Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.869
Filter
1.
Sci Rep ; 14(1): 15144, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956301

ABSTRACT

Porous ceramics were synthesized using porcelain tile polishing residue (PTPR) and slaked lime (Ca(OH)2) as a reinforcing agent through a hydrothermal autoclaving method. The process parameters, including the quantity of slaked lime added, the hydrothermal autoclaving temperature, and the reaction duration, were optimized meticulously. The composition, structure, thermal and physical properties of the samples were thoroughly analyzed via Brunauer-Emmett-Teller (BET) measurements, powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The results indicated that the incorporation of slaked lime and hydrothermal autoclaving led to the formation of calcium silicate hydrate, which corresponded with an enhancement in the strength of the sample. Notably, when the quantity of slaked lime added was optimized at 30 wt%, the formation of tobermorite (5CaO·6SiO2·5H2O) was detected. At a hydrothermal autoclaving temperature of 150 °C, the formation of only sheet-like calcium silicate hydrate was observed. In contrast, at an elevated temperature of 180 °C and 210 °C, needle-like tobermorite was successfully synthesized. The porous ceramic with the most favorable structure was obtained through autoclaving at 180 °C for 10 h with 30 wt% slaked lime, exhibiting a total pore volume of 0.11 mL/g, a specific surface area of 26.35 m2/g, and a mesoporous volume fraction of 90.40%.

2.
Anal Bioanal Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980331

ABSTRACT

Proquinazid is a new-generation fungicide authorized in the EU for combating powdery mildew infections in high-value crops. Due to the perishable nature of fruits, alternative analytical methods are necessary to protect consumer's health from pesticide residues. Currently, immunoassays are a well-established approach for rapidly monitoring chemical contaminants. However, the production of high-quality immunoreagents, such as antibodies and bioconjugates, is essential. This study presents a newly designed hapten that maintains the characteristic moieties of proquinazid unmodified. The linear aliphatic substituents of this molecule were used to introduce the spacer arm. A three-step synthesis strategy was optimized to prepare a hapten that displays the entire 6-iodoquinazolin-4(3H)-one moiety with excellent yields. The N-hydroxysuccimidyl ester of the hapten was activated and purified to prepare a protein conjugate with high hapten density, which was used as an immunogen. Antibodies were raised and competitive enzyme-linked immunosorbent assays were developed. To enhance the assay's sensitivity, two additional heterologous haptens were prepared by modifying the halogenated substituent at C-6. The optimized assays demonstrated low limits of detection in buffer, approximately 0.05 µg/L. When applied to the analysis of proquinazid in QuEChERS extracts of strawberry samples, the immunoassays produced precise and accurate results, particularly in the 10-1000 µg/kg range.

3.
BMC Vet Res ; 20(1): 307, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987775

ABSTRACT

In low- and middle-income countries, data on antimicrobial use (AMU) and antimicrobial resistance (AMR) in aquaculture are scarce. Therefore, summarizing documented data on AMU, antimicrobial residue (AR), and AMR in aquaculture in Africa is key to understanding the risk to public health. Google Scholar, PubMed, African Journals online, and Medline were searched for articles published in English and French following the PRISMA guidelines. A structured search string was used with strict inclusion and exclusion criteria to retrieve and screen the articles. The pooled prevalence and 95% confidence intervals were calculated for each pathogen-antimicrobial pair using random effects models. Among the 113 full-text articles reviewed, 41 met the eligibility criteria. The majority of the articles reported AMR (35; 85.4%), while a few were on AMU (3; 7.3%) and AR (3; 7.3%) in fish. The articles originated from West Africa (23; 56.1%), North Africa (8; 19.7%), and East Africa (7; 17.1%). Concerning the antimicrobial agents used in fish farming, tetracycline was the most common antimicrobial class used, which justified the high prevalence of residues (up to 56.7%) observed in fish. For AMR, a total of 69 antimicrobial agents were tested against 24 types of bacteria isolated. Bacteria were resistant to all classes of antimicrobial agents and exhibited high levels of multidrug resistance. Escherichia coli, Salmonella spp., and Staphylococcus spp. were reported in 16, 10, and 8 studies, respectively, with multidrug resistance rates of 43.1% [95% CI (32.0-55.0)], 40.3% [95% CI (24.1-58.1)] and 31.3% [95% CI (17.5-49.4)], respectively. This review highlights the high multidrug resistance rate of bacteria from aquaculture to commonly used antimicrobial agents, such as tetracycline, ampicillin, cotrimoxazole, gentamicin, and amoxicillin, in Africa. These findings also highlighted the lack of data on AMU and residue in the aquaculture sector, and additional efforts should be made to fill these gaps and mitigate the burden of AMR on public health in Africa.


