104-77.21; p = 0.006). CONCLUSIONS: Among patients with acute ischemic stroke complicating acute myocardial infarction, treatment with remote ischemic conditioning decreased the major adverse cardiac and cerebrovascular events and improved functional outcomes at 90 days. TRIAL REGISTRATION: URL: www. CLINICALTRIALS: gov . Unique identifier: NCT03868007. Registered 8 March 2019.


Subject(s)
Ischemic Stroke , Myocardial Infarction , Stroke , Humans , Myocardial Infarction/complications , Myocardial Infarction/therapy , Double-Blind Method , Treatment Outcome , Stroke/complications , Stroke/therapy
15.
J Am Heart Assoc ; 13(3): e033130, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38293927

ABSTRACT

BACKGROUND: Ischemic conditioning-induced cardioprotection was attenuated by dyslipidemia in some animal and clinical studies, which is not investigated in patients with stroke. We conducted a post hoc analysis of the RICAMIS (Remote Ischemic Conditioning for Acute Moderate Ischemic Stroke) trial to investigate the association of dyslipidemia on admission with the efficacy of remote ischemic conditioning (RIC). METHODS AND RESULTS: In this analysis, eligible patients were divided into dyslipidemia and normal-lipid groups according to the levels of 4 blood lipid profiles (total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol), which were further subdivided into RIC and control subgroups. We analyzed the differences in functional outcome between RIC and control subgroups in dyslipidemia and normal-lipid patients, respectively, and the interaction effects of RIC treatment with blood lipid levels were evaluated. Among 1776 patients from intention-to-treat analysis, 1419 patients with data of blood lipid profiles were included in the final analysis. A significantly higher proportion of modified Rankin Scale score 0 to 1 was identified in the RIC versus control subgroup across the normal-total cholesterol group (69.9% versus 63.5%; P=0.04), normal-triglycerides group (68.1% versus 60.5%; P=0.016), high-low-density lipoprotein cholesterol group (65.7% versus 57.7%; P=0.025), and normal-high-density lipoprotein cholesterol group (68.3% versus 60.5%; P=0.005). Similar statistical trends were found in the high-total cholesterol group (62.8% versus 55.5%; P=0.059), high-triglycerides group (67.8% versus 60.1%; P=0.099), normal-low-density lipoprotein cholesterol group (69.8% versus 63.7%; P=0.105), but no statistical significance was found in the low-high-density lipoprotein cholesterol group (63.4% versus 61%; P=0.705). Furthermore, no significant interaction effect of RIC intervention by blood lipid profiles was found. Similar results were obtained for lipids as continuous variables. CONCLUSIONS: Blood lipids on admission was not associated with the neuroprotective effect of RIC.


Subject(s)
Dyslipidemias , Ischemic Stroke , Stroke , Humans , Ischemic Stroke/diagnosis , Ischemic Stroke/therapy , Ischemic Stroke/complications , Ischemia/complications , Lipids , Triglycerides , Cholesterol , Dyslipidemias/diagnosis , Dyslipidemias/epidemiology , Lipoproteins, HDL , Lipoproteins, LDL
16.
J Cardiovasc Transl Res ; 17(1): 169-182, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36745288

ABSTRACT

Remote ischemic conditioning (RIC) can be effectively applied for cardio-protection. Here, to clarify whether RIC exerts myocardial protection via aldehyde dehydrogenase 2 (ALDH2), we established a myocardial ischemia/reperfusion (I/R) model in C57BL/6 and ALDH2 knockout (ALDH2-KO) mice and treated them with RIC. Echocardiography and single-cell contraction experiments showed that RIC significantly improved myocardial function and alleviated I/R injury in C57BL/6 mice but did not exhibit its cardioprotective effects in ALDH2-KO mice. TUNEL, Evan's blue/triphenyl tetrazolium chloride, and reactive oxygen species (ROS) assays showed that RIC's effect on reducing myocardial cell apoptosis, myocardial infarction area, and ROS levels was insignificant in ALDH2-KO mice. Our results showed that RIC could increase ALDH2 protein levels, activate sirtuin 3 (SIRT3)/hypoxia-inducible factor 1-alpha (HIF1α), inhibit autophagy, and exert myocardial protection. This study revealed that RIC could exert myocardial protection via the ALDH2/SIRT3/HIF1α signaling pathway by reducing 4-HNE secretion.


