Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 605
Filter
1.
Mol Ecol ; : e17455, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38993011

ABSTRACT

Explaining variation in individual fitness is a key goal in evolutionary biology. Recently, telomeres, repeating DNA sequences capping chromosome ends, have gained attention as a biomarker for body state, physiological costs, and senescence. Existing research has provided mixed evidence for whether telomere length correlates with fitness, including survival and reproductive output. Moreover, few studies have examined how the rate of change in telomere length correlates with fitness in wild populations. Here, we intensively monitored an insular population of house sparrows, and collected longitudinal telomere and life history data (16 years, 1225 individuals). We tested whether telomere length and its rate of change predict fitness measures, namely survival, lifespan and annual and lifetime reproductive effort and success. Telomere length positively predicted short-term survival, independent of age, but did not predict lifespan, suggesting either a diminishing telomere length-survival correlation with age or other extrinsic factors of mortality. The positive association of telomere length with survival translated into reproductive benefits, as birds with longer telomeres produced more genetic recruits, hatchlings and reared more fledglings over their lifetime. In contrast, there was no association between telomere dynamics and annual reproductive output, suggesting telomere dynamics might not reflect the costs of reproduction in this population, potentially masked by variation in individual quality. The rate of change of telomere length did not correlate with neither lifespan nor lifetime reproductive success. Our results provide further evidence that telomere length correlates with fitness, and contribute to our understanding of the selection on, and evolution of, telomere dynamics.

2.
Ecol Evol ; 14(7): e11655, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966243

ABSTRACT

Due to rapid homogenization in habitat types as a result of urbanization, some urban birds adapt their nesting strategies to changes in local habitat characteristics. Bird nesting decisions might have been mainly linked to resource constraints and ensuring reproductive success. In this study, we examined patterns of nesting behavior by spotted doves (Spilopelia chinensis) in a rapidly urbanizing area of Nanchang, China using ArcGIS 10.8, satellite tracking, camera traps, and field survey. To explore the mechanisms underlying nesting behavior in urban habitats, we assessed the correlations between nest reuse and reproductive success, and between nest reuse and nest predation. From December 2018 to December 2021, a total of 302 breeding nests were surveyed. The results revealed that the nest reuse rate was 38.08% (n = 115). Nests closer to trunk, with lower nest position and higher large-scale urbanization score tended to have higher reuse rate. In addition, nests with the higher the nest height and percent of canopy cover, and the lower small-scale urbanization score were more likely to reproduce successfully, and the reused nests also reproduce more successfully. The reproductive success associated with nest reuse was significantly higher than that associated with new nests (χ 2 = 8.461, p = .004). High degree of urbanization promoted nest reuse of spotted doves (large-scale urbanization score, z = 2.094, p = .036), which apparently enhanced their reproductive success (nest reuse, z = 2.737, p = .006). In conclusion, a nest structure with good permeability is the material basis for the nest reuse in spotted dove, while the relatively low risk of predation in urban habitat and the scarcity of nest site resources due to urbanization increase the tendency of birds to reuse old nests, which is associated with their reproductive success and evolutionary fitness.

3.
Ann Bot ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864775

ABSTRACT

BACKGROUND AND AIMS: Abiotic and biotic components of the environment both limit plant reproduction, but how they interact with one another in combination is less understood. Understanding these interactions is especially relevant because abiotic and biotic environmental components respond differently to various global change drivers. Here we aim to understand whether the effects of pollination (biotic component) on plant reproduction depend on soil moisture (abiotic component), two factors known to affect plant reproduction and that are changing with global change. METHODS: We conducted pollen supplementation experiments for two plant species, Delphinium nuttallianum and Hydrophyllum fendleri, in subalpine meadows in the Western USA across four years that varied in soil moisture. In a separate one-year field experiment, we factorially crossed water addition with pollen supplementation. We measured proportion fruit set, seeds per fruit, and seeds per plant, in addition to stomatal conductance, to determine whether plant physiology responded to watering. KEY RESULTS: In the four-year study, only H. fendleri reproduction was pollen limited, and this occurred independently of soil moisture. Experimental water addition significantly increased soil moisture and stomatal conductance for both species. The effect of pollen addition on reproduction depended on the watering treatment only for H. fendleri fruit production. Reproduction in D. nuttallianum was not significantly affected by pollen addition or water addition, but it did respond to interannual variation in soil moisture. CONCLUSIONS: Although we find some evidence for the effect of a biotic interaction depending on abiotic conditions, it was only for one aspect of reproduction in one species, and it was in an unexpected direction. Our work highlights interactions between the abiotic and biotic components of the environment as an area of further research for improving our understanding of how plant reproduction responds to global change.

