Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 928: 172412, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38614341

ABSTRACT

Drought and floods seriously affect agriculture across the world. It is of great importance to lower down the agricultural vulnerability to disasters to build climate-resilient agriculture. The paper aims to investigate the spatio-temporal changes of agricultural vulnerability to drought and floods in the world in the period 2003-2019. Research results show that (1) the agricultural vulnerability to drought and floods is at a low level across the globe owning to the dual effects of decreasing exposure and increasing adaptability; (2) the northern parts of United States, northeastern parts of China, and the border between Russia and Kazakhstan are identified as most vulnerable areas to drought and floods; and (3) spatio-temporal mismatch of precipitation is the main factor to cause floods and drought while better adaption is beneficial to minimize the adverse effects of disasters. Based on analysis on the drivers and spatial patterns of drought and floods risk in all dimensions, tailored measures and policies are put forwards to make adaptive strategies of agriculture to climate change.


Subject(s)
Agriculture , Climate Change , Droughts , Floods , Disasters , China , Spatio-Temporal Analysis
2.
Rev. colomb. biotecnol ; 25(2)dic. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1535733

ABSTRACT

En la actualidad uno de los retos a los que se enfrentan los agricultores es producir alimentos bajo las inclemencias climáticas. Para el 2050, se estima un aumento en la demanda en producción de alimentos básicos a causa del incremento demográfico, aumentando con ello el detrimento de los recursos naturales. Dentro de las alternativas biológicas está el uso de insumos a base de microorganismos benéficos, como el género Trichoderma. Los cuales se han utilizado en los campos agrícolas para el control biológico contra un gran número de fitopatógenos. Sin embargo, aún son poco conocidas otras propiedades benéficas de este género para las plantas que coloniza y el ecosistema. Se realizó una búsqueda de artículos científicos en Academic Search Ultimate, BioOne, Acsess, Esmerald, Fuente Académica, ScienceDirect y Springer, entre 2015 y 2023, con dos excepciones de años anteriores. Se utilizó la palabra clave "Trichoderma" y aquellas relacionadas con interacciones microbianas y su aplicación agrícola. Esta revisión resume los hallazgos bibliográficos actuales de este género que muestran su alta capacidad hacia el desarrollo sostenible de los agroecosistemas. Varias investigaciones reportan su capacidad de inducir la defensa vegetal, la promoción del crecimiento y desarrollo radicular, así como la estimulación y síntesis de sustancias que contribuyen a fortalecer la fertilidad del suelo. Con ello mejora los rendimientos de los cultivos a los que se encuentra asociado. En definitiva, la aplicación de Trichoderma puede coadyuvar a disminuir los efectos negativos ocasionados por el uso de agroquímicos y fertilizantes sintéticos, contribuyendo a una producción más sostenible.


Currently, one of the most critical challenges facing farmers is the production of food under adverse weather conditions. By 2050, an increase in the production of staple foods is estimated due to demographics, thereby increasing the depletion of natural resources. Among the biological alternatives is the use of inputs based on beneficial microorganisms such as the Trichoderma genus, which have been used in agricultural fields for biological control against a large number of phytopathogens. However, other beneficial properties of this genus for the plants it colonizes, and the ecosystem are still little known. Therefore, a search for scientific articles was carried out in Academic Search Ultimate, BioOne, Acsess, Esmerald, Fuente Academic, ScienceDirect and Springer, between 2015 and 2023, with two exceptions from previous years. The keyword "Trichoderma" was used and those related to microbial interactions and their agricultural application. Therefore, this review summarizes the current bibliographic findings of this genus, that shows its high capacity towards the sustainable development of agroecosystems. Several investigations report its ability to induce plant defense, promote growth and root development, and stimulate and synthesize substances that help strengthen soil fertility. This improves the yields of the crops to which they are associated. With this, the application of Trichoderma can reduce the negative effects caused by the use of agrochemicals and synthetic fertilizers, contributing to a more sustainable production.

