Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 14: 1092603, 2023.
Article in English | MEDLINE | ID: mdl-37124745

ABSTRACT

In this study, the semen parameters, sperm chromatin integrity, antioxidant enzyme levels, and reproductive hormone levels of subfertile male subjects from Pakistan were assessed in relation to their age. Data on the demographic characteristics of the 750 study participants, including their general health, body mass index (BMI), and reproductive status, were collected from subfertile men from Pakistan. Semen and blood were collected to determine standard semen parameters, sperm chromatin dispersion (Halosperm-SCD), sperm chromatin integrity using toluidine blue (TB) staining, sperm chromatin maturity using chromomycin A3 (CMA3+) staining, and reproductive hormone (FSH, LH, prolactin and testosterone levels). The patients were divided into three groups according to their age: Group 1 included male subjects aged 30 years or less (n = 90), Group 2 included male subjects between the ages of 31 and 40 years (n = 330), and Group 3 included male subjects over 40 years of age (n = 330). Conventional semen parameters, reactive oxygen species (ROS), superoxide dismutase (SOD), guaiacol peroxidase (GPX), catalase (CAT), and lipid peroxidation (MDA) did not statistically (p > 0.05) differ with increasing male age or between different age groups. When compared to younger men (<30 years), sperm SCD (23.2 ± 0.88%) was significantly (p = 0.01) lower as compared to male patients aged >40 years (26.6 ± 0.6%). The concentration of LH, FSH, and testosterone levels were comparable between the groups (p > 0.05), while a significant (p = 0.04) increase in sperm chromatin immaturity CMA3+ (30 ± 0.71%) was observed in the old age group (>40 years) compared to the <30-year group (26.6 ± 1.03%). A positive association was observed between advanced male age and sperm chromatin dispersion (SCD) (r = 0.124, p = 0.001) and decondensation (CMA3+) (r = 0.1, p = 0.009). Despite potential limitations, this study has been carried out with extensive information on the potential risk of male age on sperm integrity. The present study demonstrated the impact of male age on male reproductive health, as these patients had a higher percentage of sperm chromatin damage (SCD) in their semen. Sperm DNA damage assessment will help in the evaluation and diagnosis of the underlying cause of poor fertility and can help clinicians in selecting the right treatment options. Male age is one of the factors that have an impact on the decline in male fertility. As a result, it is preferable for patients receiving assisted reproductive technology to be younger.


Subject(s)
Infertility, Male , Semen , Humans , Male , Chromatin , Infertility, Male/diagnosis , Sperm Count , Sperm Motility , Spermatozoa , Prolactin/genetics , Follicle Stimulating Hormone , Testosterone , Biomarkers
2.
Environ Health Prev Med ; 26(1): 103, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34635049

ABSTRACT

BACKGROUND: Exposure to the ionizing radiation (IR) encountered outside the magnetic field of the Earth poses a persistent threat to the reproductive functions of astronauts. The potential effects of space IR on the circadian rhythms of male reproductive functions have not been well characterized so far. METHODS: Here, we investigated the circadian effects of IR exposure (3 Gy X-rays) on reproductive functional markers in mouse testicular tissue and epididymis at regular intervals over a 24-h day. For each animal, epididymis was tested for sperm motility, and the testis tissue was used for daily sperm production (DSP), testosterone levels, and activities of testicular enzymes (glucose-6-phosphate dehydrogenase (G6PDH), sorbitol dehydrogenase (SDH), lactic dehydrogenase (LDH), and acid phosphatase (ACP)), and the clock genes mRNA expression such as Clock, Bmal1, Ror-α, Ror-ß, or Ror-γ. RESULTS: Mice exposed to IR exhibited a disruption in circadian rhythms of reproductive markers, as indicated by decreased sperm motility, increased daily sperm production (DSP), and reduced activities of testis enzymes such as G6PDH, SDH, LDH, and ACP. Moreover, IR exposure also decreased mRNA expression of five clock genes (Clock, Bmal1, Ror-α, Ror-ß, or Ror-γ) in testis, with alteration in the rhythm parameters. CONCLUSION: These findings suggested potential health effects of IR exposure on reproductive functions of male astronauts, in terms of both the daily overall level as well as the circadian rhythmicity.


Subject(s)
Circadian Rhythm/radiation effects , Gene Expression/radiation effects , Genitalia, Male/radiation effects , Radiation Exposure , Radiation, Ionizing , Reproductive Physiological Phenomena/radiation effects , ARNTL Transcription Factors/genetics , Acid Phosphatase , Animals , CLOCK Proteins/genetics , Epididymis/radiation effects , Glucosephosphate Dehydrogenase , L-Iditol 2-Dehydrogenase , L-Lactate Dehydrogenase , Male , Mice , Mice, Inbred C57BL , Models, Animal , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 2/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , RNA, Messenger/genetics , Sperm Motility/radiation effects , Spermatozoa/radiation effects , Testis/enzymology , Testis/radiation effects
3.
Article in English | WPRIM (Western Pacific) | ID: wpr-922197

ABSTRACT

BACKGROUND@#Exposure to the ionizing radiation (IR) encountered outside the magnetic field of the Earth poses a persistent threat to the reproductive functions of astronauts. The potential effects of space IR on the circadian rhythms of male reproductive functions have not been well characterized so far.@*METHODS@#Here, we investigated the circadian effects of IR exposure (3 Gy X-rays) on reproductive functional markers in mouse testicular tissue and epididymis at regular intervals over a 24-h day. For each animal, epididymis was tested for sperm motility, and the testis tissue was used for daily sperm production (DSP), testosterone levels, and activities of testicular enzymes (glucose-6-phosphate dehydrogenase (G6PDH), sorbitol dehydrogenase (SDH), lactic dehydrogenase (LDH), and acid phosphatase (ACP)), and the clock genes mRNA expression such as Clock, Bmal1, Ror-α, Ror-β, or Ror-γ.@*RESULTS@#Mice exposed to IR exhibited a disruption in circadian rhythms of reproductive markers, as indicated by decreased sperm motility, increased daily sperm production (DSP), and reduced activities of testis enzymes such as G6PDH, SDH, LDH, and ACP. Moreover, IR exposure also decreased mRNA expression of five clock genes (Clock, Bmal1, Ror-α, Ror-β, or Ror-γ) in testis, with alteration in the rhythm parameters.@*CONCLUSION@#These findings suggested potential health effects of IR exposure on reproductive functions of male astronauts, in terms of both the daily overall level as well as the circadian rhythmicity.


Subject(s)
Animals , Male , Mice , ARNTL Transcription Factors/genetics , Acid Phosphatase , CLOCK Proteins/genetics , Circadian Rhythm/radiation effects , Epididymis/radiation effects , Gene Expression/radiation effects , Genitalia, Male/radiation effects , Glucosephosphate Dehydrogenase , L-Iditol 2-Dehydrogenase , L-Lactate Dehydrogenase , Mice, Inbred C57BL , Models, Animal , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 2/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , RNA, Messenger/genetics , Radiation Exposure , Radiation, Ionizing , Reproductive Physiological Phenomena/radiation effects , Sperm Motility/radiation effects , Spermatozoa/radiation effects , Testis/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...