4.
Proc Natl Acad Sci U S A ; 121(25): e2305948121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857400

ABSTRACT

For over a century, the evolution of animal play has sparked scientific curiosity. The prevalence of social play in juvenile mammals suggests that play is a beneficial behavior, potentially contributing to individual fitness. Yet evidence from wild animals supporting the long-hypothesized link between juvenile social play, adult behavior, and fitness remains limited. In Western Australia, adult male bottlenose dolphins (Tursiops aduncus) form multilevel alliances that are crucial for their reproductive success. A key adult mating behavior involves allied males using joint action to herd individual females. Juveniles of both sexes invest significant time in play that resembles adult herding-taking turns in mature male (actor) and female (receiver) roles. Using a 32-y dataset of individual-level association patterns, paternity success, and behavioral observations, we show that juvenile males with stronger social bonds are significantly more likely to engage in joint action when play-herding in actor roles. Juvenile males also monopolized the actor role and produced an adult male herding vocalization ("pops") when playing with females. Notably, males who spent more time playing in the actor role as juveniles achieved more paternities as adults. These findings not only reveal that play behavior provides male dolphins with mating skill practice years before they sexually mature but also demonstrate in a wild animal population that juvenile social play predicts adult reproductive success.


Subject(s)
Bottle-Nosed Dolphin , Reproduction , Sexual Behavior, Animal , Social Behavior , Animals , Male , Bottle-Nosed Dolphin/physiology , Female , Reproduction/physiology , Sexual Behavior, Animal/physiology , Western Australia , Vocalization, Animal/physiology , Play and Playthings
5.
Mol Ecol ; 33(14): e17435, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38877757

ABSTRACT

Linking reproductive fitness with adaptive traits at the genomic level can shed light on the mechanisms that produce and maintain sex-specific selection. Here, we construct a multigenerational pedigree to investigate sex-specific selection on a maturation gene, vgll3, in a wild Atlantic salmon population. The vgll3 locus is responsible for ~40% of the variation in maturation (sea age at first reproduction). Genetic parentage analysis was conducted on 18,265 juveniles (parr) and 685 adults collected at the same spawning ground over eight consecutive years. A high proportion of females (26%) were iteroparous and reproduced two to four times in their lifetime. A smaller proportion of males (9%) spawned at least twice in their lifetime. Sex-specific patterns of reproductive fitness were related to vgll3 genotype. Females showed a pattern of overdominance where vgll3*EL genotypes had three-fold more total offspring than homozygous females. In contrast, males demonstrated that late-maturing vgll3*LL individuals had two-fold more offspring than either vgll3*EE or vgll3*EL males. Taken together, these data suggest that balancing selection in females contributes to the maintenance of variation at this locus via increased fitness of iteroparous vgll3*EL females. This study demonstrates the utility of multigenerational pedigrees for uncovering complex patterns of reproduction, sex-specific selection and the maintenance of genetic variation.


Subject(s)
Genetic Fitness , Genotype , Reproduction , Salmo salar , Animals , Female , Male , Salmo salar/genetics , Reproduction/genetics , Pedigree , Fish Proteins/genetics , Sexual Maturation/genetics
6.
Ecotoxicol Environ Saf ; 281: 116605, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38936052

ABSTRACT

Our environment is increasingly polluted with various molecules, some of which are considered endocrine disruptors. Metals and phthalates, originating from industrial activities, agricultural practices, or consumer products, are prominent examples of such pollutants. We experimentally investigated the impacts of the heavy metal cadmium and the phthalate DEHP on the moth Spodoptera littoralis. More specifically, larvae were reared in laboratory conditions, where they were exposed to diets contaminated with either two doses of cadmium at concentrations of 62.5 µg/g or 125 µg/g, two doses of DEHP at 100 ng/g and 10 µg/g, or a combination of both low and high doses of the two compounds, with a control group for comparison. Our findings indicate that cadmium delays the developmental transition from larva to adult. Notably, the combination of cadmium and DEHP exacerbated this delay, highlighting a synergistic effect. In contrast, DEHP alone did not affect larval development. Additionally, we observed that cadmium exposure, both alone and in combination with DEHP, led to a lower mass at all larval stages. However, cadmium-exposed individuals that reached adulthood eventually reached a similar mass to those in other groups. Interestingly, while our results did not show any effect of the treatments on hatching success, there was a higher adult mortality rate in the cadmium-treated groups. This suggests that while moths may prioritize reproductive success, their survival at the adult stage is compromised by cadmium exposure. In conclusion, our study demonstrates the impact of cadmium on the development, mass, and adult survival of moths, and reveals synergistic effects when combined with DEHP. These results confirm cadmium as an endocrine disruptor, even at low doses. These insights underscore the importance of understanding the toxicological effects of low doses of pollutants like cadmium and DEHP, both individually and in combination.