3.
Plants (Basel) ; 12(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836181

ABSTRACT

Salinity is one of the most devastating abiotic stresses hampering the growth and production of rice. Nine indole-3-acetic acid (IAA)-producing salt-tolerant plant-growth-promoting rhizobacteria (ST-PGPR) were inoculated into Thai jasmine rice (Oryza sativa L.) variety Khao Dawk Mali 105 (KDML105) seedlings grown under different concentrations of NaCl (0, 50, 100, and 150 mM). The ST-PGPR strains significantly promoted the growth parameters, chlorophyll content, nutrient uptake (N, P, K, Ca, and Mg), antioxidant activity, and proline accumulation in the seedlings under both normal and saline conditions compared to the respective controls. The K+/Na+ ratio of the inoculated seedlings was much higher than that of the controls, indicating greater salt tolerance. The most salt-tolerant and IAA-producing strain, Sinomonas sp. ORF15-23, yielded the highest values for all the parameters, particularly at 50 mM NaCl. The percentage increases in these parameters relative to the controls ranged from >90% to 306%. Therefore, Sinomonas sp. ORF15-23 was considered a promising ST-PGPR to be developed as a bioinoculant for enhancing the growth, salt tolerance, and aroma of KDML105 rice in salt-affected areas. Environmentally friendly technologies such as ST-PGPR bioinoculants could also support the sustainability of KDML105 geographical indication (GI) products. However, the efficiency of Sinomonas sp. ORF15-23 should be evaluated under field conditions for its effect on rice nutrient uptake and growth, including the 2AP level.

4.
Funct Integr Genomics ; 23(4): 298, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700098

ABSTRACT

Plants have evolved to adapt and grow in hot and cold climatic conditions. Some also adapt to daily and seasonal temperature changes. Epigenetic modifications play an important role in regulating plant tolerance under such conditions. DNA methylation and post-translational modifications of histone proteins influence gene expression during plant developmental stages and under stress conditions, including cold and heat stress. While short-term modifications are common, some modifications may persist and result in stress memory that can be inherited by subsequent generations. Understanding the mechanisms of epigenomes responding to stress and the factors that trigger stress memory is crucial for developing climate-resilient agriculture, but such an integrated view is currently limited. This review focuses on the plant epigenetic stress memory during cold and heat stress. It also discusses the potential of machine learning to modify stress memory through epigenetics to develop climate-resilient crops.


Subject(s)
Epigenesis, Genetic , Epigenetic Memory , Cold Temperature , Agriculture , Heat-Shock Response/genetics
5.
Ann Bot ; 132(4): 819-833, 2023 11 25.
Article in English | MEDLINE | ID: mdl-37279950

ABSTRACT

BACKGROUND AND SCOPE: Crassulacean acid metabolism (CAM) is an intriguing physiological adaptation in plants that are widespread throughout many ecosystems. Despite the relatively recent mechanistic understanding of CAM in plant physiology, evidence from historical records suggests that ancient cultures in the Americas also recognized the value of CAM plants. Agave species, in particular, have a rich cultural legacy that provides a foundation for commercially valued products. Here, we review that legacy and potential relationships between ancient values and the needs of modern-day climate adaptation strategies. CONCLUSIONS: There are many products that can be produced from Agave species, including food, sugar, fibre and medicines. Traditional knowledge about agricultural management and preparation of plant products can be combined with new ecophysiological knowledge and agronomic techniques to develop these resources in the borderland region of the southwestern USA and Mexico. Historical records of pre-Columbian practices in the Sonoran desert and remnants of centuries-old agriculture in Baja California and Sonora demonstrate the climate resilience of Agave agriculture. Commercial growth of both tequila and bacanora indicates the potential for large-scale production today, but also underscores the importance of adopting regenerative agricultural practices to accomplish environmentally sustainable production. Recent international recognition of the Appellation of Origin for several Agave species produced for spirits in Mexico might provide opportunities for agricultural diversification. In contrast, fibre is currently produced from several Agave species on many continents. Projections of growth with future climate change suggest that Agave spp. will be viable alternatives for commodity crops that suffer declines during drought and increased temperatures. Historical cultivation of Agave affirms that these CAM plants can supply sugar, soft and hard fibres, medicines and food supplements.