Subject(s)
Aquaculture , Fishes , Animals , Africa , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Drug Residues , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use
4.
Food Chem X ; 22: 101323, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38978692

ABSTRACT

The presence of pesticide residues in Agrocybe aegerita has raised an extensive concern. In this paper, based on a 3-year monitoring survey, the dietary exposure risks through A. aegerita consumption for different population subgroups were assessed using both deterministic and semi-probabilistic approaches under the best-case and the worst-case scenarios. Among the 52 targeted pesticides, 28 different compounds were identified in the concentration range of 0.005-3.610 mg/kg, and 87.4 % of samples contained one or more pesticide residues. The most frequently detected pesticide was chlormequat, followed by chlorfenapyr and cyhalothrin. The overall risk assessment results indicated extremely low chronic, acute, and cumulative dietary exposure risks for consumers. Using the ranking matrix, intake risks of pesticides were ranked, revealing endsoluran, chlorpyrifos, and methamidophos to be in the high-risk group. Finally, considering various factors such as the toxicity and risk assessment outcomes of each positive pesticide, use suggestions were proposed for A. aegerita cultivation.

5.
Article in English | MEDLINE | ID: mdl-38977552

ABSTRACT

High alkalinity content of bauxite residue is a major factor that hinders resource reutilization and pollutes the environment. Although acid neutralization is a direct and effective method, the amount of acid and secondary waste of sodium salt are still difficult problems to solve. Herein, we innovatively integrated an electric field into the acid neutralization dealkalization of bauxite residue and analyzed the dealkalization behavior by thermodynamics, kinetics, and mineral transformation. The results show that the pH of the anode chamber was maintained at the acidic levels of 3-6 after 30 min of galvanostatic electrolysis, and bauxite residue can realize dealkalization by acid neutralization. In the anode chamber, Na+ was released into the leachate via the reactions of Na3Al3Si3O12 and the removal of encapsulated soluble alkali. The stainless steel wire mesh anode exhibited its superiority and decreased the Na2O content in bauxite residue from 9.48 to 3.13% through convective mass transfer driven by the electric field and steady-state diffusion under stirring. This research provides a promising method for the electricity-driven dealkalization of bauxite residue, thus facilitating the development of multifield coupling theory and the application of electric fields in the alumina industry.