Subject(s)
Myocardial Reperfusion Injury , Sirtuin 3 , Mice , Animals , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Signal Transduction , Autophagy
17.
Int J Stroke ; 19(3): 271-279, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37466245

ABSTRACT

Remote ischemic conditioning (RIC) is the application of brief periods of ischemia to an organ or tissue with the aim of inducing protection from ischemia in a distant organ. It was first developed as a cardioprotective strategy but has been increasingly investigated as a neuroprotective intervention. The mechanisms by which RIC achieves neuroprotection are incompletely understood. Preclinical studies focus on the hypothesis that RIC can protect the brain from ischemia reperfusion (IR) injury following the restoration of blood flow after occlusion of a large cerebral artery. However, increasingly, a role of chronic RIC (CRIC) is being investigated as a means of promoting recovery following an ischemic insult to the brain. The recent publication of two large, randomized control trials has provided promise that RIC could improve functional outcomes after acute ischemic stroke, and that there may be a role for CRIC in the prevention of recurrent stroke. Although less developed, there is also proof-of-concept to suggest that RIC may be used to reduce vasospasm after subarachnoid hemorrhage or improve cognitive outcomes in vascular dementia. As a cheap, well-tolerated and almost universally applicable intervention, the motivation for investigating possible benefit of RIC in patients with cerebrovascular disease is great. In this review, we shall review the current evidence for RIC as applied to cerebrovascular disease.


Subject(s)
Ischemic Stroke , Stroke , Subarachnoid Hemorrhage , Humans , Stroke/prevention & control , Brain/blood supply , Ischemia
18.
CNS Neurosci Ther ; 30(4): e14507, 2024 04.
Article in English | MEDLINE | ID: mdl-37927203

ABSTRACT

BACKGROUND AND PURPOSE: Stroke is a leading cause of global morbidity and mortality, indicating the necessity and urgency of effective prevention and treatment. Remote ischemic conditioning (RIC) is a convenient, simple, non-intrusive, and effective method that can be easily added to the treatment regime of stroke patients. Animal experiments and clinical trials have proved the neuroprotective effects of RIC on brain injury including (examples of neuroprotective effects). This neuroprotection is achieved by raising brain tolerance to ischemia, increasing local cerebral blood perfusion, promoting collateral circulations, neural regeneration, and reducing the incidence of hematomas in brain tissue. This current paper will summarize the studies within the last 2 years for the comprehensive understanding of the use of RIC in the treatment of stroke. METHODS: This paper summarizes the clinical research progress of RIC on stroke (ischemic stroke and hemorrhagic stroke (HS)). This paper is a systematic review of research published on registered clinical trials using RIC in stroke from inception through November 2022. Four major databases (PUBMED, WEB OF SCIENCE, EMBASE, and ClinicalTrials.gov) were searched. RESULTS: Forty-eight studies were identified meeting our criteria. Of these studies, 14 were in patients with acute ischemic stroke with onset times ranging from 6 h to 14 days, seven were in patients with intravenous thrombolysis or endovascular thrombectomy, 10 were in patients with intracranial atherosclerotic stenosis, six on patients with vascular cognitive impairment, three on patients with moyamoya disease, and eight on patients with HS. Of the 48 studies, 42 were completed and six are ongoing. CONCLUSIONS: RIC is safe, feasible, and effective in the treatment of stroke. Large-scale research is still required to explore the optimal treatment options and mechanisms of RIC in the future to develop a breakthrough in stroke prevention and treatment.