7.
Sci Rep ; 14(1): 14869, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937513

ABSTRACT

This study investigates the ecological interaction between honeybees (Apis mellifera) and fennel (Foeniculum vulgare) plants, examining the mutual benefits of this relationship. Field experiments conducted in Egypt from December 2022 to May 2023 recorded diverse insect pollinators attracted to fennel flowers, especially honeybees. Assessing honeybee colonies near fennel fields showed improvements in sealed brood (357.5-772.5 cells), unsealed brood (176.3-343.8 cells), pollen collection (53.25-257.5 units), honey accumulation (257.5-877.5 units), and colony strength (7.75-10) over three weeks. Fennel exposure explained 88-99% of variability in foraging metrics. Comparing open versus self-pollinated fennel revealed enhanced attributes with bee pollination, including higher flower age (25.67 vs 19.67 days), more seeds per umbel (121.3 vs 95.33), bigger seeds (6.533 vs 4.400 mm), heavier seeds (0.510 vs 0.237 g/100 seeds), and increased fruit weight per umbel (0.619 vs 0.226 g). Natural variation in seed color and shape also occurred. The outcomes demonstrate the integral role of honeybees in fennel agroecosystems through efficient pollination services that improve crop productivity and quality. Fennel provides abundant nutritional resources that bolster honeybee colony health. This research elucidates the symbiotic bee-fennel relationship, underscoring mutualistic benefits and the importance of ecological conservation for sustainable agriculture.


Subject(s)
Foeniculum , Pollination , Bees/physiology , Animals , Flowers , Crop Production/methods , Crops, Agricultural/growth & development , Egypt , Pollen
8.
Ecol Evol ; 14(6): e11460, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826173

ABSTRACT

Avian eggs develop outside of the female body, and therefore embryonic development is subject to multiple internal (physiological) and external (ecological) factors. Embryonic developmental rate has important consequences for survival. Within species, embryos that develop too quickly often experience deformities, disorders, or mortality, while embryos that develop slowly risk inviability and increase the time they are exposed to various sources of mortality in the nest. These contrasting forces may lead to interspecific variation in developmental rates. We investigated potential factors affecting embryonic heart rate (EHR), a proxy of development, across 14 passerine species in the field. More specifically, we investigated if nest predation risk, clutch size, seasonality, and egg volume influenced EHR. From previous research, we expected, and found, that EHR was positively associated with embryonic age and egg temperature. Species with greater nest predation risk had higher EHR, shorter incubation periods, and lower nest temperature variance. EHR increased as the season progressed and with egg volume, while EHR declined with clutch size. Bird species exhibit varying strategies to increase nestling and fledgling survival in response to predation risk, and these results suggest that variation in embryonic development may be related to species-specific differences in nest predation risk.

9.
Ann Bot ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722218

ABSTRACT

BACKGROUND AND AIMS: The majority of the earth's land area is currently occupied by humans. Measuring how terrestrial plants reproduce in these pervasive environments is essential for understanding their long-term viability and their ability to adapt to changing environments. METHODS: We conducted hierarchical and phylogenetically-independent meta-analyses to assess the overall effects of anthropogenic land-use changes on pollination, and male and female fitness in terrestrial plants. KEY RESULTS: We found negative global effects of land use change (i.e., mainly habitat loss and fragmentation) on pollination and on female and male fitness of terrestrial flowering plants. Negative effects were stronger in plants with self-incompatibility (SI) systems and pollinated by invertebrates, regardless of life form and sexual expression. Pollination and female fitness of pollination generalist and specialist plants were similarly negatively affected by land-use change, whereas male fitness of specialist plants showed no effects. CONCLUSIONS: Our findings indicate that angiosperm populations remaining in fragmented habitats negatively affect pollination, and female and male fitness, which will likely decrease the recruitment, survival, and long-term viability of plant populations remaining in fragmented landscapes. We underline the main current gaps of knowledge for future research agendas and call out not only for a decrease in the current rates of land-use changes across the world but also to embark on active restoration efforts to increase the area and connectivity of remaining natural habitats.