6.
Front Vet Sci ; 11: 1397051, 2024.
Article in English | MEDLINE | ID: mdl-38962702

ABSTRACT

The utilization of agro-industrial by-products, such as fruit residues, presents a promising strategy for providing alternative feed to ruminants amidst rising prices and limited availability of traditional roughage. In this study, we investigated the effects of Rosa roxburghii tratt residue, a local fruit residue in Guizhou province of China, on the growth, blood metabolites, rumen fermentation, and slaughter performance of Hu sheep. Ninety-six sheep were randomly divided into four groups, namely control, treatment 1, treatment 2, and treatment 3, and fed diets containing 0, 10, 20, and 30% Rosa roxburghii Tratt residue, respectively. Feeding varying levels of Rosa roxburghii Tratt residue showed no significant differences in dry matter intake, average daily gain, or the ratio of dry matter intake to average daily gain. However, sheep in the group fed with 30% Rosa roxburghii Tratt residue showed the highest gross profit. Plasma albumin content was lower in groups fed with Rosa roxburghii Tratt residue-containing diets compared to the control group (p < 0.05). Additionally, diet treatment 3 decreased plasma creatinine levels compared to control and treatment 1 (p < 0.05). Sheep in treatment 2 and treatment 3 exhibited higher plasma high-density lipoprotein level than control and treatment 1 (p < 0.05), as well as increased total cholesterol levels compared to control (p < 0.05). There were no significant differences in other plasma metabolites. Rumen pH, N-NH3, volatile fatty acids, and methane levels did not differ significantly among the four groups. However, feeding diets treatment 2 and treatment 3 resulted in decreased water holding capacity and increased shear force compared to control and treatment 1 (p < 0.05). Furthermore, pH, red chromaticity (a*), yellowness index (b*), and luminance (L*) were unaffected among the four groups of sheep. In conclusion, the inclusion of up to 30% Rosa roxburghii Tratt residue had no adverse effects on growth performance, allowing for feed cost savings without impacting rumen fermentation parameters. Rosa roxburghii tratt residue also showed benefits in improving plasma protein efficiency and enhancing lipid metabolism, albeit with limited effects on meat quality. Considering its affordability, Rosa roxburghii Tratt residue presents a practical choice for low-cost diets, ensuring economic returns.

7.
Nat Prod Res ; : 1-7, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946336

ABSTRACT

Date palm is an age-old cultivated plant that thrives in tropical and subtropical regions. The date palm is a bountiful source of carbohydrates, encompassing sucrose, glucose, and fructose and proteins. The date industry generates a significant volume of unused by-products. Dates offer a diverse range of by-products beyond the agri-food sector. LAB have garnered extensive utilisation across diverse food sectors, spanning meat, vegetables, beverages, dairy products, and other fermented foods. In the quest for establishing a new large-scale fermentation process for lactic acid there has been a concerted effort to utilise more cost-effective medium components. In the present work, date palm residue (DPR) derived from date palm fruit, after sugar extraction, was incorporated into MRS. The fermentation process was executed through two distinct fermentation systems. Initially, experiments were conducted in flasks. Afterward, the optimal conditions for bacterial growth were determined, and the experiment was carried out using a bioreactor. DPR supported the probiotic Lactobacillus spp. growth especially after 48 h incubation. The prebiotic effect of DPR on Lactobacillus spp. was reported. An increase in the total number of bacterial populations was observed in response to the addition the DPR until 48 h. Specifically, the supplementing DPR at a concentration of 1.5% in batch fermentation enhanced the growth and lactic acid production of Lactobacillus casei. This study suggests that DPR could potentially function as an economical prebiotic source and could be seamlessly incorporated as a functional food ingredient, thereby transforming a waste product into an economically sustainable food substrate.

8.
J Environ Manage ; 365: 121600, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963957

ABSTRACT

Electrolytic manganese residue (EMR) is known for high concentrations of Mn2+, NH4+, and heavy metals. Failure to undergo benign treatment and landfill disposal would undeniably lead to negative impacts on the quality of the surrounding ecological environment. This study sought to mitigate the latent environmental risks associated with EMR using a cooperative solidification/stabilization (S/S) method involving coal fly ash (CFA). Leveraging leaching toxicity tests, the leaching behavior of pollutants in electrolytic manganese residue-based geopolymer materials (EMRGM) was determined. At the same time, mechanistic insights into S/S processes were explored utilizing characterization techniques such as XRF, XRD, FT-IR, SEM-EDS, and XPS. Those results confirmed significant reductions in the leaching toxicities of Mn2+ and NH4+ to 4.64 µg/L and 0.99 mg/L, respectively, with all other heavy metal ions falling within the permissible limits set by relevant standards. Further analysis shows that most of NH4+ volatilizes into the air as NH3, and a small part is fixed in the EMRGM in the form of struvite; in addition to being oxidized to MnOOH and MnO2, Mn2+ will also be adsorbed and wrapped by silicon-aluminum gel together with other heavy metal elements in the form of ions or precipitation. This research undeniably provides a solid theoretical foundation for the benign treatment and resourceful utilization of EMR and CFA, two prominent industrial solid wastes.