Subject(s)
Brain Ischemia , Ischemic Preconditioning , Ischemic Stroke , Neuroprotective Agents , Stroke , Animals , Humans , Brain Ischemia/prevention & control , Ischemic Preconditioning/methods , Stroke/prevention & control , Ischemia
19.
Resuscitation ; 195: 110003, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37839518

ABSTRACT

RATIONALE: Restoration of blood flow after out-of-hospital cardiac arrest (OHCA) is associated with inflammation that causes cellular injury. The extent of this reperfusion injury (RI) is associated with the duration of ischemia and adequacy of resuscitation. Remote ischemic conditioning (RIC) consists of repeated application of non-lethal ischemia then reperfusion to a limb distal to the heart by inflating a blood pressure (BP) cuff. Trials in animal models in cardiac arrest and in humans with acute infarction show RIC reduces RI. OBJECTIVE: We sought to demonstrate the feasibility and safety of RIC in patients resuscitated from OHCA and transported to hospital. METHODS: This study was conducted under exception from informed consent (EFIC) for emergency research. Eligible subjects were randomized with masked allocation to control (standard care) versus intervention (standard care and RIC). Included were adults with non-traumatic OHCA. The primary outcome was attrition, the proportion of patients enrolled and not on allocated therapy for the study duration. Key secondary outcomes were survival to discharge, neurologic status at discharge, hospital-free survival, and adverse events. Results were summarized descriptively as recommended for pilot studies. RESULTS: N = 30 patients were enrolled (n = 14 control, n = 16 intervention). Mean age of enrolled patients was 52.5 ± 16.2 years. Eight (27%) were female gender and 7 (23%) had a shockable first recorded rhythm. 100% of enrolled patients completed their allocated study intervention (i.e., 0% attrition). The RIC group had 7 (44%) survival to discharge and median Rankin score of 6 (IQR 1, 6) at discharge as compared to the standard care group which had 6 (43%) survival to discharge and median Rankin score of 6 (IQR 1.5, 6) at discharge. A single patient (6%) in the intervention group had transient occlusion of their upper extremity intravenous line, which immediately resolved on repositioning of the blood pressure cuff. CONCLUSION: Application of RIC to patients resuscitated from CA and transported to an ED is feasible and safe. An adequately powered trial is required to assess whether RIC is effective at decreasing morbidity and mortality after CA.


Subject(s)
Ischemia , Out-of-Hospital Cardiac Arrest , Adult , Humans , Female , Middle Aged , Aged , Male , Treatment Outcome , Feasibility Studies , Resuscitation , Out-of-Hospital Cardiac Arrest/therapy
20.
CNS Neurosci Ther ; 30(3): e14451, 2024 03.
Article in English | MEDLINE | ID: mdl-37664879

ABSTRACT

AIMS: A post hoc analysis of RICAMIS trial to evaluate functional outcomes in relation to patient age. METHODS: Patients in RICAMIS were divided into six age groups. The primary outcome was excellent functional outcome at 90 days, defined as modified Rankin Scale (mRS) score of 0-1. Compared with patients receiving usual care alone, we investigated the association of remote ischemic conditioning (RIC) effect with functional outcomes in each group and the interaction between RIC effect and age. RESULTS: Of 1776 patients, 498 were assigned to <60 years, 326 to 60 to <65 years, 325 to 65 to <70 years, 278 to 70 to <75 years, 206 to 75 to <80 years, and 143 to ≥80 years. Higher proportions of primary outcome were found associated with RIC in <60 years group (72.6% vs. 64.8%; adjusted risk difference [RD], 6.8%; 95% CI, -1.6% to 15.1%; p = 0.11), 60 to <65 years group (70.7% vs. 67.1%; adjusted RD, 3.1%; 95% CI, -7.2% to 13.3%; p = 0.56), 65 to <70 years group (70.5% vs. 63.6%; adjusted RD, 3.5%; 95% CI, -6.8% to 13.8%; p = 0.51), 70 to <75 years group (59.7% vs. 54.9%; adjusted RD, 4.7%; 95% CI, -7.1% to 16.4%; p = 0.61), 75 to <80 years group (61.5% vs. 55.9%; adjusted RD, 5.7%; 95% CI, -7.8% to 19.1%; p = 0.41), and ≥ 80 years group (59.2% vs. 59.7%; adjusted RD, -2.6%; 95% CI, -18.8% to 13.5%; p = 0.75). No significant interaction between RIC effect and age was found among groups. CONCLUSIONS: This is the first report that RIC effect may be attenuated with increasing age in patients with acute moderate ischemic stroke with respect to functional outcome.


Subject(s)
Ischemic Stroke , Stroke , Humans , Stroke/therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...