10.
Ann Bot ; 134(2): 325-336, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38720433

ABSTRACT

BACKGROUND AND AIMS: There are intrinsic conflicts between signalling to mutualists and concealing (camouflaging) from antagonists. Like animals, plants also use camouflage as a defence against herbivores. However, this can potentially reduce their attractiveness to pollinators. METHODS: Using Fritillaria delavayi, an alpine camouflaged plant with inter-population floral colour divergence, we tested the influence of floral trait differences on reproduction. We conducted pollination experiments, measured floral morphological characteristics, estimated floral colours perceived by pollinators, analysed floral scent and investigated reproductive success in five populations. KEY RESULTS: We found that the reproduction of F. delavayi depends on pollinators. Under natural conditions, a flower-camouflaged population had 100 % fruit set and similar seed set to three out of four yellow-flowered populations. Bumblebees are important pollinators in the visually conspicuous yellow-flowered populations, whereas flies are the only pollinator in the flower-camouflaged population, visiting flowers more frequently than bumblebees. The camouflaged flowers cannot be discriminated from the rock background as perceived by pollinators, but may be located by flies through olfactory cues. CONCLUSIONS: Collectively, our results demonstrate that the flower-camouflaged population has different reproductive traits from the visually conspicuous yellow-flowered populations. A pollinator shift from bumblebees to flies, combined with high visitation frequency, compensates for the attractiveness disadvantage in camouflaged plants.


Subject(s)
Flowers , Fritillaria , Pollination , Reproduction , Pollination/physiology , Animals , Flowers/physiology , Flowers/anatomy & histology , Reproduction/physiology , Bees/physiology , Fritillaria/physiology , Diptera/physiology , Color , Fruit/physiology , Biological Mimicry/physiology , Pigmentation/physiology
11.
Biol Rev Camb Philos Soc ; 99(4): 1504-1523, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38597347

ABSTRACT

The Darwin-Bateman paradigm predicts that females enhance their fitness by being choosy and mating with high-quality males, while males should compete to mate with as many females as possible. In many species, males enhance their fitness by defending females and/or resources used by females. That is, males directly defend access to mating opportunities. However, paternity analyses have repeatedly shown that females in most species mate polyandrously, which contradicts traditional expectations that male defensive behaviours lead to monandry. Here, in an extensive meta-analysis, encompassing 109 species and 1026 effect sizes from across the animal kingdom, we tested if the occurrence of defensive behaviours modulates sexual selection on females and males. If so, we can illuminate the extent to which males really succeed in defending access to mating and fertilisation opportunities. We used four different indices of the opportunity for sexual selection that comprise pre-mating and/or post-mating episodes of selection. We found, for both sexes, that the occurrence of defensive behaviours does not modulate the potential strength of sexual selection. This implies that male defensive behaviours do not predict the true intensity of sexual selection. While the most extreme levels of sexual selection on males are in species with male defensive behaviours, which indicates that males do sometimes succeed in restricting females' re-mating ability (e.g. elephant seals, Mirounga leonina), estimates of the opportunity for sexual selection vary greatly across species, regardless of whether or not defensive behaviours occur. Indeed, widespread polyandry shows that females are usually not restricted by male defensive behaviours. In addition, our results indicate that post-mating episodes of selection, such as cryptic female choice and sperm competition, might be important factors modulating the opportunity for sexual selection. We discuss: (i) why male defensive behaviours fail to lower the opportunity for sexual selection among females or fail to elevate it for males; (ii) how post-mating events might influence sexual selection; and (iii) the role of females as active participants in sexual selection. We also highlight that inadequate data reporting in the literature prevented us from extracting effect sizes from many studies that had presumably collected the relevant data.