9.
Article in English | MEDLINE | ID: mdl-38955969

ABSTRACT

Highly active Fe3O4/GO/Au composite nanomaterial was fabricated as a substrate of surface-enhanced Raman spectroscopy (SERS) and applied for pesticide residue detection. The three-layer multifunctional Fe3O4/GO/Au nanoparticles (NPs) were designed by facile method, with high hotspots, and were characterized by various techniques, including ultraviolet spectrophotometry (UV), X-ray diffraction (XRD), infrared absorption spectrometer (IR), and transmission electron microscopy (TEM). The performance of Fe3O4/GO/Au was evaluated by Raman spectroscopy with R6G as a probe molecule to verify its enhancement effect. It exhibited a strong Raman signal with 10-6 M of R6G. Furthermore, the presence of Fe3O4/GO/Au nanohybrid enabled the SERS-based method to detect mancozeb and showed an excellent linear relationship in the range of 0.25-25 ppm, with a low limit of detection (0.077 ppm), satisfactory EF, stability, and repeatability. In addition, the mechanism of SERS enhancement with electromagnetic mechanism (EM) and chemical mechanism (CM) was discussed in detail. Therefore, the proposed SERS approach holds promise as an auxiliary technique for screening contaminated agricultural products, environmental sample, and food in the future.

10.
Article in English | MEDLINE | ID: mdl-38951399

ABSTRACT

The growing demand for agricultural products, driven by the Green Revolution, has led to a significant increase in food production. However, the demand is surpassing production, making food security a major concern, especially under climatic variation. The Indian agriculture sector is highly vulnerable to extreme rainfall, drought, pests, and diseases in the present climate change scenario. Nonetheless, the key agriculture sub-sectors such as livestock, rice cultivation, and biomass burning also significantly contribute to greenhouse gas (GHG) emissions, a driver of global climate change. Agriculture activities alone account for 10-12% of global GHG emissions. India is an agrarian economy and a hub for global food production, which is met by intensive agricultural inputs leading to the deterioration of natural resources. It further contributes to 14% of the country's total GHG emissions. Identifying the drivers and best mitigation strategies in the sector is thus crucial for rigorous GHG mitigation. Therefore, this review aims to identify and expound the key drivers of GHG emissions in Indian agriculture and present the best strategies available in the existing literature. This will help the scientific community, policymakers, and stakeholders to evaluate the current agricultural practices and uphold the best approach available. We also discussed the socio-economic, and environmental implications to understand the impacts that may arise from intensive agriculture. Finally, we examined the current national climate policies, areas for further research, and policy amendments to help bridge the knowledge gap among researchers, policymakers, and the public in the national interest toward GHG reduction goals.

11.
Braz J Microbiol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951478

ABSTRACT

Chitinases are promising enzymes for a multitude of applications, including chitooligosaccharide (COS) synthesis for food and pharmaceutical uses and marine waste management. Owing to fungal diversity, fungal chitinases may offer alternatives for chitin degradation and industrial applications. The rapid reproduction cycle, inexpensive growth media, and ease of handling of fungi may also contribute to reducing enzyme production costs. Thus, this study aimed to identify fungal species with chitinolytic potential and optimize chitinase production by submerged culture and enzyme characterization using shrimp chitin. Three fungal species, Coriolopsis byrsina, Trichoderma reesei, and Trichoderma harzianum, were selected for chitinase production. The highest endochitinase production was achieved in C. byrsina after 168 h cultivation (0.3 U mL- 1). The optimal temperature for enzyme activity was similar for the three fungal species (up to 45 and 55 ºC for endochitinases and exochitinases, respectively). The effect of pH on activity indicated maximum hydrolysis in acidic pH (4-7). In addition, the crude T. reesei extract showed promising properties for removing Candida albicans biofilms. This study showed the possibility of using shrimp chitin to induce chitinase production and enzymes that can be applied in different industrial sectors.

