Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Int J Mol Sci ; 22(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065973

ABSTRACT

Various types of cells demonstrate ubiquitous rhythmicity registered as simple and complex Ca2+-oscillations, spikes, waves, and triggering phenomena mediated by G-protein and tyrosine kinase coupled receptors. Phospholipase C/IP3-receptors (PLC/IP3R) and endothelial NO-synthase/Ryanodine receptors (NOS/RyR)-dependent Ca2+ signaling systems, organized as multivariate positive feedback generators (PLC-G and NOS-G), underlie this rhythmicity. Loss of rhythmicity at obesity may indicate deregulation of these signaling systems. To issue the impact of cell size, receptors' interplay, and obesity on the regulation of PLC-G and NOS-G, we applied fluorescent microscopy, immunochemical staining, and inhibitory analysis using cultured adipocytes of epididumal white adipose tissue of mice. Acetylcholine, norepinephrine, atrial natriuretic peptide, bradykinin, cholecystokinin, angiotensin II, and insulin evoked complex [Ca2+]i responses in adipocytes, implicating NOS-G or PLC-G. At low sub-threshold concentrations, acetylcholine and norepinephrine or acetylcholine and peptide hormones (in paired combinations) recruited NOS-G, based on G proteins subunits interplay and signaling amplification. Rhythmicity was cell size- dependent and disappeared in hypertrophied cells filled with lipids. Contrary to control cells, adipocytes of obese hyperglycemic and hypertensive mice, growing on glucose, did not accumulate lipids and demonstrated hormonal resistance being non responsive to any hormone applied. Preincubation of preadipocytes with palmitoyl-L-carnitine (100 nM) provided accumulation of lipids, increased expression and clustering of IP3R and RyR proteins, and partially restored hormonal sensitivity and rhythmicity (5-15% vs. 30-80% in control cells), while adipocytes of diabetic mice were not responsive at all. Here, we presented a detailed kinetic model of NOS-G and discussed its control. Collectively, we may suggest that universal mechanisms underlie loss of rhythmicity, Ca2+-signaling systems deregulation, and development of general hormonal resistance to obesity.


Subject(s)
Adipocytes, White/metabolism , Calcium Signaling , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Obesity/metabolism , Adipocytes, White/cytology , Adipocytes, White/drug effects , Animals , Calcium Signaling/drug effects , Cell Size , Cells, Cultured , Diabetes Mellitus, Type 2/etiology , Diet, High-Fat/adverse effects , Epididymis , GTP-Binding Proteins/metabolism , Male , Mice , Nitric Oxide Synthase Type III/metabolism , Obesity/chemically induced , Palmitoylcarnitine/pharmacology , Periodicity , Primary Cell Culture , Type C Phospholipases/metabolism
2.
Braz. j. med. biol. res ; 54(10): e10669, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285654

ABSTRACT

Mechanisms involved in cardiac function and calcium (Ca2+) handling in obese-resistant (OR) rats are still poorly determined. We tested the hypothesis that unsaturated high-fat diet (HFD) promotes myocardial dysfunction in OR rats, which it is related to Ca2+ handling. In addition, we questioned whether exercise training (ET) becomes a therapeutic strategy. Male Wistar rats (n=80) were randomized to standard or HFD diets for 20 weeks. The rats were redistributed for the absence or presence of ET and OR: control (C; n=12), control + ET (CET; n=14), obese-resistant (OR; n=9), and obese-resistant + ET (ORET; n=10). Trained rats were subjected to aerobic training protocol with progressive intensity (55-70% of the maximum running speed) and duration (15 to 60 min/day) for 12 weeks. Nutritional, metabolic, and cardiovascular parameters were determined. Cardiac function and Ca2+ handling tests were performed in isolated left ventricle (LV) papillary muscle. OR rats showed cardiac atrophy with reduced collagen levels, but there was myocardial dysfunction. ET was efficient in improving most parameters of body composition. However, the mechanical properties and Ca2+ handling from isolated papillary muscle were similar among groups. Aerobic ET does not promote morphological and cardiac functional adaptation under the condition of OR.


Subject(s)
Animals , Male , Rats , Physical Conditioning, Animal , Obesity , Rats, Wistar , Diet, High-Fat/adverse effects , Heart
SELECTION OF CITATIONS
SEARCH DETAIL
...