Subject(s)
Sexual Behavior, Animal , Animals , Female , Male , Mating Preference, Animal/physiology , Sexual Behavior, Animal/physiology , Sexual Selection
12.
Sci Rep ; 14(1): 9022, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38641646

ABSTRACT

Using a recursion model with real parameters of Nabis pseudoferus, we show that its filial cannibalism is an optimal foraging strategy for life reproductive success, but it is not an evolutionarily optimal foraging strategy, since it cannot maximize the descendant's number at the end of the reproductive season. Cannibalism is evolutionarily rational, when the number of newborn offspring produced from the cannibalized offspring can compensate the following two effects: (a) The cannibalistic lineage wastes time, since the individuals hatched from eggs produced by cannibalism start to reproduce later. (b) Cannibalism eliminates not only one offspring, but also all potential descendants from the cannibalized offspring during the rest of reproductive season. In our laboratory trials, from conspecific prey Nabis pseudoferus did not produce newborn nymphs enough to compensate the above two effects.


Subject(s)
Cannibalism , Reproduction , Humans , Infant, Newborn
13.
Evol Appl ; 17(4): e13678, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38617826

ABSTRACT

Reintroduction is an important tool for the recovery of imperiled species. For threatened Pacific salmonids (Oncorhynchus spp.) species, hatchery-origin (HOR) individuals from a nearby source are often used to reestablish populations in vacant, historically occupied habitat. However, this approach is challenged by the relatively low reproductive success that HOR Pacific salmonids experience when they spawn in the wild, relative to their natural-origin (NOR) counterparts. In this study, we used genetic parentage analysis to compare the reproductive success of three groups of adult Chinook salmon (Oncorhynchus tshawytscha) reintroduced above Cougar Dam on the South Fork McKenzie River, Oregon: HOR Chinook salmon from an integrated stock; first-generation, wild-born descendants (hereafter F 1s) of Chinook salmon produced at the same hatchery; and NOR Chinook salmon that are presumed to have been produced below the dam, on the mainstem McKenzie River, or elsewhere and volitionally entered a trap below Cougar Dam. We found that F 1s produced nearly as many adult offspring as NORs, and 1.8-fold more adult offspring than HORs. This result suggests that, for the South Fork McKenzie reintroduction program, a single generation in the wild increases fitness for the descendants of HOR Chinook salmon. Although these results are encouraging, care must be taken before extrapolating our results to other systems.

14.
Microb Ecol ; 87(1): 62, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683223

ABSTRACT

Here, we demonstrate the beneficial effect of surfactant-producing pseudomonads on Pantoea eucalypti 299R. We conducted a series of experiments in environments of increasing complexity. P. eucalypti 299R (Pe299R), and Pseudomonas sp. FF1 (Pff1) or Pe299R and surfactant-production deficient Pseudomonas sp. FF1::ΔviscB (Pff1ΔviscB) were co-inoculated in broth, on swarming agar plates, and on plants. In broth, there were no differences in the growth dynamics of Pe299R when growing in the presence of Pff1 or Pff1ΔviscB. By contrast, on swarming agar plates, Pe299R was able to co-swarm with Pff1 which led to a significant increase in Pe299R biomass compared to Pe299R growing with Pff1ΔviscB or in monoculture. Finally in planta, and using the single-cell bioreporter for reproductive success (CUSPER), we found a temporally distinct beneficial effect of Pff1 on co-inoculated Pe299R subpopulations that did not occur in the presence of Pff1ΔviscB. We tested three additional surfactant-producing pseudomonads and their respective surfactant knockout mutants on PE299R on swarming agar showing similar results. This led us to propose a model for the positive effect of surfactant production during leaf colonization. Our results indicate that co-motility might be common during leaf colonization and adds yet another facet to the already manyfold roles of surfactants.


Subject(s)
Pantoea , Pseudomonas , Surface-Active Agents , Pantoea/genetics , Pantoea/metabolism , Pantoea/physiology , Pantoea/growth & development , Pseudomonas/metabolism , Pseudomonas/genetics , Pseudomonas/growth & development , Pseudomonas/physiology , Surface-Active Agents/metabolism
15.
J Plant Res ; 137(4): 605-617, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38506958