12.
Front Chem ; 12: 1419287, 2024.
Article in English | MEDLINE | ID: mdl-38966860

ABSTRACT

In this study, phosphoric acid activation was employed to synthesize nitrogen-doped mesoporous activated carbon (designated as MR1) from Lentinus edodes (shiitake mushroom) residue, while aiming to efficiently remove acetaminophen (APAP), carbamazepine (CBZ), and metronidazole (MNZ) from aqueous solutions. We characterized the physicochemical properties of the produced adsorbents using scanning electron microscopy (SEM), nitrogen adsorption isotherms, and X-ray photoelectron spectroscopy (XPS). MR1, MR2, and MR3 were prepared using phosphoric acid impregnation ratios of 1, 2, and 3 mL/g, respectively. Notably, MR1 exhibited a significant mesoporous structure with a volume of 0.825 cm3/g and a quaternary nitrogen content of 2.6%. This endowed MR1 with a high adsorption capacity for APAP, CBZ, and MNZ, positioning it as a promising candidate for water purification applications. The adsorption behavior of the contaminants followed the Freundlich isotherm model, suggesting a multilayer adsorption process. Notably, MR1 showed excellent durability and recyclability, maintaining 95% of its initial adsorption efficiency after five regeneration cycles and indicating its potential for sustainable use in water treatment processes.

13.
J Chromatogr A ; 1730: 465132, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38959658

ABSTRACT

In recent years, scientists have started evaluating the portion of PM-bound pollutants that may be liberated (bioaccessible fraction) in human fluids and spread through the digestive system ultimately entering systemic circulation (known as the bioavailable fraction). In the current research, an analytical procedure was validated and applied to characterize the oral bioavailable fraction of PM10 samples. The approach encompassed the determination of 49 organic contaminants. The proposed method aims to biomimetic complete mouth-gastric-intestinal system basing on an adaptation of the unified bioaccessibility method (UBM) modified by the inclusion of a dialysis membrane to mimic intestinal absorption and obtain the orally bioavailable fractions. It was followed by a vortex-assisted liquid-liquid extraction (VALLE) step, using gas chromatography-tandem mass spectrometry (GC-MS/MS). Analytical procedure was effectively validated by employing selected reaction monitoring (SRM) mode in MS/MS, matrix-matched calibration, and deuterium-labelled surrogate standards. This approach ensured heightened sensitivity, minimized matrix effects, and compensated for any losses during the process. The validation process covered various aspects, including studying linearity, determining detection and quantification limits, assessing analytical recoveries at three concentration levels, and evaluating precision both within a single day and across multiple days. The validated method was applied to PM10 samples, revealing that polycyclic aromatic hydrocarbons (PAHs) were the most frequently detected, with significant seasonal variations in their concentrations. Organophosphorus flame retardants (OPFRs) like TCPP were also detected in bioavailable fractions, highlighting their potential health impact. Bisphenols, SMCs, and PAEs were not detected, suggesting low levels in the studied urban area. Further research is needed to understand the bioavailability of PM-bound pollutants in different environments.

14.
J Environ Manage ; 365: 121601, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38959771

ABSTRACT

Tetracycline (TC) is widely present in the environment, and adsorption technology is a potential remediation method. S/N co-doped tea residue biochar (SNBC) was successfully prepared by hydrothermal carbonization method using tea residue as raw material. S was doped by Na2S2O3·5H2O, and N was doped by N in tea residue. The adsorption efficiency of SNBC could reach 94.16% when the concentration of TC was 100 mg L-1. The adsorption effect of SNBC on TC was 9.38 times more than that of unmodified biochar. Tea biochar had good adsorption effect at pH 4-9. The maximum adsorption capacity of 271 mg g-1 was calculated by the Langmuir isotherm model. The adsorption mechanism involved many mechanisms such as pore filling, π-π interaction and hydrogen bonding. The adsorbent prepared in this study could be used as an effective adsorbent in the treatment of TC wastewater.