Subject(s)
Agave , Crassulacean Acid Metabolism , Agave/metabolism , Ecosystem , Mexico , Sugars/metabolism
6.
J Environ Manage ; 329: 117082, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36577302

ABSTRACT

-Enhancing the productivity of rainfed crops, especially rice, while coping with climate adversities and saving critical natural resources is essential for ensuring the food and nutrition security of a growing population. With this context, the present study was undertaken to validate promising farm innovation and adaptation practices used by small-medium landholding farmers for rice cultivation in eastern Uttar Pradesh (UP), north India, as well as to examine the sustainability of innovative practices for large-scale adoption. For this, a 3-year study comprising extensive field surveys and experiments was undertaken to compare single transplantation (ST) and double transplantation (DT) in rice along with organic addition (farm-yard manure, FYM) on crop growth, yield, climate resilience, soil quality, and overall sustainability i.e., social (women involvements and labour productivity), environmental (water productivity and nutrient use efficiency), and economic (benefit:cost ratio) dimensions of sustainability. Field experiments were conducted in triplicate using two local rice varieties (MotiNP-360 and Sampurna Kaveri) in two agroclimatic zones, namely the middle Gangetic plains and the Vindhyan zone, in the Mirzapur district of eastern Uttar Pradesh. The DT practices of rice with and without farm yard manure (FYM) (replacing at a dose of 25% NPK) were evaluated over conventional methods of rice cultivation (i.e., ST, as control) and analysis was done periodically. The DT practice improved growth (p < 0.05), percent fertile tiller and grain (p < 0.05), and rice yield (15-20% higher than ST), while also improving soil quality, yield indices, water and labour productivity, and the benefit-cost ratio. The DT practice also resulted in early maturity (10-15 days earlier than ST), created more labour days for women, decreased lodging and pest/disease incidence, as well as a subsequent reduction in the use of synthetic chemical pesticides and associated environmental costs. Importantly, the residual effects of FYM application significantly improved (p < 0.05) the grain yield in subsequent years of cropping. Optimizing DT cultivation practices, preferably with FYM input for various agro-climatic regions, is essential for large-scale sustainable rice production under changing climatic conditions.


Subject(s)
Agriculture , Oryza , Female , Humans , Agriculture/methods , Manure , Soil , Edible Grain , India
7.
J Exp Bot ; 73(15): 5085-5088, 2022 09 03.
Article in English | MEDLINE | ID: mdl-36056763
8.
Sci Total Environ ; 688: 926-934, 2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31726574

ABSTRACT

Drought is a major environmental event affecting crop productivity and nutritional quality, and potentially, human nutrition. This study evaluated drought effects on performance and nutrient acquisition and distribution in sorghum; and whether ZnO nanoparticles (ZnO-NPs) might alleviate such effects. Soil was amended with ZnO-NPs at 1, 3, and 5 mg Zn/kg, and drought was imposed 4 weeks after seed germination by maintaining the soil at 40% of field moisture capacity. Flag leaf and grain head emergence were delayed 6-17 days by drought, but the delays were reduced to 4-5 days by ZnO-NPs. Drought significantly (p < 0.05) reduced (76%) grain yield; however, ZnO-NP amendment under drought improved grain (22-183%) yield. Drought inhibited grain nitrogen (N) translocation (57%) and total (root, shoot and grain) N acquisition (22%). However, ZnO-NPs (5 mg/kg) improved (84%) grain N translocation relative to the drought control and restored total N levels to the non-drought condition. Shoot uptake of phosphorus (P) was promoted (39%) by drought, while grain P translocation was inhibited (63%); however, ZnO-NPs lowered total P acquisition under drought by 11-23%. Drought impeded shoot uptake (45%), grain translocation (71%) and total acquisition (41%) of potassium (K). ZnO-NP amendment (5 mg/kg) to drought-affected plants improved total K acquisition (16-30%) and grain K (123%), relative to the drought control. Drought lowered (32%) average grain Zn concentration; however, ZnO-NP amendments improved (94%) grain Zn under drought. This study represents the first evidence of mitigation of drought stress in full-term plants solely by exposure to ZnO-NPs in soil. The ability of ZnO-NPs to accelerate plant development, promote yield, fortify edible grains with critically essential nutrients such as Zn, and improve N acquisition under drought stress has strong implications for increasing cropping systems resilience, sustaining human/animal food/feed and nutrition security, and reducing nutrient losses and environmental pollution associated with N-fertilizers.


Subject(s)
Droughts , Fertilizers , Nanoparticles/metabolism , Sorghum/physiology , Zinc Oxide/metabolism , Edible Grain , Nitrogen/metabolism , Phosphorus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...