ABSTRACT

The intervention of nectar robbers in plant pollination systems will cause some pollinators to modify their foraging behavior to act as secondary robbers, consequently adopting a mixed foraging strategy. The influence of nectar robbing on pollinator behavior may be affected by spatio-temporal difference of robbing intensity, and consequently, may have different effects on the pollination of host plants. However, whether and how the nectar robbing might influence pollinators under different robbing intensity still needs further investigation. In this study, Symphytum officinale was used to detect the effect of nectar robbers on pollinators under different robbing intensity as well as their effects on plant reproductive success. Six robbing levels and three bumblebees with mixed foraging behaviors were used to evaluate the effect of different robbing intensity on pollinator behavior, visitation rate, flower longevity and pollen deposition. Our results indicated that the robbing rate increased gradually with the proportion of robbed flowers, but which did not affect the frequency of legitimate visits. The increase of robbing rate promoted the corolla abscission, and then enhanced the self-pollen deposition, but which had no significant effect on cross-pollen deposition. These results indicate that the overall fitness of S. officinale was improved by combined self and cross-pollination modes when visited by both pollinators and nectar robbers simultaneously. Although nectar robbing is not uncommon, its consequences for pollination in the interaction web have not been well studied. Our results emphasize the significance of indirect impacts in mediating the adaptive outcomes of species interactions.


Subject(s)
Boraginaceae , Flowers , Plant Nectar , Pollination , Reproduction , Pollination/physiology , Flowers/physiology , Animals , Bees/physiology , Reproduction/physiology , Plant Nectar/physiology , Boraginaceae/physiology , Pollen/physiology
16.
Ann Bot ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38437644

ABSTRACT

BACKGROUND AND AIMS: Fire may favour plant flowering by opening the vegetation and increasing abiotic resource availability. Increased floral display size can attract more pollinators and increase the absolute fruit and seed production immediately after the fire. However, anthropogenic increases in fire frequency may alter these responses. We aim to assess the effects of fire on pollination and reproductive success of plants at the global scale. METHODS: We performed a systematic literature review and meta-analyses to examine overall fire effects as well as different fire parameters on pollination and on plant reproduction. We also explored to what extent the responses vary among pollinators, pollination vectors, plant regeneration strategies, compatibility systems, vegetation types and biomes. KEY RESULTS: Most studies were conducted in fire-prone ecosystems. Overall, single fires increased pollination and plant reproduction but this effect was overridden by recurrent fires. Floral visitation rates of pollinators were enhanced immediately following a wildfire, and especially in bee-pollinated plants. Fire increased the absolute production of fruits or seeds but not the fruit or seed set. The reproductive benefits were mostly observed in wind-pollinated (graminoids), herbaceous and resprouter species. Finally, fire effects on pollination were positively correlated with fire effects on plant reproductive success. CONCLUSIONS: Fire has a central role in pollination and plant sexual reproduction in fire-prone ecosystems. The increase in the absolute production of fruits and seeds suggests that fire benefits on plant reproduction are likely driven by increased abiotic resources and the consequent floral display size. However, reproduction efficiency, as measured by fruit or seed set, does not increase with fire. In contrast, when assessed on the same plant simultaneously, fire effects on pollination are translated into reproduction. Increased fire frequency due to anthropogenic changes can alter the nature of the response to fire.

17.
Ecol Evol ; 14(3): e10988, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476703

ABSTRACT

Reproductive success is an important demographic parameter that can be driven by environmental and behavioural factors operating on various spatio-temporal scales. As seabirds breed on land and forage in the ocean, processes occurring in both environments can influence their reproductive success. At various locations around East Antarctica, Adélie penguins' (Pygoscelis adeliae) reproductive success has been negatively linked to extensive sea-ice. In contrast, our study site in the Windmill Islands has limited fast ice present during the breeding season, allowing us to examine drivers of reproductive success under vastly different marine environmental conditions. Here, we examined the reproductive success of 450 Adélie penguin nests over a 10-year period using images obtained from remotely operated cameras. We analysed nest survival in relation to marine and climatic factors, environmental conditions at the camera site and immediately around the nest, and behavioural attributes reflecting parental investment and phenological timing. Our key result was a strong positive association between nest structure and chick survival, particularly when ground moisture and snow cover around the nest were high. Earlier nesting birds were more likely to build bigger nests, although it is unclear whether this is due to more time available to build nests or whether early arrival and high-quality nests are complementary traits. This intrinsic activity is likely to become more important if future predictions of increased snowfall in this region manifest.