15.
Article in English | MEDLINE | ID: mdl-38962841

ABSTRACT

To assess the dietary exposure risks of pesticide residues in vegetables for the general population, the presence of 39 pesticides was determined in 70 samples, of which 13 were detected. The most frequently detected pesticide was bifenthrin, with a detection rate of 35.7%, mainly found in gingers, followed by isoprocarb and acephate (11.4%) and dimethoate (8.6%). In 17.1% of the samples two or more pesticide residues were found. Acute, chronic and chronic cumulative dietary exposure risk was assessed. Chronic exposure risks were determined by Monte Carlo Simulation (MCS). Estimated chronic exposure to carbofuran, omethoate, disulfoton and dimethoate of approximately 49%, 52%, 40% and 3%, respectively, were at non-carcinogenic human risk. Acute exposure risk to acephate was considered to be of concern due to the high acute hazard quotient (aHQ).

16.
Sci Total Environ ; 946: 174458, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964404

ABSTRACT

Biogas residues (i.e., digestate) are rich in NH4+ that has great agricultural value but environmental risk if not recycled. Biochar can be an effective adsorbent retaining NH4+ from digestate. However, it remains unclear how the unique composition of digestate affects the capacity and mechanisms of NH4+ adsorption on biochar. This study examined the mechanisms and driving factors of NH4+ recovery from digestate containing different molecular-weight organic particles by using wood-derived biochar with or without H2O2 modification. Four solutions were prepared, including pure NH4+, synthetic NH4+ with multiple cations mimicking digestate solution, supernatant of digestate with small organic particles and dissolved organic matter, and digestate mixture containing supernatant and large organic particles. The results showed that compared with pure NH4+ solution, the adsorbed NH4+ was 42% lower in the synthetic NH4+ solution with multiple cations but was 2.2 time higher in the supernatant of digestate on two biochars following 48-h adsorption. Modified biochar did not change NH4+ adsorption in pure NH4+ solution despite higher specific surface area than raw biochar, but it increased the adsorption of NH4+ in digestate solutions with high pH (e.g., 4.03 vs. 3.37 mg N g-1 for modified and raw biochar, respectively, in the supernatant of digestate). Compared with the supernatant, the large organic particles in digestate mixture significantly but slightly decreased NH4+ adsorption on modified but not raw biochar. The desorption rate of NH4+ on the biochar was up to 74%-100%, and it was not supressed by the adsorption of organic particles in digestate. The findings here demonstrate the dominant role of electrostatic attraction in NH4+ adsorption, the important role of high pH and organic particles in digestate in facilitating NH4+ adsorption on biochar, and the suitability of the wood-derived biochar in recovering NH4+ from digestate and releasing N for agricultural application.

17.
Forensic Sci Int ; 361: 112135, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972145

ABSTRACT

Understanding the presence, transfer dynamics and depletion of gunshot residues (GSR) on various surfaces is crucial for preserving evidence, reconstructing shooting incidents, and linking suspects to crime scenes. This study aims to explore the transfer and loss of GSR on commonly encountered surfaces such as ceramic, glass, metal, paper, and plastic, as well as the influence of different common hand cleaning methods on secondary transfer. Using scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) and automated detection software, we quantified highly indicative three-component characteristic particles (lead, barium, and antimony) on cups made from ceramic, glass, metal, paper, and plastic. Furthermore, we evaluated the amount of secondary transferred particles on these surfaces following various post-discharge hand cleaning methods: washing with water and soap, washing with only water, wiping with wet wipes, or using paper towels. The results demonstrate that counts of secondarily transferred GSR particles vary significantly among surfaces. Specifically, the transferred GSR count was highest on paper, followed by plastic, ceramic, metal, and glass respectively. Post-discharge hand cleaning methods, including washing with water and soap, washing with only water, cleaning with wet wipes, or with paper towel, resulted in substantial loss of GSR count on transferred surfaces. Among these methods, washing with water and soap showed the highest depletion. The empirical evidence provided by our results underscores the importance of considering surface properties, post-shooting activities, and the methods of sample collection and analysis when interpreting transferred GSR analysis. Despite challenges, these insights enhance our ability to link suspects to shooting crimes through careful consideration of the entire context.

18.
J Environ Manage ; 366: 121751, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972191

ABSTRACT

Pyrolysis stands out as an effective method for the disposal of phytoremediation residues in abandoned mines, yielding a valuable by-product, biochar. However, the environmental application of biochar derived from such residues is limited by the potential environmental risks of heavy metals. Herein, Miscanthus sp. residues from abandoned mines were pyrolyzed into biochars at varied pyrolysis temperatures (300-700 °C) to facilitate the safe reuse of phytoremediation residues. The results showed that pyrolysis significantly stabilizes heavy metals in biomass, with Cd exhibiting the most notable stabilization effect. Acid-soluble/exchangeable and reducible fractions of Cd decreased significantly from 69.91 % to 2.52 %, and oxidizable and residue fractions increased approximately 3.24 times at 700 °C. The environmental risk assessment indicated that biochar pyrolyzed over 500 °C pose lower environmental risk (RI < 30), making them optimal for the safe utilization of phytoremediation residues. Additionally, adsorption experiments suggested that biochars prepared at higher temperature (500-700 °C) exhibit superior adsorption capacity, attributed to alkalinity and precipitation effect. This study highlights that biochars produced by pyrolyzing Miscanthus sp. from abandoned mines above 500 °C hold promise for environmental remediation, offering novel insight into the reutilization of metal-rich biomass.

19.
Food Chem ; 458: 140310, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38970960

ABSTRACT

Gelidium sesquipedale is valued in the Spanish agar industry, but its production generates substantial waste, often discarded despite its nutritional and bioactive content. Subcritical water extraction (SWE) at 175 °C and 50 bar for 130 min was performed on this waste after agar extraction, comparing it to conventional ethanol extraction. The SWE extract exhibited superior nutritional profile, including proteins (170.6 ± 1.0 mg/gfreeze-dried-extract), essential amino acids (18.1%), carbohydrates (148.1 ± 0.3 mg/gfreeze-dried-extract), total phenolic content (57 ± 7 mg-EqGA/gfreeze-dried-extract), and also containing Maillard reaction compounds, such as 5-hydroxymethylfurfural, furfural, 2-furanmethanol, 1-(2-furanyl)-ethanone, and 5-methyl-2-furfural, influencing color, aroma and flavor. This extract showed better antioxidant and anti-inflammatory properties than the conventional extract, and higher xanthine oxidase, tyrosinase, and acetylcholinesterase inhibition activities. Toxicological assessment on human cells indicated the safety of the SWE extract. Therefore, SWE technology offers a promising method to valorize G. sesquipedale residue, yielding a bioactive and nutrient-rich extract suitable for food and nutraceutical applications.

20.
Food Chem ; 457: 140117, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38905841

ABSTRACT

Given that the determination of biocides in food and feed is currently not routinely done, more information on these compounds is useful for consumer's safety. This work describes a sensitive and reliable method for quantitative analysis of a wide range of biocides in dairy products and slurry feed. The method comprises acetate-buffered QuEChERS extraction without clean-up. Analyses were performed by LC-Q-Orbitrap™-MS and a full-scan acquisition event without fragmentation was followed by five fragmentation events (data-independent acquisition-DIA). The quantitative validation was performed according to SANTE/11312/2021 at 10, 50 and 200 ng g-1 spiking levels, and the results showed that the vast majority of the compounds met the criteria for trueness and precision. The LOQ was 10 ng g-1 for the majority of biocides depending on the matrix. The method was successfully applied to quantify biocides in dairy products and feed.

SELECTION OF CITATIONS
SEARCH DETAIL
...