18.
Ecol Evol ; 14(3): e11155, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476705

ABSTRACT

Agricultural intensification and climate change are serious threats toward animal populations worldwide. Agricultural intensification reduces the heterogeneity of agricultural habitats by diminishing crop variation and destroying microhabitats, such as small woody features, whereas the effects of climate change range from the growing frequency of weather extremes to disrupted prey-predator dynamics. We collected long-term ringing data from a population of Eurasian kestrels (Falco tinnunculus) located amidst agricultural areas in western Finland during 1985-2021, which we combined with density indices of their main prey species (voles), spatial data consisting of land cover classification of kestrel territories, and weather data, to study the effects of different environmental drivers on breeding density and success. We found that the density of inhabited nests rose with vole abundance and springtime snow depth, with the overall trend of population growth being stronger in areas with more heterogeneous landscapes. Clutch size was influenced negatively by the age of male parent and landscape heterogeneity, and positively by vole abundance, with rainfall having a negative influence conditional to other variables. Likewise, the number of produced fledglings was affected by male age, but it was additionally positively associated with landscape heterogeneity and its interaction with rainfall, with greater fledgling output in heterogeneous landscapes during high precipitation. The discrepancy between factors predicting large clutches and high numbers of fledglings suggests that while kestrels do not prefer heterogeneous landscapes when prospecting for territories, heterogeneous habitats provide better circumstances for foraging during the nestling period, which ensures nestling survival, particularly during adverse environmental conditions. Therefore, breeding in areas under intense agricultural use is more suboptimal to kestrels than their territory preferences would indicate. As changing climate may reduce prey availability and heighten the probability of weather extremities, agricultural intensification may lead to weaker reproductive success in densely populated farmland habitats.

19.
Front Behav Neurosci ; 18: 1355807, 2024.
Article in English | MEDLINE | ID: mdl-38468707

ABSTRACT

Alternative mating tactics within mating systems are characterized by discrete patterns of spatio-temporal overlap with same-and opposite-sex conspecifics and mating-relevant outcomes. Socially monogamous "residents" maintain relatively small home range sizes, have territories that almost exclusively overlap with their mating partners, and are more likely to produce offspring than non-bonded "wandering" conspecifics. Because mating tactics appear to be so closely tied to patterns of space use, differences in spatial cognitive abilities might differentially impact individual males' decisions to adopt a particular mating tactic and/or how efficient they are within their chosen mating tactic. Yet few studies have considered how the hippocampus, a brain region important for encoding cognitive maps and for processing contextual information, might impact how individuals adopt mating tactics or the spatio-temporal behaviors closely associated with them. We assessed the impact of lesions to the dorsal CA1 (dCA1) region of the hippocampus on male prairie vole space use, reproductive success, and mating tactics in semi-natural outdoor field conditions. Interestingly, dCA1 lesions did not impact the proportion of males that adopted resident or wandering mating tactics, and dCA1 lesions did not impact a male's ability to form a pair bond in the lab. In contrast, we found that lesioning the dCA1 shifted the home range size of reproductively successful and unsuccessful males. Furthermore, we found that patterns of space use among residents were unaffected by dCA1 lesions, whereas wanderers with dCA1 lesions showed pronounced reductions of their space use habits and resembled non-lesioned residents. Collectively, our study supports the hypothesis that wanderer male prairie voles rely on dCA1-mediated spatial cognition to navigate their world in a way that resident males do not. Such differences might have implications for how individuals efficiently attract and defend mates, obtain resources, defend territories, and outcompete rivals.

20.
Behav Ecol ; 35(2): arae013, 2024.
Article in English | MEDLINE | ID: mdl-38486921

ABSTRACT

Lifetime fitness and its determinants are an important topic in the study of behavioral ecology and life-history evolution. Early life conditions comprise some of these determinants, warranting further investigation into their impact. In some mammals, babies born lighter tend to have lower life expectancy than those born heavier, and some of these life-history traits are passed on to offspring, with lighter-born females giving birth to lighter offspring. We investigated how weight at weaning, the relative timing of birth in the season, maternal weight, and maternal age affected the longevity and lifetime reproductive success (LRS) of female Columbian ground squirrels (Urocitellus columbianus). We hypothesized that early life conditions such as offspring weight would not only have lifetime fitness consequences but also intergenerational effects. We found that weight at weaning had a significant impact on longevity, with heavier individuals living longer. The relative timing of an individual's birth did not have a significant association with either longevity or LRS. Individuals born to heavier mothers were found to have significantly higher LRS than those born to lighter mothers. Finally, maternal age was found to be significantly associated with their offspring's LRS, with older mothers having less successful offspring. Our results provide evidence that early life conditions do have lifelong fitness and sometimes intergenerational consequences for Columbian ground squirrels.

SELECTION OF CITATIONS
SEARCH DETAIL
...